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Differences in the gut microbiota have been reported between individuals with autism spectrum disorders

(ASD) and neurotypical controls, although direct evidence that changes in the microbiome contribute to

causing ASD has been scarce to date. Here we summarize some considerations of experimental design that

can help untangle causality in this complex system. In particular, large cross-sectional studies that can factor

out important variables such as diet, prospective longitudinal studies that remove some of the influence of

interpersonal variation in the microbiome (which is generally high, especially in children), and studies

transferring microbial communities into germ-free mice may be especially useful. Controlling for the effects of

technical variables, which have complicated efforts to combine existing studies, is critical when biological

effect sizes are small. Large citizen-science studies with thousands of participants such as the American Gut

Project have been effective at uncovering subtle microbiome effects in self-collected samples and with self-

reported diet and behavior data, and may provide a useful complement to other types of traditionally funded

and conducted studies in the case of ASD, especially in the hypothesis generation phase.
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D
ifferences in the gut microbiota that inhabit the

intestinal tracts and feces of children with autism

spectrum disorders (ASD), as compared to neu-

rotypical children, have been reported by several research

groups over the past decade (1�5) [for comprehensive

review, see (6)]. The relationship of these differences in

the microbiota to dietary practices, the diversity and sever-

ity of clinical features, and pathogenesis remains unclear.

There is now evidence in animal models (1, 7) as well as

from more limited studies in humans, that signaling along

the gut-microbiome�brain axis is a critical regulator of

both central nervous system and immunefunction (8, 9).

In addition, some studies suggest that interventions tar-

geting the microbiome (probiotics, fecal transplants) may

have utility in the management of other neuropsychiatric

disorders (9�15). Further research to delineate the extent

of involvement of gut microbes in autism, and to monitor

or even suggest therapies, is therefore promising.

The role of bacteria co-associating with our gastro-

intestinal tract in physiological development and disease

�
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has recently attracted considerable attention, primarily as

a result of technological advances associated with sample

processing, sequencing of genetic information, and data

analytical tools. In the last decade, the revolution in

sequencing technology has fundamentally altered our

perception of microbial diversity and ecology, by enabling

us to process and analyze thousands to tens of thousands

of samples in a single study (16�18). These advances have

allowed us to identify significant trends relating the phy-

siology, environment, and health history of a host and the

presence or relative abundance of the bacteria that inhabit

the host (e.g. 19�21). Many factors affect the colonization

and succession of the microbial communities that live

within us, and that change over time (22, 23). It is therefore

difficult to capture the combination of events within an

individual’s life that have resulted in that individual’s

unique microbial signature. Although some bacterial taxa

correlate strongly with specific conditions (19, 24, 20, 21),

other relationships are less obvious, and may require far

larger cohorts of participants to detect (16).

Bacteria have profound influences on key aspects of our

immune regulatory network (25), with far-reaching im-

plications for our physiological and even neurological

development (26). Direct association between bacteria and

host cells is important for immunological development

(27), regulation, and response (28). However, bacterial bio-

mass in the lumen, including bacteria that do not actively

associate directly with host gastrointestinal tissues, might

be more important for the production of key metabolites

that can have important physiological effects once they

cross into our bloodstream [e.g. 4-ethyl phenyl sulfate

(4-EPS) production (1)]. Bacteria contribute to circulating

blood levels of amino acids such as tryptophan (including

synthesis from dietary serine or indoles), thereby affecting

levels of key regulatory neurotransmitters, such as seroto-

nin, and also regulate levels of neuroactive metabolites

along the tryptophan degradation (kynurenine) pathway

both in the intestine and in the blood (8, 29�31). Although

the common method for assessing a gut microbial com-

munity is through the feces, in some circumstances such as

inflammatory bowel disease (IBD), mucosal biopsies may

help identify bacterial associations that may not be evident

in fecal samples, especially in cases where mucosally asso-

ciated bacteria are not dominant in the fecal sample (32).

The importance of experimental designs: cross-
sectional versus longitudinal analysis
Given the heterogeneity of ASD and the many poten-

tial confounding factors that may influence microbial

diversity, looking for associations in very large and well-

characterized cohorts may be the key to finding associa-

tions between the gut microbiota and disease. Large-scale

efforts such as the Earth Microbiome Project (17) and

American Gut (http://americangut.org) have demon-

strated the willingness of large communities of researchers,

and even of the general public, to contribute thousands of

samples to provide a fuller picture of the microbial

diversity of our planet and our bodies. In particular,

aggregating longitudinal datasets from different microbial

habitats is starting to provide an understanding of

dynamics on different timescales (33), and extending these

to studies of people with different clinical conditions

provides an especially exciting opportunity at present.

Cross-sectional study designs
Cross-sectional study designs are useful for identifying

systematic patterns across a population, testing the hypo-

thesis that some component of microbial variation within a

population is correlated with a study parameter (e.g. ASD

diagnosis). Applying a cross-sectional study design to very

large cohorts, for instance thousands of subjects, may

provide the statistical power to elucidate subtle phenom-

ena when faced with many confounding factors, as is

common in microbiome studies where lifestyle, diet, age,

genetics, and disease play important roles in shaping

community structure.

The benefit of a large cross-sectional study design was

demonstrated during an early analysis of the American

Gut dataset (http://americangut.org). At first, patterns

driven by diet and other lifestyle choices were observed,

but statistical significance suffered from limited sample

sizes within the specific groups of subjects showing

interesting trends. As we collected thousands of addi-

tional samples, many of these groups reached sample

sizes that increased the confidence and significance of the

observed patterns. One such pattern was a population-

scale seasonal effect, in which samples collected from in-

dividuals during the holiday season in the United States

tended to have higher diversity within each sample (http://

nbviewer.ipython.org/github/biocore/American-Gut/blob/

master/ipynb/Alpha diversity notebook.ipynb). Empiri-

cal power estimations suggest around 100 samples per

group are required to reliably observe these subtle differ-

ences across seasons, even after matching individuals for a

variety of other factors (http://nbviewer.ipython.org/github/

biocore/American-Gut/blob/master/ipynb/Power.ipynb).

These more subtle patterns only appeared through the

collection of a large number of samples from a broad

cross-section of the population, making it possible to

detect the signal against high levels of background noise

coming from other factors.

Another recent microbiome study that focused on

Crohn’s Disease patients (32) and relied on a large cross-

sectional design also benefitted greatly from a large sample

size. Critically, the researchers noted that the number of

samples was more important than sequencing depth (the

number of sequences collected from each sample) for

detecting statistically significant patterns that were appar-

ent in the full dataset. The study design allowed conclu-

sive identification of key taxa that differentiate Crohn’s
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patients from healthy controls that had not previously

been reported as associated with Crohn’s. Interestingly,

once the specific taxa were identified, it was then possible

to assess whether the metabolic potential of these organ-

isms made sense in the context of the disease. In this case,

some of the microbes that are less abundant in Crohn’s

patients are involved in the production of butyrate, which

is a short-chain fatty acid (SCFA). Butyrate is consumed

by intestinal epithelial cells (34), which are instrumental in

initiating an immune response (35, 36). In addition, the

researchers were able to identify an amplification effect

from antibiotic usage, in which individuals who had

recently taken antibiotics had a significantly pronounced

increase in detrimental taxa observed in Crohn’s patients,

with a corresponding decrease in beneficial taxa. One

taxon in particular, Fusobacterium, was recently found to

be highly correlated with colorectal cancer (37), which has

a higher incidence in Crohn’s and IBD patients. These

observations suggest antibiotic usage by this population

should attract closer scrutiny due to the increased risk to

the patient [although it should be noted that the specific

effects of antibiotic usage in healthy individuals is still

poorly understood, and appears to be highly variable in

different subjects (38, 39)]. A parallel study in ASD,

especially one relating differences in the microbiota to

common interventions such as drugs targeted at resolving

gastrointestinal symptoms, antipsychotics, antidepres-

sants, dietary changes, and other treatments, and with

excellent clinical data, could be especially valuable in

understanding which changes in the microbiome are likely

to be associated with ASD symptoms and which are most

likely to be side-effects of treatment.

Longitudinal study designs
Although cross-sectional studies are useful, they cannot

provide insight into variation within an individual over

time, limiting their power to observe phenomena such

as succession and to factor out between-subject variation

in diseases with complex etiologies. Such questions can

only be addressed with longitudinal study designs, exam-

ining multiple timepoints from the same individual.

Ecological succession of the gut microbial community is

of particular interest in autism because microbial com-

munities play a central role in training the immune

system during childhood development (22). Early anti-

biotic usage, for example, is associated with an increase in

allergies and obesity (40, 41), and may be associated with

disrupting the maturation of the microbiome. Within the

human microbiome, an infant’s initial microbial commu-

nities depend on delivery mode (42), where the infant

fecal community tends to resemble the mother’s vaginal

community after vaginal birth, but instead resemble skin

after C-section. Koenig et al. (22), through a 3-year time

series tracking a newborn, monitored this succession,

revealing a large amount of change over time progressing

from a vaginal-like community to a community resem-

bling the adult fecal state (43). One particularly interest-

ing observation was a substantial regression in community

state as a result of the child receiving antibiotics. This

regression was rapidly ameliorated, suggesting that resi-

lience in the community is picked up relatively early in

life. However, the impact that these types of disruptions

can have on the fledgling immune and endocrine systems

is not yet known, nor is the magnitude of this impact

with respect to other environmental, dietary, and lifestyle

factors.

Some important general considerations in longitudinal

study designs include how frequently to sample, whether

to focus timepoints around defined interventions, and

what auxiliary data (e.g. diet or immunological data) need

to be collected at each timepoint versus assessed once for

each subject. In general, not enough studies have been

done in order to provide detailed guidance on these points,

and animal model studies can be misleading. For example,

on the basis of studies on mice, which respond within 1 day

to dietary shifts (44, 45), we performed a parallel dietary

intervention study in humans with very little effect after

10 days in an inpatient setting (46). However, longitudinal

studies of the effects of microbiota transfer from humans

to mice have been very useful for elucidating effects of

microbiomes associated with obesity (47) and malnutri-

tion (48), and the same is likely to be true for autism (49)

given the availability of mouse models (1). Given the

established role of gut microbiota in allergen sensitization

in mouse models (28), and given high variability among

individual animals as well as among individual humans,

understanding effects of changes in the microbiome in

response to defined perturbations is likely to benefit

considerably from animal model work even when details

of the timescale or nature of the response differ among

species.

Longitudinal studies of the human microbiome to date

have typically employed small sample sizes, limited time-

points, or both. For example, the NIH-funded Human

Microbiome Project (16) reported data from only two

timepoints in each of 250 subjects. Only a couple of daily

studies of apparently healthy adults have employed sam-

pling durations as long as a year (50, 51), and a recent study

of dozens of healthy students employed only weekly

sampling (52). Nonetheless, it is clear that dynamics are

shaping up to be an important aspect of the human gut

microbiome, and studies both of the baseline dynamics

of the microbiome in ASD subjects, and of dynamics in

response to treatment with different interventions aimed

at alleviating different ASD symptoms, hold considerable

potential both for stratified treatment and for develop-

ing a better biological understanding of the underlying

mechanisms.
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Comparison of study designs with respect to
neuropsychiatric disorders
Within the context of neuropsychiatric disorders, cross-

sectional designs have been instrumental in recognizing the

correlation between the presence of blood markers of

inflammation or intestinal barrier compromise and de-

pression (53), bipolar disorder (54), and autism (6, 55).

The pathogenesis of these diseases differs. However, the

implication of inflammation in such a broad range of

disorders suggests that inflammation, and both its cause

and effect, ought to be a focal point for investigation. In

particular, inflammation can lead to a permeable gut,

thereby allowing metabolites produced by gut inhabitants

(and even the inhabitants themselves, or fragments of

them) to leak into the bloodstream (56, 57), and some

metabolites can even pass the blood/brain barrier (58). On

the other hand, the predominant source of serotonin in the

body is within the large intestine, and it is the role of

enterochromaffin cells to synthesize serotonin from tryp-

tophan (8). Dysregulation of the gut microbiome can

trigger secondary effects in these cells that alter the rate of

serotonin production (59), with significant changes in

neuropsychiatrically relevant domains, including mood

(60) and satiety (61) and possibly, the stereotypic features

of autism (62, 63). Interestingly, some of the classes of

drugs prescribed for treatment of neuropsychiatric dis-

orders act on the gastrointestinal tract and may also affect

the immune system (59). One metabolite of interest is 4-

EPS, originally observed to be significantly increased in

serum in a mouse model of autism (1) [fascinatingly, this

model requires stimulating the mother’s immune system

prior to birth, resulting in offspring with autism-like

symptoms (64)]. Anorexia Nervosa is an eating disorder

characterized by the inability or unwillingness to gain

weight (65, 66). ASD is a comorbidity for anorexia, and

may be reflective of sociocommunicative problems within

individuals with anorexia (67�69). The microbiome plays a

role in the pathology of anorexia; the bacterial ClpB heat

shock protein can induce anti a-MSH antibody, leading to

a reduction in appetite, weight loss, and anxiety (70, 71).

The importance of controlling for technical
variables in traits with small effect size
The problem of large versus small effect sizes is in some

ways analogous to assessing the riskof a campfire sparking

a wildfire. If you asked: are campfires correlated with

wildfires, the answer is likely to be yes by analysis of

whether wildfires are more likely in proximity to camp-

grounds. A large amount of variation in the type of camp,

its geographic location, and definition of wildfire can likely

be tolerated. In this case, the presence of a fire is a large

effect. If instead you asked: are certain personality types

more likely to spark a wildfire from a campfire, then the

answer is subtle necessitating finer control over data

collection. For instance, how personality type is assessed

is critical in assuring that everyone underwent the same

test and that there was no researcher bias in test admi-

nistration. In addition, controlling for substance use is

necessary in order to understand whether it is personality,

or say, the presence of alcohol that leads to accidental

wildfires. In this case, the potential small effect of perso-

nality (which is a large effect in other contexts) requires

more careful control, relative to the large effect of simply

having a campfire, in order to properly identify if in fact

there is an effect mediated by personality.

The complexity of neurological disorders, and the

difficulty to date in pinpointing specific causes, suggests

that the causes themselves are varied, subtle, and possibly

multifactorial. As such, emphasis on controlling for

technical variables is essential to minimize noise, and

maximize signal. For instance, the Human Microbiome

Project sequenced two separate regions of the 16S rRNA

gene (16) from the same samples leading to a confound-

ing effect if analyzing both loci together. The end effect

was that it was not feasible to compare data from one loci

to another as the noise stemming from the loci masked

any usable signals in the data. On a practical level, using

the exact same protocols for all samples of a common

type is critical in order to limit the impact of technical

bias. Frustratingly, there is even variation that is intro-

duced into the data by the site that is processing the

samples, though there are ongoing efforts to understand

the drivers of this variation so that it can be normalized,

something that is necessary for clinical applications of

microbiome assays.

Digging deeper, in addition to tightly controlled tech-

nical variables and large sample sizes, using a tiered

systems approach can substantiate interpretation and

validation. This is particularly useful within studies of

autism as there is evidence for genetic predispositions that

may ‘activate’ through an environmental trigger, where the

microbiome is considered part of the environment. The

systems approach can greatly improve the understanding

of the roles particular organisms are undertaking. From

16S rRNA data, it is possible to predict a likely functional

metagenomic profile (72), but it is not feasible to predict

the specific metabolites being produced, which will to a

certain extent be modulated by the availability of fermen-

table substrates, and other sources of energy for microbes.

These metabolites are the vector of communication be-

tween microbes, and between microbes and the host.

Similarly, knowing the genetic makeup of the host is

informative, but it cannot be used to determine a specific

immune response. A tiered approach that includes im-

munological markers, metabolite profiles, and microbial

community data sampled at near the same time point

enables researchers to tightly validate observations be-

tween levels, and truly begin to understand the dynamics

of disease.
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The influence of diet on the microbiome
Perhaps unsurprisingly, what one eats can influence the

composition of the microbiome. Long-term diet has one

of the largest known effects on the human gut micro-

biome: in particular, the balance of carbohydrates to

animal protein affects the balance of Prevotella sp. to

Bacteroides sp., driving the largest component of overall

patterns in the human microbiome within healthy adult

Western populations (46). Cross-culturally, societies with

high-grain, low-animal diets also tend to have far more

Prevotella at the expense of other major gut taxa (23).

Most short-term dietary changes have been far more

modest. However, on the extreme end, shifting to a heavy

animal product diet characterized by meats and cheese

can, on very short time scales, increase abundance of bile-

tolerant organisms (73). The increase in these organisms

is negatively correlated with acetate and butyrate stem-

ming likely from the reduced fiber load available for

microbial fermentation. Butyrate has previously been

observed to modulate colonic regulatory T-cell differen-

tiation in murine models (74), and is of particular interest

within the study of neurological disorders due to the

observed relationships with gut inflammation. The role of

dietary gluten and casein in the etiology of ASD remains

of intense interest to the community, but strong evidence

to date has been scarce [reviewed in (75)].

Propionic acid, a SCFA produced by the microbiome

from fermentable dietary carbohydrates (76), has been

associated with ASD in rat models (58). ASD-like symp-

toms, including a neuroinflammatory response, can be

induced from intraventricular infusion of propionic acid

(58) resulting in significant changes in behavior and social

interaction (77). However, pathology might only occur

in individuals with genetic and/or acquired aberrations in

metabolism, since in healthy individuals SCFAs are

primarily metabolized in the liver (76), again indicating

that associations between gut microbiota and ASD may

also involve other underlying genetic factors. In healthy

individuals, propionic acid potentially can increase feel-

ings of satiety, lower carcinogenesis and cholesterol (78)

and possibly have an anti-inflammatory effect (79). See

(78) for an in depth review of propionate, including a

discussion on fermentable substrates.

The possible role of vitamin D in ASD is also intriguing.

Dark/yellow skin requires increased ultraviolet (UV) B

exposure to induce sufficient vitamin D in low sunlight

regions/seasons (80). This effect is particularly accentuated

among Somalian and other immigrants from sub-Saharan

Africa with fundamentalist practices leading to full body

cover (81). There are also dietary practices [avoidance of

vitamin D-enriched dairy products, and other common

staples such as maize (82)] that may exacerbate deficiencies

in vitamin D relating to reduced UVB exposure, con-

tributing to Th1 skew/altered intestinal inflammatory state

(83) as well as frankly increased risk of some infectious

diseases such as tuberculosis (81). In the context of vitamin

D deficiency (and perhaps also with low levels of litho-

cholic acid), vitamin D receptor (VDR) expression should

be increased (84, 85). VDR has been reported to negatively

regulate intestinal NFkB (and therefore downstream

innate immune signaling) induced by bacteria, and bacteria

also regulate VDR expression (86). This may be an im-

portant mechanism for explaining the role of vitamin D

deficiency in autoimmune diseases, perhaps through a

Th17 mechanism involving bacteria that play roles similar

to the regulatory roles that segmented filamentous bacteria

(SFB) play in mice (87�89).

Although we have a limited understanding of how diet

influences the microbiome in the short-term [through

extreme changes (73)] and more long-term phenomena

(90), we do not yet understand how to manipulate diet to

guide a microbial community from one state to another

(e.g. from disrupted to healthy). One aim of the American

Gut Project is to characterize diet and its impact on the

microbiome, with the hope of elucidating systematic

differences � if they exist � between dietary restrictions

(e.g. vegetarians and paleo eaters). Unfortunately, the

reliability of dietary data collected from the general public

is often low. Even the recall of individuals for meals

consumed over the course of a week can be compromised

(91). The first attempt at collecting detailed diet informa-

tion by the American Gut Project yielded limited results

(though a correlation in diversity with the number of

different types of plants consumed was observed). Vari-

ables such as the approximate percentage of fat consumed

over the course of a week had incredible variance and in

many cases were outside of reality. In its second attempt at

diet, the American Gut Project decided to take a two-

pronged approach, one using a generalized diet question-

naire that lacked free text entry and contained questions

about the frequency of consumption (e.g. in an average

week, how often do you consume at least 2�3 servings of

fruit in a day?), and the second to use a validated food

frequency questionnaire through a professional service

called Vioscreen.

Correlation versus causation
As noted above, several intriguing correlations have been

observed between ASD and the gut microbiota. However,

establishing causality is challenging. In particular, gut

barrier dysfunction is a common comorbidity of ASD, but

is known itself to affect the microbiome both in humans

and mouse models. Therefore, appropriate controls need

to be selected carefully so that the effects of ASD itself are

not confounded with the effects of gut barrier dysfunction.

Longitudinal studies can help resolve these types of issues,

for example, by testing whether changes in the microbiota

associated with ASD precede or follow gut barrier

dysfunction issues within a subject, although very limited

data are available at present.
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In mouse models causality is easier to establish because

symptoms that model ASD can be induced experimen-

tally and the ability to administer microbially based

therapies is substantially greater. The best example of this

to date is the MIA study described above (1), wherein

autism-like symptoms can be traced to specific metabo-

lites produced by the microbiome, and even reversed

using probiotics. For other conditions, including malnu-

trition (48) and obesity (47), causal pathways may be

uncovered by transplanting microbes from humans with a

different physiological state into mice and demonstrating

that aspects of the phenotype can be recaptured, either

using fecal samples directly or using large collections of

strains of bacteria isolated from individual fecal speci-

mens (the latter providing evidence that only the bacteria

are involved, as metabolites, viruses, antibodies, etc. are

not transferred in these experimental designs). These

types of studies therefore hold considerable promise for

unraveling causality in ASD (49).

Conclusion
The lifestyle and dietary choices of individuals affected by

ASD span a broad range, complicating analyses. As was

the case with Crohn’s Disease, the ability to observed

subtle, and informative patterns depends on large sample

sizes that are only feasible in cross-sectional study designs.

Longitudinal designs, on the other hand, offer perspective

into the change of a community over time, allowing tests of

hypotheses about factors leading to a change in state

within an individual (e.g. is a measured parameter such as

disease severity modulated by changes in the microbiome)

and whether a change in the microbial community happens

prior to observable changes in individual state (e.g.

reported severity) or vice versa, allowing inferences about

causality. As we learned with the American Gut Project,

the general public is extremely interested in microbiome

research at present, and providing appropriate mechan-

isms to engage the public is an effective means to get to

sufficient sample sizes to have the power to detect subtle

differences in the data. Longitudinal studies, due to the

high level of dedication over an extended period, cannot

reach comparable sample sizes due to their expense. Given

that a large sample size is more difficult in these designs,

strict exclusion criteria must be defined to minimize

confounding factors, maximize the signal, and maintain

a high probability that the individuals will continue to the

end of the study.

Studies of associations between ASD and the micro-

biome have generated a number of intriguing hypotheses

about how microbes could be involved in the etiology of

ASD. However, there are many confounding variables,

such as diet and gastrointestinal comorbidities, as well

as technical variation among studies and background

microbiome differences among cohorts, that complicate

analysis. Several approaches are likely to be exceptionally

valuable in resolving such complexities: 1) access to large,

cross-sectional cohort studies that can help generate

hypotheses about combinations of factors that may have

a strong influence on ASD outcomes, particularly if inter-

acting in a nonlinear way; 2) longitudinal studies that

allow high inter-individual variability in the microbiome

to be factored out yet provide data regarding associations

with progression within each individual to be revealed,

potentially helping to get closer to causal pathways; and

3) animal model research including microbiome transfers

and administration of candidate probiotics that will

facilitate rapid progress toward understanding whether

the microbiome plays a causal or contributory role in some

subsets of ASD.
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