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A nonarteriosclerotic cardiomyopathy is increasingly seen in obese patients. Seeking a rodent model, we studied cardiac histology,
function, cardiomyocyte fatty acid uptake, and transporter gene expression in male C57BL/6] control mice and three obesity
groups: similar mice fed a high-fat diet (HFD) and db/db and ob/ob mice. At sacrifice, all obesity groups had increased body
and heart weights and fatty livers. By echocardiography, ejection fraction (EF) and fractional shortening (FS) of left ventricular
diameter during systole were significantly reduced. The Vi, for saturable fatty acid uptake was increased and significantly cor-
related with cardiac triglycerides and insulin concentrations. V. also correlated with expression of genes for the cardiac fatty
acid transporters Cd36 and Slc27al. Genes for de novo fatty acid synthesis (Fasn, Scdl) were also upregulated. Ten oxidative
phosphorylation pathway genes were downregulated, suggesting that a decrease in cardiomyocyte ATP synthesis might explain

the decreased contractile function in obese hearts.

1. Introduction

Heart disease is a major consequence of obesity, which is in
turn strongly associated with major risk factors for coronary
atherosclerosis such as hypertension, hyperlipidemia, dia-
betes, and sleep-disordered breathing [1]. However, studies
increasingly suggest that obesity also has direct effects on the
heart that may not result from atherosclerosis [2]. Abun-
dant evidence shows an association between obesity and
structural and functional changes in the heart in both hu-
mans and animals. Many of these changes, such as left ven-
tricular (LV) hypertrophy, left atrial (LA) enlargement, and
subclinical impairment of LV systolic and diastolic function,
are believed to be precursors of more overt forms of cardiac
dysfunction and heart failure [2]. The data suggest that long-

standing severe obesity may eventually lead to heart failure,
and several studies suggest that patients with fatty liver are
particularly subject to cardiac complications [3, 4]. These
observations led us to the hypothesis that, as with obesity-
associated fatty liver [5], obesity would cause upregulation
of facilitated long-chain fatty acid (LCFA) uptake by car-
diomyocytes, leading to ectopic triglyceride accumulation
in the heart and a consequent cardiomyopathy. To test
that hypothesis, we examined three murine obesity models:
C57BL/6] mice chronically fed a high-fat diet, leptin-def-
icient ob/ob mice, and leptin-receptor-deficient db/db mice,
with a combination of functional, histologic, biochemical,
and molecular studies. Facilitated uptake of long-chain fatty
acids (LCFA) by cardiomyocytes, heart weights and left ven-
tricular mass, and cardiac triglyceride content were increased
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and cardiac ejection fractions decreased in all three models.
These results suggest that a general relationship exists be-
tween obesity and cardiac dysfunction, that obesity cardiom-
yopathy is an integral component of the clinical manifesta-
tions of obesity, and that increased facilitated cardiomyocyte
uptake of LCFA is an important mechanism contributing to
the pathogenesis of obesity cardiomyopathy.

2. Methods and Procedures

2.1. Mice and Diet. Male C57BL/6], db/db, and ob/ob mice
were purchased from Jackson Laboratories (Bar Harbor, Me)
at 6 wks of age. Upon receipt mice were housed in group
cages in a temperature-controlled facility with a 12 h light:
dark cycle, with free access to water and to a standard chow
diet (LabDiet 5001, PMI, St. Louis, Mo). Starting at 8 weeks
of age C57BL/6] mice were divided at random into 2 groups.
One group, designated as controls (C), as well as the db/db
and ob/ob mice, continued to receive the chow diet. The other
C57BL/6] group was fed a high-fat diet (HFD) containing
35% lard (55% of calories from fat; Bio-Serv, Frenchtown,
NJ). Weights were recorded weekly. All mice were euthanized
at 20 = 1 wks of age after an overnight (12 hr) fast. All appli-
cable institutional and governmental regulations concerning
the ethical use of animals were followed during this research.
The experimental protocol was approved by the Institutional
Animal Care and Use Committee (IACUC) of Columbia
University Medical Center.

2.2. Euthanasia and Tissue Harvesting. Euthanasia was ac-
complished with intraperitoneal injections of ketamine
(0.1 mg/g) and xylazine (0.01 mg/g). At sacrifice mice were
randomly assigned to either of two protocols. Protocol 1:
abdomens were opened, and, after perfusion with “basal”
solution [6] via the aorta, hearts were removed for isolation
of single cell suspensions of cardiomyocytes. Protocol 2:
abdomens were opened as above, and hearts were removed
without perfusion and weighed. One portion of each heart
was frozen for subsequent biochemical measurements; a sec-
ond portion was placed in neutral buffered formalin for sub-
sequent paraffin embedding, sectioning, and staining with
hematoxylin and eosin (H&E) and Mallory’s trichrome. The
remainder was embedded in OCT compound (Tissue-Tek,
Sakura Finetek USA, Inc., Torrance, Calif), frozen on dry ice,
and stored at —80°C. Subsequently, serial 7 ym thick sections
were collected on poly-D-lysine-coated slides and stained
with oil red O (ORO) and hematoxylin.

2.3. Blood and Serum Analysis. Blood glucose was measured
with a glucose meter (One-Touch, LifeScan, Inc., Milpitas,
Calif) in preanesthesia tail vein samples. Additional blood
was collected from the inferior vena cava at sacrifice and pro-
mptly separated by centrifugation. Serum was stored at
—20°C for subsequent analysis. The following serum mea-
surements were performed in our laboratory using com-
mercial kits: free fatty acids (FFA, Wako Chemicals USA,
Inc, Richmond, Va); triglycerides (L-Type TG H, Wako
Chemicals USA); total cholesterol (Cholesterol E, Wako Pure
Chemical Industries, Osaka, Japan); AST (Stanbio, Boerne,
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Tex). Leptin and insulin concentrations were determined by
immunoassay at the Hormone Research Core Laboratories of
Vanderbilt University.

2.4. Determination of Cardiac Tissue Triglyceride and Choles-
terol. Protocol 2 heart samples were homogenized in PBS.
Total cardiac protein content was determined with the BSA
protein analysis kit (Thermo Scientific, Rockford, Ill), and
cardiac triglyceride and cholesterol contents were deter-
mined, after Folch extraction [7], with Wako kits (Choles-
terol E and L-Type TG H) according to the manufacturer’s in-
structions.

2.5. Histologic Estimation of Cardiac Neutral Lipids. Histo-
logical images of ORO-stained cardiac sections were ob-
served at 250x with a Nikon Eclipse 80i microscope and cap-
tured with a Nikon Digital DXM 1200 C camera, using
a standard exposure for all photographs. Semiquantitative
estimates of neutral lipids in these sections from each mouse
were performed by two independent observers (FG, PDB)
who were blinded to the experimental protocol, according
to the following scale: (—) no positive staining, 0 points;
(+) occasional ORO-positive droplets observed by searching
in at least 5 high power fields (HPFs), 1 point; (++) small
ORO-positive droplets present in most HPFs, 2 points;
(+++) obvious, larger ORO-positive droplets in all HPFs,
3 points; (++++) many still larger ORO-positive droplets,
sometimes in clumps, in all HPFs, 4 points. An average score
for each mouse was calculated from the scores of the two
observers. For the 57 samples analyzed for this study the
mean difference in lipid scores between the two observers
was 0.12 = 0.04 (SE) points. The slope of the regression line
between the two sets of scores was 0.96 (r = 0.94, P < 0.001).

2.6. Transmission Electronic Microscopy. Hearts were fixed
with 2.5% glutaraldehyde in 0.1 M Sorenson’s buffer (0.1 M
H,POy, 0.1 M HPOy, PH 7.2) for at least 12 h. Samples were
postfixed with 1% OsOy4 in 0.1 M Sorenson’s buffer for 1 h.
En bloc staining with 1% tannic acid in water was followed
by washing and staining with 1% uranyl acetate [8]. Tissues
were then embedded in Lx-112 (Ladd Research Industries,
Inc, Williston, Vt, USA). Sections of 60 nm were cut on
an MT-7000 RMC Ultramicrotome, placed on mesh copper
grids (Electron Microscope Sciences, Hatfield, Pa), stained
with 1% uranyl acetate and 0.4% lead citrate, and examined
under a JEOL JEM-1200 EXII electron microscope.

2.7. Echocardiography. Mice were anesthetized with 1.5-2%
isoflurane until they were unconscious, and 1-1.5% isoflu-
rane was continuously administered thereafter throughout
the study. The chest was shaved to minimize ultrasound at-
tenuation. The mouse was then placed on a heated pad
with electrocardiographic leads attached to each limb. Echo-
cardiography was performed with Vevo770 (VisualSonics,
Toronto, Canada) instrument, which is designed for use in
small animals. B-mode and M-mode two-dimensional (2D)
images were obtained in a parasternal short-axis view. Images
from these studies were recorded digitally for subsequent
analysis. Measurements from the recorded tracings were
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averaged over at least three cardiac cycles. An experienced
operator blinded to the mouse information performed these
measurements. In the M-mode short-axis images, anterior
and posterior wall thicknesses (AW, PW) and LV end dias-
tolic and systolic dimensions (LVEDD, LVESD) were mea-
sured at the midpapillary muscle level. LV percent fractional
shortening (%FS), which reflects the change in LV diameter
between the contracted and relaxed states, ejection fraction
(EF), and LV mass (LVM) were calculated according to Teich-
holz et al. [9] using B-mode short-axis images at the mid-
papillary level as

LVEDD - LVESD

%FS =
VOES [ LVEDD

] X 100, (1)

EF (%) = {[;—2 + LVEDD] (LVEDD)’

_ [% + LVESD] (LVESD)3} (2)

+ {[% + LVEDD] (LVEDD)3} % 100,

LVM = {1.04>< (AW+PW+LVEDD)? —LVEDD3} %0.8.
(3)

Equations (2) and (3) incorporate correction factors previ-
ously shown to optimize results [9, 10].

2.8. Isolation of Cardiomyocytes. After digestion of heart
tissue with collagenase II, mouse cardiomyocytes were iso-
lated as described [11-13], using a protocol which had been
shown to yield excellent rat cardiomyocyte preparations [13].
Viability was assessed by trypan blue staining, and only pre-
parations in which >=80% of cardiomyocytes excluded trypan
blue were used. Cells in suspension were counted under a
microscope and concentrations adjusted to 1.5 x 10° cells/
mL for use in oleic acid (OA) uptake assays.

2.9. Cellular Uptake of Oleic Acid. Using rapid filtration
methods well established in our laboratory [14-17], the ini-
tial uptake velocity of OA into cardiomyocytes at 37°C from
media containing 500 uM BSA was determined in duplicate
over 15sec at five different unbound oleate concentrations.
Uptake is linear over this time frame, and we have established
that under these conditions measured uptake principally re-
flects inwardly directed transmembrane long-chain fatty acid
(LCFA) transport, relatively independent of either unstirred
water layer effects or intracellular binding or metabolism
[14-16].

2.10. Computations and Data Fitting. Based on multiple pri-
or studies in both rodents and man [17-22], values for initial
oleate uptake velocity at the 5 studied concentrations of
unbound oleate were fitted by computer to (4), using SAAM
II software as modified for implementation on a lap-top
computer [23, 24]. This equation indicates that LCFA uptake

is the sum of a saturable plus a nonsaturable function of the
unbound LCFA concentration in plasma. Thus,

[OA]

Uptake ([OA,]) = [Vmax " K. 1 OA,

] + k- [OA],
(4)

where Uptake ([OA,]) is the rate of uptake of labeled oleic
acid (pmol/sec/50,000 cells) at unbound oleic acid concen-
tration [OAy] (nM), Vimax (pmol/sec/50,000 cells) and Ky,
(nM) are, respectively, the maximal uptake rate of the satu-
rable uptake component and the unbound OA concentration
at half-maximal uptake velocity (nM), and k (mL/50,000
cells/sec) is the rate constant for nonsaturable OA uptake.
Computed values for physiologic variables are expressed as
mean + S.E.

2.11. Analysis of Heart Gene and Protein Expression

2.11.1. qRT-PCR. Total RNA was extracted from cardiac tis-
sue samples using QIAamp RNA Mini Kits (Qiagen Inc,
Valencia, Calif) according to the manufacturer’s protocol.
First-strand cDNAs were synthesized using TagMan Reverse
Transcription Reagent kits (Applied Biosystems, Foster City,
Calif), with random hexamer primers. PCR reactions were
performed in a total volume of 50 4L containing 500 ng
cDNA on the 7300 Real-Time PCR system using SYBR
GREEN PCR Master Mix (Applied Biosystems) as detailed in
the manufacturer’s guidelines. We used geNormTM kit 5, M
(beta-2-microglobulin), GAPDH (glyceraldehyde 3-phos-
phate dehydrogenase), UBC (ubiquitin C) (PrimerDesign
Ltd, UK), and 18sRNA (IDT, San Jose, Calif) for house-
keeping gene analysis. Primer sequences were selected with
the use of Primer 3 software (S. Rozen, H. Skaletsky
http://frodo.wi.mit.edu/primer3/). We used Got2 (glutamate
oxaloacetate transaminase 2, mitochondrial), Slc27al (long-
chain fatty acid transport protein 1), Slc27a6 (long-chain fat-
ty acid transport protein 6), Cd36 (fatty acid translocase),
and Scdl (stearoyl CoA desaturase-1) and Fasn (fatty acid
synthase) primers (IDT, San Jose, Calif) to quantitate the ex-
pression levels of these genes. We also used Ndufaf4 (NADH
dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly
factor 4), Ndufa8 (NADH dehydrogenase (ubiquinone) 1
alpha subcomplex, 8), Sdhd (succinate dehydrogenase com-
plex, subunit D, integral membrane protein), Cox5b (cyto-
chrome c oxidase, subunit Vb), Cox6b1 (cytochrome ¢ oxi-
dase, subunit VIb polypeptide 1), Cox6¢ (cytochrome ¢ oxi-
dase, subunit VIc), Ugcre2 (ubiquinol cytochrome ¢ reduc-
tase core protein 2), Uqcrfs] (ubiquinol-cytochrome c reduc-
tase, Rieske iron-sulfur polypeptide 1), and Atp5j (ATP
synthase, H+ transporting, mitochondrial FO complex, sub-
unit F) and Atp5h (ATP synthase, H+ transporting, mito-
chondrial FO complex, subunit d) primers to quantitate
oxidative phosphorylation-associated gene expression and a
primer to examine expression of peroxisome proliferator-
activated receptor gamma coactivator-la (PGC-1a).

2.11.2. Western Blots. For detection of CD36 and fatty acid
transport protein 1 (FATP1), total protein extracts were
prepared from murine heart with use of cell lysis buffer
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(RIPA Buffer, Teknova). Particulate material was removed by
centrifugation, and protein concentration was determined
using the BCA protein assay kit. Equal amounts of total
protein (50 yg/sample) were subjected to electrophoresis in
NuPAGE 4-12% Bis-Tris gels (Invitrogen, Carlsbad, Calif)
and then electrophoretically transferred to a nitrocellulose
membrane. Nonspecific binding was blocked by incubation
of membranes with nonfat dry milk (5%) for at least 1h at
room temperature. The blots were incubated with the fol-
lowing primary antibodies: rabbit anti-mouse FATP1 (Santa
Cruz, Calif) or goat anti-mouse CD36 (R & D Systems, Min-
neapolis, Minn). Each primary antibody was incubated for
2 h or overnight at a dilution of 1:500. Goat anti-rabbit and
donkey anti-goat IgG secondary antibodies (1:1,000 dilu-
tion; Santa Cruz Biotechnology) were used to identify pri-
mary antibody binding sites. All the Western blot results were
analyzed by scanning densitometry and densitometric image
analyzer software (Image J, National Institutes of Health,
Bethesda, Md (http://rsb.info.nih.gov/ij/download/)).

2.12. Statistical Analysis. All results are expressed as mean
+ SE. Single comparisons were examined with Student’s ¢-
tests, with statistical significance set at P < 0.05. For the
parameters reported in Tables 1 and 2, each of the three
experimental groups was compared to the control group
(principal goal, three comparisons); the three experimental
groups were also compared with each other (secondary goal,
three more comparisons). Statistical significance was again
set at P < 0.05. Analysis was by one way ANOVA, followed
by post hoc t-tests, using the pooled standard deviation in
computing standard errors of group differences. Application
of the Bonferroni correction would have required setting the
limit of significance at P < 0.008 (0.05 divided by 6, the num-
ber of intergroup comparisons). This was unachievable given
the numbers of animals per group. We have therefore simp-
ly reported the P values for these post hoc tests in the leg-
ends of Tables 1 and 2. Any P value that is below the
Bonferroni-corrected value of 0.0083 can be taken as defini-
tively significant, whereas other P values (0.05 > P > 0.0083)
can be considered only as exploratory or suggestive.

3. Results

3.1. Age, Body Weight, and Serum Biochemical Tests. The
mean age of the studied mice was 139 = 1 days and was
equivalent in all four groups. HFD-fed (37.95 = 1.11g, n =
19), db/db (51.78 + 0.57 g, n = 7), and ob/ob (62.5 + 0.53 g,
n = 22) mice, collectively designated the obesity groups,
were all significantly heavier than chow-fed C57BL/6] con-
trols (26.58 + 0.24g, n = 30). Values for blood glucose,
HOMA-IR and serum insulin, leptin, total fatty acids,
triglycerides, cholesterol, and AST values will be found in a
prior publication dealing with the pathogenesis of hepatic
steatosis in these same animals [5]. Briefly, blood glucose
was significantly increased only in the HFD group, serum
insulin in the db/db and ob/ob groups, and serum leptin
in the HFD and db/db groups, but the homeostasis model
assessment of insulin resistance (HOMA-IR), calculated as
previously described in mice [25], was significantly increased
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FIGURE 1: Heart weights were significantly correlated with body
weight across the four experimental groups (P < 0.01).

in all obesity groups. Serum cholesterol was also elevated
in all three obesity groups, but triglycerides were increased
only in the HFD and ob/ob animals. Although the total LCFA
concentration was somewhat greater in all experimental
groups than in controls, in none of the groups was the in-
crease statistically significant. However, in contrast to total
LCFA, the increase in unbound LCFA (LCFA,), which pro-
vides the driving force for LCFA uptake, was statistically sig-
nificant in all experimental groups [5]. Serum AST was sig-
nificantly increased in db/db and ob/ob but not HFD mice.

3.2. Heart Weights and Triglyceride Content. Heart weights
and triglyceride content were increased in all obesity groups;
heart cholesterol content was increased in ob/ob and db/db
but not HFD animals (Table 1). Heart weights (Figure 1:
r = 0.65), cardiac triglyceride content (r = 0.80), and cardi-
ac cholesterol content (r = 0.62) were all significantly cor-
related with body weight (P < 0.01 in each instance).

3.3. Cardiac Histologic Analysis by Oil Red O Staining and
Transmission Electron Microscopy. ORO-positive lipid drop-
lets were rare in control cardiomyocytes (Figure 2(a)). De-
spite a significant increase in biochemical measurements of
TG in the HFD group, only occasional ORO-positive lipid
droplets were observed by light microscopy in HFD myocar-
dial cells (Figure 2(b)), but marked lipid accumulation was
seen in db/db and ob/ob mice (Figures 2(c) and 2(d)).
In transmission electron microscopic images, lipid droplets
were seen in the hearts of HFD animals, but lipid droplets
were both larger and more abundant in db/db and 0b/ob mice
(Figures 2(e), 2(f), 2(g), and 2(h)). Semiquantitative grading
of ORO-stained cardiac sections did not show appreciable
differences in the average grade of lipid deposition between
HFD (0.54 + 0.14) and control (0.6 + 0.13) mice; however, in
db/db (2.4 + 0.38) and ob/ob (3.4 = 0.14) groups, the grade of
lipid deposition was, respectively, 4 times and 6 times higher
than in the C and HFD groups (P < 0.01).
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TaBLE 1: Heart weights and lipid content. Heart weights and cardiac triglyceride and cholesterol content were measured. Data reported as
mean =+ SE. Results of ANOVA, followed by post hoc ¢-tests.

Group Heart weight (g) Heart triglycerides (mg) Heart cholesterol (mg)
Control (n = 30) 0.125 + 0.002 0.68 = 0.16 0.68 = 0.07
HFD (n = 19) 0.145 = 0.006** 1.40 + 0.22** 0.54 = 0.16
db/db (n = 7) 0.143 = 0.002* 2.73 £ 0.32%* 3.71 £ 1.06**
ob/ob (n = 22) 0.157 + 0.006** 2.87 + 0.35%*58 5.89 + 1.99**§

*P < 0.05, **P < 0.01 compared with the control group. ¥P < 0.01 (HFD versus db/db); SP < 0.05, 8P < 0.01 (HFD versus ob/ob).

TaBLE 2: Echocardiographic results. Anterior wall thickness, posterior wall thickness, left ventricular end diastolic dimension, left ventricular
end systolic dimension, left ventricular mass, ejection fraction, and fractional shortening were measured. Data reported as mean + SE. Results
of ANOVA, followed by post hoc t-tests: *P < 0.05, **P < 0.01 compared with the control group; TP < 0.05, *P < 0.01 (HFD versus db/db);
SP < 0.05, SSP < 0.01 (HFD versus ob/ob); P < 0.05, P < 0.01 (db/db versus ob/ob).

Groups Heart rate AW (mm) PW (mm) LVEDD (mm) LVESD (mm) LVM (mg) EF (%) FS (%)
Control 456 + 13 0.73 + 0.02 0.72 = 0.02 4.03 = 0.08 2.50 = 0.08 85.25 + 3.17 61.52 + 1.38 38.05 = 1.08
HFD 474 +12 0.80 = 0.01***  0.77 = 0.02* 4.23 +0.08% 2.80 = 0.05** 101.89 + 4.86** 55.95 = 0.73**t 33,62 = 0.55**1
db/db 445+ 4  0.88 £ 0.03**  0.86 = 0.02**  3.89 + 0.08%  2.70 £0.09 101.74 £ 4.6** 51.76 + 1.79**  30.66 + 1.29**
ob/ob 458 £9 0.87 = 0.03**5 0.85 £ 0.02**88 4,16 £ 0.09 2.93 £ 0.09** 112.19 = 1.0** 50.53 = 1.4**8§ 29.70 + 1.00**88
AW: anterior wall thickness.
PW: posterior wall thickness.
LVEDD: left ventricular end diastolic dimension.
LVESD: left ventricular end systolic dimension.
LVM: left ventricular mass.

%EF: percent ejection fraction.
%FS: percent fractional shortening.
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FiGure 2: Cardiac histology. ((a), (b), (c), and (d)). Representative Oil-Red-O-(ORO-) stained sections of hearts from (a) control, (b) high
fat diet-fed (HFD), (c) db/db, and (d) ob/ob mice. Lipid droplets were rare in control hearts and uncommon in HFD mice despite a ~12-fold
increase in cardiac triglyceride content in the latter group. There was an obvious increase in ORO-stainable lipid in the hearts of 0b/ob and
db/db mice. ((e), (f), (g), and (h)). Transmission electron microscope images of (e) control, (f) HED, (g) db/db, and (h) ob/ob mice. Lipid
droplets (arrows) were rare in control hearts, but individual droplets could be found in many fields in the HFD group. Lipid droplets were
larger and much more common in db/db and ob/ob hearts, with multiple droplets typically being observed in most fields. The scale bar
indicates 500 nm. Lipid droplets in the heart were almost uniformly in direct contact with mitochondria.
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FIGUrE 3: Cardiac function was assessed by echocardiography. (a) M-mode image of the left ventricle in the parasternal short-axis view,
showing depth markers. EDD: left ventricular end-diastolic diameter. ESD: left ventricular end-systolic diameter. (b) Fractional shortening
of the diameter of the left ventricle between the contracted and relaxed states and ejection fraction were calculated from echocardiographic
measurements made during the cardiac cycle. Ejection fraction (EF) is the fraction of the end-diastolic volume that is ejected with each beat;
that is, it is stroke volume (SV), divided by end-diastolic volume (EDV). *P < 0.05, **P < 0.01 compared with the control group.

3.4. Cardiac Function Analysis by 2D Echocardiography. By
echocardiographic measurement, both AW and PW were
increased in the obesity group mice (Table2). Echocar-
diographic estimates of left ventricular mass were also
increased in HFD (101.89 = 4.86mg), db/db (101.74 +
4.6 mg), and ob/ob mice (112.20 + 1.0mg) compared to C
(85.25 + 3.17mg) and were highly correlated with tissue
measurements of total heart weight (r = 0.98, P < 0.01).
The end systolic diameter (LVESD) averaged 2.50 + 0.08 mm
and the end diastolic diameter (LVEDD) 4.03 = 0.08 mm
in control mice. Although the average LVESD was increased
in the obesity groups, the LVEDD was similar in all groups
(Table 2, Figure 3(a)), so that the obesity groups did not meet
the basic criteria for a dilated cardiomyopathy. Percent FS,
which was 38 + 1.1% in C, decreased to 33 + 0.6% in HFD,
30 + 1.3% in db/db, and 29 = 1.0% in ob/ob mice (P < 0.01
versus control for each group) (Figure 3(b)). Similarly, EF
decreased in HFD (56 + 0.7%), db/db (52 + 1.8%), and
ob/ob mice (51 + 1.4%) compared to C (62 + 1.4%) (P <
0.01 versus control for each group) (Figure 3(b)). EF was

negatively correlated with body weight (r = —0.70, P < 0.01)
and cardiac TG (r = —0.83, P < 0.01) across the four groups
studied (data not shown).

3.5. LCFA Uptake Studies. As previously reported in adipo-
cytes [17] and hepatocytes [5, 26], uptake of [*H]-oleic acid
by isolated mouse cardiomyocytes consisted of the sum of a
saturable plus a nonsaturable component. In all groups stud-
ied, the saturable component predominated over the phys-
iologic range of unbound oleic acid concentrations. Typical
uptake curves in control, HFD, db/db, and ob/ob cardiomy-
ocytes are shown in Figure 4(a). Saturable cardiomyocyte
LCFA uptake, reflected in an increased Vinay, was increased in
each of the obesity groups (Figure 4(b)). The mean Vi, in
HEFD, db/db, and ob/ob mice was 1.4, 2.0, and 3.2 times that
in control mice. The increases were only significant in the
db/db mice (P < 0.05), but not in the 0b/ob animals, which
had the greatest mean increase, due to greater scatter in the
data. There was a significant nonlinear correlation between
Vmax and serum insulin in the groups (r = 0.91, Figure 4(c)),
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FIGURE 4: (a) [*H]-oleic acid uptake curves for cardiomyocytes from control, HFD, db/db, and 0b/ob mice. Data points are mean + SE. (b)
Vimax for saturable cardiomyocyte LCFA uptake is increased in all obesity groups compared with the control group. Bars represent mean +
1 SE. *indicates P < 0.05 compared to controls. (c) Relationship between serum insulin concentration and [*H]-oleic acid uptake Vi,
indicating a significant nonlinear correlation which may reflect, in part, insulin resistance.

consistent with increasing levels of insulin resistance in the
obesity group animals.

3.6. Gene and Protein Expression

3.6.1. Genes Involved in LCFA Uptake. Gene expression ratios
for the cardiac LCFA transporters, Got2, Slc27al, Slc27a6,
and Cd36, and of critical enzymes involved in de novo LCFA
synthesis, Scdl and Fasn, are shown in Figure 5(a). Got2,
encoding the transporter FABPpm/mAsp-AT, was upregu-
lated only in 0b/ob mice; Slc27al, which encodes FATP1, was
significantly upregulated in all three of the obesity groups;
Cd36, encoding CD36/FAT, was significantly upregulated in
both ob/ob and db/db animals. Our Western blot analysis
confirmed that both CD36 and FATP1 were upregulated in
the obesity groups (Figure 5(b)). The expression ratio for
Cd36, in particular, was highly correlated with the [*H]-oleic

acid uptake Viay in all of the obesity groups, with an r = 0.99
(P < 0.01) for the gene expression data (Figure 5(c)) and
r = 0.93 for the protein expression (Western blot) results.
There was a lesser degree of correlation between Vi, and
the Slc27al expression ratio (r = 0.65, data not shown).
By contrast, Slc27a6, which encodes the putative cardiac
transporter FATP6, was not upregulated in cardiomyocytes
from any of the obesity groups.

While not a transporter per se, lipoprotein lipase (LPL)
can increase LCFA uptake by hydrolyzing the triglycerides
of circulating lipoproteins, making their component LCFA
available for facilitated uptake [27]. We found the LPL
expression ratio to be significantly elevated (P < 0.01) in
db/db (1.78 = 0.05) and ob/ob (1.72 + 0.1) but not HFD (1.07
+ 0.07) animals. Local LCFA concentrations in myocardial
capillaries in the former strains may therefore be higher than
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FIGURE 5: (a) Cardiac gene expression ratios for cardiac LCFA transporters (Got2, Slc27al, Slc27a6, and Cd36) and for two enzymes of LCFA
synthesis, stearoyl CoA desaturase-1 (Scd1), and fatty acid synthase (Fasn). Fasn and Scd1 were significantly upregulated in ob/ob and db/db
mice. (b) Representative Western blots of expression of CD36 and FATP1 in control, HED, db/db, and ob/ob mice. (c) Vinax for [*H]-oleic
acid uptake in cardiomyocytes is significantly correlated with the Cd36 gene expression ratio in all obesity groups. (d) Cardiac expression
ratios of 10 oxidative phosphorylation genes. Complex I: NADH dehydrogenase (Ndufaf4, Ndufa8); complex II: fumarate reductase (Sdhd);
complex III: cytochrome ¢ reductase (Cox5b, Cox6b1, and Cox6c); complex IV: cytochrome ¢ oxidase (Ugcre2, Ugcrfsl); Complex V: F-type
ATPase (Atp5j, Atp5h) were all downregulated in all obesity groups. Error bars indicate + 1 SE. *P < 0.05, **P < 0.01 compared with the

control group.

those we measured in bulk plasma, with correspondingly
greater absolute rates of facilitated LCFA uptake, but the
extent of this local increase in LCFA concentrations cannot
be directly measured.

3.6.2. Genes for De Novo LCFA Synthesis. Fasn, encoding
fatty acid synthase, and ScdI, which encodes stearoyl Co-A
desaturase 1, were both significantly upregulated in db/db
and ob/ob mice. A small increase in Scdl in HFD animals did
not reach statistical significance.

3.6.3. Oxidative Phosphorylation and ATP Synthesis. Based
on the results of gene expression microarray studies in obese
human fat [28], we assayed in mouse cardiomyocytes the
expression of 10 genes in the Kyoto Encyclopedia of Genes
and Genomics (KEGG) Oxidative Phosphorylation pathway
[29] that are components of the four mitochondrial electron
transport and the ATP synthase complexes. Ndufaf4 and

Ndufa8 (complex I, NADH dehydrogenase); Sdhd (complex
I1, fumarate reductase); Cox5b, Cox6b1, and Cox6¢ (complex
II1, cytochrome ¢ reductase); Ugqcrc2 and Ugerfsl (complex
IV, cytochrome c oxidase); Atp5j and Atp5h (complex V, F-
type ATPase) were all downregulated to approximately the
same extent in all three obesity groups (Figure 5(d)). Genes
within these complexes have been reported to be downregu-
lated in several tissues in both man [28] and experimental
animals in association with obesity, diabetes, and insulin
resistance [30-34]. In preliminary studies, expression of per-
oxisome proliferator-activated-receptor gamma coactivator-
la (PGC-1a) was downregulated by 40% in ob/ob and 39%
in db/db animals.

4. Discussion

Arteriosclerotic ischemic heart disease is a major conse-
quence of obesity [1]. Less widely appreciated, although it
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was first discovered by Harvey nearly 400 years ago [35], it
is an apparently nonarteriosclerotic cardiomyopathy desig-
nated cor adiposum, or fatty heart, which is again being in-
creasingly recognized in severely obese patients [36—39]. As
already noted, cardiac complications of obesity are partic-
ularly prevalent in patients with NAFLD [3, 4], a phe-
nomenon that may be explained in part by the high degree
of correlation (r = 0.81, P < 0.01) observed between the
cardiac triglyceride content reported in the present study and
the previously reported hepatic triglyceride content in the
same animals [5]. The average body weights of our HFD-
fed, db/db, and ob/ob mice were 1.3, 1.9 and 2.3 times those
of control animals, corresponding very roughly in human
terms to obesity, morbid obesity, and super obesity, respec-
tively, and all had hepatic steatosis. The elevations in blood
glucose and serum FFA and TG seen in these obese mice
parallel what is observed in comparably obese humans. Each
mouse group studied also had significant ectopic myocardial
lipid accumulation and a corresponding decrease in LV con-
tractility, suggesting that they might be models for human
obesity cardiomyopathy. Lipid-associated cardiomyopathies
in mutant and transgenic mice [40—43] further stimulated us
to examine the hearts of mice on whose livers we had initially
focused.

We have compared basic pathophysiologic features of
three widely studied mouse models of obesity corresponding
values in normal control animals. In db/db and ob/ob animals
defective leptin signaling is the fundamental cause of the
obesity [44]. In contrast, in C57BL/6] mice fed a HFD, leptin
signaling is initially normal. The pathogenetic diversity of
the models studied suggests that the observations made can,
at least tentatively, be considered representative of the obese
state in general. While cardiac function has been studied in
ob/ob, db/db, and HFD-fed mice separately, we believe this to
be the first study directly comparing them.

Our studies show that an increase in total body weight
due to any of several different mechanisms is significantly
correlated with an increase in both heart weight and cardiac
TG content. These data parallel findings in man [39]. As with
hepatic steatosis [45-47], increased myocardial TG content
can result from one or more of several processes that increase
cardiomyocyte LCFA or TG uptake or synthesis or decrease
LCFA metabolism or TG export. In contrast to our findings
in the liver, in which facilitated LCFA uptake was increased
only in obesity models with normal leptin signaling, the Vinax
for saturable LCFA uptake is upregulated in isolated mouse
cardiomyocytes from all Obesity Groups.

We examined the associations between reduced cardiac
function and body weight, cardiac TG content, LCFA up-
take Vinax and serum levels of LCFA and triglycerides by lin-
ear regression. Reductions in ejection fraction (EF) and frac-
tional shortening of the left ventricle during systole (%FS)
were strongly negatively correlated with body weight (r =
—0.98), cardiac TG content (r = —0.98), and LCFA uptake
Vmax (r = —0.97) across all of the Obesity Groups. These
correlations were significantly stronger than those between
cardiac function and serum levels of either LCFA (r =
—0.79) or TG (r = —0.62). Our studies were not specifically
designed to identify the individual contributions of the many

components of the obese phenotype to the observed re-
ductions in cardiac function. However, these results do not
suggest that either increased circulating levels of fatty acids
or hypertriglyceridemia is as important as obesity per se
or obesity-associated increases in cardiac LCFA uptake and
triglyceride accumulation.

Our technique for studying cellular LCFA uptake, in
which measurements are made over 15-30 sec, is unique in
determining unidirectional, facilitated influx rates, largely
independent of intracellular binding and metabolism [14].
In specific settings results obtained by this approach have
been shown to be highly correlated with the expression of
specific LCFAs transporters [5, 19]. Alternative approaches,
in which labeled LCFA are injected intravenously into living
animals and hepatic LCFA content determined minutes later,
reflect a much more complex process which, in addition to
cellular influx, is influenced by changes in blood flow, intra-
cellular binding, efflux, esterification, oxidation, and possibly
other processes, each subject to its own genetic regulation.
The two approaches generally, but not always, yield similar
results.

Four proteins have been proposed as important cardiac
LCFA transporters: CD36, also known as fatty acid trans-
locase or FAT, plasma membrane fatty acid binding protein
(FABPpm), which has proven identical to mitochondrial
aspartate aminotransferase (mAspAT), and fatty acid trans-
port proteins 1 and 6 (FATP1 and FATP6). In the present
study, when assayed by both qPCR and Western blot, upreg-
ulation of the Cd36 (CD36) and Slc27al (FATP1) genes and
proteins was found in the HFD, db/db, and ob/ob groups,
confirming that CD36 and FATP1 play an important role in
cardiomyocyte lipid accumulation. The gene for FABPpm/
mAspAT (Got2) was upregulated in ob/ob mice. Upregulation
of the Slc27a6 gene was not observed in any of the groups.
Expression ratios for Cd36 were especially highly correlated
with Vimax across all of the obesity groups. In addition
to transporters, upregulation of stearoyl-CoA desaturase-1
(ScdlI) gene was observed in all the obesity groups; fatty acid
synthase (Fasn) was significantly upregulated in both db/db
and ob/ob mice, suggesting that, as in the liver, increased de
novo LCFA synthesis may contribute to the increased cardi-
omyocyte triglyceride levels in these animals.

Numerous prior publications indicate that obesity can
influence the structure and function of the heart in mouse,
rat, and man [48-56]. An association of local lipid accumu-
lation and cardiac dysfunction was reported in early human
studies [48] and has been meticulously confirmed [57]. Left
ventricular hypertrophy and decreased contractility, typi-
cal features of the cardiomyopathy of human obesity [48],
were also the pattern consistently observed in the present
mouse studies. The relationship between myocardial lipids
and cardiac function was established conclusively by Chiu
et al. [41], who created a line of transgenic mice selectively
overexpressing myocardial long-chain acylCoA synthetase
(ACAS). By esterifying LCFA after initial uptake into cardiac
myocytes, thereby preventing their otherwise rapid passive
efflux, overexpression of this enzyme has the effect of trap-
ping LCFA within these cells, where their subsequent metab-
olism leads to accumulation of toxic lipid species. This is
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initially associated with cardiac hypertrophy, followed by left
ventricular dysfunction and early death. A second transgenic
line that overexpresses the myocardial LCFA transporter
FATP1 has a similar, but not identical, cardiomyopathy [43].

Generation of reactive oxygen species from increased
LCFA oxidation and mitochondrial injury have been consid-
ered important pathogenetic processes in the development of
both lipid- and alcohol-associated cardiomyopathies. Epicar-
dial fat has a rapid lipolytic rate. Since the heart is immedi-
ately downstream of its visceral (extra- and intrapericardial)
fat depots and has a first-pass relationship with respect to
any LCFAs released from them [52], this results in increased
cardiac delivery and uptake of LCFA, which would tend to
become virtually continuous with the onset of antilipolytic
insulin resistance. Therefore, it is not surprising that obesity
in many settings is associated with changes in cardiomyocyte
morphology, mitochondrial number, and contractile func-
tion. Increased mitochondrial number has been described,
for example, in the hearts of 0b/ob [52, 54] and db/db mice
[58]. There is also accumulating evidence of mitochondrial
dysfunction. Based on these data it has been suggested that
mitochondrial dysfunction and impaired myocardial ener-
getics may contribute to contractile dysfunction in the hearts
of these mice and of obese patients, increasing their suscep-
tibility to heart failure [55, 59]. Our demonstration of coor-
dinated down-regulation of 10 genes involved in the cardiac
mitochondrial oxidative phosphorylation and ATP synthesis
pathway in all three obesity models studied is entirely
consistent with this hypothesis.

Our data provide strong evidence that upregulation of
facilitated LCFA uptake is an important mechanism contrib-
uting to increased myocardial lipid accumulation across a
spectrum of mouse models of obesity. The data also point
to CD36 and FATP1 as the transporters principally respon-
sible for the increase in LCFA uptake. The contribution of
increased de novo LCFA synthesis, suggested by qRT-PCR
studies of the expression of relevant genes, requires fur-
ther functional confirmation. Finally, the coordinate down-
regulation of 10 genes in the mitochondrial oxidative phos-
phorylation/ATP synthesis pathway suggested down-regula-
tion of peroxisome proliferator-activated receptor y coacti-
vator-1a (PGC-1a), a key regulator of cardiac mitochondrial
functions including mitochondrial fatty acid oxidation,
ATP synthesis, and lipid homeostasis [59-61]. Preliminary
observations reported above strongly suggest that PGC- 1« is
indeed downregulated in at least some models of obesity. We
postulate that PGC-la-mediated decreased ATP synthesis
will prove to be responsible for the reductions in %FS and
EF observed in these models.

In this study we have established a clear relationship be-
tween obesity, increased cardiac triglyceride content, and car-
diac dysfunction in mice with a spectrum of causes for obe-
sity. This suggests that cardiomyopathy, rather than being a
novelty, is an integral part of the spectrum of obesity-related
disorders. We have also established that increased facilitated
transport of LCFA into the cardiomyocyte is an important
pathogenic mechanism in this process. We have also iden-
tified other genes of interest, future studies of which may
explain many of these findings. These include peroxisome

Journal of Obesity

proliferator-activated receptor gamma coactivator-1la (PGC-
la), a master regulator of lipid and energy metabolism, as
well as those involved in ATP synthesis. Despite these data,
the precise processes by which cardiomyocyte lipid accumu-
lation leads to myocardial dysfunction remain to be elu-
cidated. Whether they are the same as those described as
“lipotoxic cardiomyopathy” in transgenic mouse models [41,
43] is unclear. Nevertheless, the many similarities between
the present cardiac findings in mice and analogous human
data suggest that these mice may be useful models for human
obesity cardiomyopathy, particularly given the limitations
in obtaining human cardiac tissue for study. Moreover, the
correlations we observed between body weight, myocardial
lipid accumulation, and decreased LV function, over a weight
spectrum ranging from normal to super obesity, suggest that
the recent observations of myocardial dysfunction in severely
obese patients may be the tip of a much larger iceberg.
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