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Abstract
Prenatal testing in recent years has been moving toward non-invasive
methods to determine the fetal risk for genetic disorders without incurring
the risk of miscarriage. Rapid progress of modern high-throughput
molecular technologies along with the discovery of cell-free fetal DNA in
maternal plasma led to novel screening methods for fetal chromosomal
aneuploidies. Such tests are referred to as non-invasive prenatal tests
(NIPTs), non-invasive prenatal screening, or prenatal cell-free DNA
screening. Owing to many advantages, the adoption of NIPT in routine
clinical practice was very rapid and global. As an example, NIPT has
recently become a standard screening procedure for all pregnant women in
the Netherlands. On the other hand, invasive sampling procedures remain
important, especially for their diagnostic value in the confirmation of
NIPT-positive findings and the detection of Mendelian disorders. In this
review, we focus on current trends in the field of NIPT and discuss their
benefits, drawbacks, and consequences in regard to routine diagnostics.
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Evolution of prenatal testing and diagnosis
In current clinical practice, various options of prenatal test-
ing are available for pregnant women in developed countries. 
However, this convenience has been available only in the last 
few years. Prenatal testing has passed a long evolution from 
traditional invasive methods (for example, amniocentesis or  
chorionic villus sampling [CVS])1. Early reports of transabdomi-
nal amniocentesis came from 1877 but this procedure became 
more prevalent in the 1970s for genetic diagnosis in high-risk 
pregnancies2,3. CVS was first described by Mohr in 19684.  
Since the introduction of ultrasound guidance in 1980, the safety 
of CVS has increased5, and this method has become widely 
accepted in routine prenatal diagnosis. A tremendous contribution 
to prenatal testing was the implementation of non-invasive pro-
cedures based on blood sampling (Figure 1). In 1959, Zipursky 
et al. found that intact fetal cells are present in maternal  
plasma6; in 1969, Walknowska et al. showed that this approach 
may have implications for prenatal diagnosis7. However, the 
main limitation of the method is a low concentration of intact 
fetal cells in maternal circulation. The detection of cell-free 
fetal DNA (cffDNA) in maternal plasma, by Lo et al. in 1997,  
launched a new era of non-invasive prenatal testing (NIPT) 
which has been integrated in clinical practice and repre-
sents the standard in developed countries today8. It was shown 
that a major fraction of cffDNA is released into the maternal  
circulation during apoptosis of trophoblasts in placenta, which  
means that, unlike DNA isolated from circulating fetal cells, 
cffDNA is actually of placental origin9. According to previous 
calculations, the cffDNA concentration is almost 25 times higher 
than the concentration of fetal DNA extracted from intact nucle-
ated blood cells in a similar volume of whole maternal blood. 
Moreover, the approach using cffDNA provides easier, less 
labor-intensive, and less time-consuming ways to work with fetal  

DNA10. Current NIPT procedures cannot be performed without 
modern molecular technologies (for example, next-generation 
sequencing (NGS)). This is why the cffDNA-based NIPT 
became commercially available and widespread since 201111,12.  
Nowadays, NIPT is being implemented in public prenatal care  
in several countries (for example, the Netherlands)13.

Cell-free fetal DNA–based approach
Cell-free fragments derived from fetal DNA are shorter than 
those of maternal cell-free DNA (cfDNA), and the size distri-
bution is typically lower than 150 base pairs14,15. According to 
Ashoor et al., at 11 to 13 weeks of gestation, the concentration 
of the fetal DNA fraction ranges from 7.8 to 13.0% depending 
on gestational age; thus, for analysis of aneuploidy, it is possible 
to obtain a useful result after 10 weeks of gestation16. In the  
vast majority of cases, cffDNA is no longer detectable 24 hours 
after birth and this is due to rapid clearance17,18. Another fac-
tor affecting cffDNA fraction is maternal body mass index. It 
was shown that the median fetal fraction decreased with mater-
nal weight, from 11.7% at 60 kg to 3.9% at 160 kg16. The relative 
decrease in fetal fraction could be caused by an increased level of  
maternal cfDNA originating from active necrosis and apoptosis 
of adipose tissue in obese pregnant women. The study by 
Haghiac et al. showed that maternal cfDNA levels are elevated in  
obese compared with lean pregnant women but that cffDNA  
concentrations remain unchanged19. Because the ratio of fetal 
fraction decreases with increasing maternal weight, maternal 
obesity has a negative impact on the diagnostic capability 
of genetic screening; thus, NIPT is less likely to provide an 
informative result in obese patients20. Moreover, it was shown 
that levels of placental proteins—such as free beta human cho-
rionic gonadotropin, pregnancy-associated plasma protein A  
(PAPP-A), and placental growth factor (PlGF)—are positively 

Figure 1. Principle of non-invasive prenatal testing. Maternal blood consists of maternal and placental cells, which release their DNA 
content directly into maternal circulation. Therefore, cell-free fetal elements (for example, DNA, RNA, and proteins) are present in the blood 
of pregnant woman and can be used as biomarkers for prenatal testing and diagnosis21,22.
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correlated with fetal fraction and placental mass. Furthermore, 
low PAPP-A and PlGF levels correlate with a higher risk of 
adverse pregnancy outcome, so low fetal fraction may be a  
useful additional parameter in detecting a high-risk group of  
pregnancies23.

With increasing throughput and lowering cost, NGS technology 
became available and, together with cffDNA analysis, opened 
a new horizon for detection of trisomies and sub-chromosomal 
aberrations in a non-invasive manner. Current approaches 
are based on low-coverage massively parallel whole-genome 
sequencing analysis of plasma DNA from pregnant women. Total 
cfDNA is sequenced, sequence reads are aligned to reference 
human genome, and aligned reads are counted24. Thus, a pro-
portional representation of each chromosome can be calculated,  
and chromosome ploidy status can be determined11.

Studies also reported the use of whole-genome sequencing of 
plasma DNA for the detection of sub-chromosomal copy number 
variants (for example, microdeletions and microduplications). 
However, these approaches are limited by the requirement for 
an exceptionally high number of sequenced reads and compli-
cated interpretation because of the identification of variants of  
unknown clinical significance25. Petersen et al. estimated lower 
positive predictive values (0–21%) and higher false-positive rates 
(79–100%) for the selected microdeletion syndromes (cri du 
chat/5p- syndrome, Prader–Willi/Angelman syndromes, 22q11del/
DiGeorge syndrome, and 1p36 deletion syndrome) compared 
with common aneuploidies26. Given the low prevalence leading  
to low positive predictive values, screening for microdeletions 
should not be used in the general population until clinical valida-
tion studies indicate value for the low-risk patients27. Although 
expanded NIPT screening is already integrated into clinical  
practice, the American College of Obstetricians and Gyne-
cologists does not recommend routine cffDNA screening for  
microdeletions at this time28.

While this technology has been widely applied for aneuploidy, 
there has been relatively little clinical application for the diag-
nosis of monogenic disorders29. Early diagnosis of monogenic 
disorders has been challenging because of background mater-
nal cfDNA which prevents direct observation of maternally 

inherited alleles30. Since these tests are provided on a custom-
made basis confined to families at known high risk, there is  
practically no commercial interest, thus less attention has been 
given to testing for monogenic disorders31. However, recently, 
it was shown that it is possible to non-invasively diagnose  
prenatal monogenic diseases by combining targeted haplotyp-
ing of two parents with targeted sequencing of cfDNA extracted  
during pregnancy32.

The fast adoption of cffDNA-based NIPT to clinical prac-
tice reflects its many benefits. It is a non-invasive, relatively  
painless, and safe procedure without the related risk of  
miscarriage which is associated with amniocentesis and CVS. 
On the other hand, there are still a number of samples that  
cannot be interpreted with certainty. A source of such uninforma-
tive results is the nature of the statistical testing. If the standard 
cutoff threshold for the reliable conclusion of healthy samples is 
a z-score of 2.5, the chance that a healthy sample would achieve a 
greater z-score is estimated to be around 1.86%33. Also, biological  
reasons such as maternal malignancy, fetoplacental mosaicism, 
or non-identical vanishing twins may contribute to incorrect pre-
dictions of the fetal condition34–36. However, in spite of these  
limitations, NIPT has been shown to be a highly accurate method 
for detection of common fetal chromosomal aneuploidies  
(Table 1)37. According to clinical validation, the American Col-
lege of Medical Genetics and Genomics (ACMG) suggests 
that NIPT can replace conventional screening for Patau, Edwards, 
and Down syndromes; however, use of the updated ACMG 
guidelines and statements is recommended to provide quality  
prenatal care38. However, it should be noted that NIPT is not 
a diagnostic test and should be confirmed by invasive testing 
for the presence of any abnormal results39. Even the ultrasound 
scan is still an important component of first-trimester screening, 
and the International Society of Ultrasound in Obstetrics and  
Gynecology recommends ultrasound because it allows clinicians 
to detect additional structural or chromosomal abnormalities  
(or both) that may not show up in the blood test40.

The introduction of NIPT led to a decrease in invasive pre-
natal diagnostic procedures, but some authors suggest that it 
also had negative consequences41. Beaudet suggests that it has 
caused fewer cases of serious deletion syndromes to be detected,  

Table 1. Meta-analysis of diagnostic accuracy of cell-free fetal 
DNA–based non-invasive prenatal test demonstrated by sensitivity 
and specificity ratio of common tests37.

Test Sensitivity Specificity

Fetal sex 0.989 (95% CI 0.980–0.994) 0.996 (95% CI 0.989–0.998)

Rhesus D 0.993 (95% CI 0.982–0.997) 0.984 (95% CI 0.964–0.993)

Trisomy 21 0.994 (95% CI 0.983–0.998) 0.999 (95% CI 0.999–1.000)

Trisomy 18 0.977 (95% CI 0.952–0.989) 0.999 (95% CI 0.998–1.000)

Trisomy 13 0.906 (95% CI 0.823–0.958) 1.00 (95% CI 0.999–0.100)

Monosomy X 0.929 (95% CI 0.741–0.984) 0.999 (95% CI 0.995–0.999)

CI, confidence interval.
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resulting in an increased number of births of infants with severe 
disabilities42. Moreover, a reduction in the number of inva-
sive procedures performed reduces practice opportunities for  
clinicians, leading to significantly higher miscarriage rates43. 
Insufficient practice also affects the quality of invasive procedure 
with more likely side effects, such as infections and fetal loss. In  
particular, the risks of miscarriage have been estimated to  
be 0.11% (95% confidence interval [CI] −0.04 to 0.26%) for amni-
ocentesis and 0.22% (95% CI −0.71 to 1.16%) for CVS, accord-
ing to the systematic review of reported studies in the period of  
2000 to 201444. Later review of studies in the period of  
2000 to 2017 indicated higher risks of miscarriage—0.35%  
(95% CI 0.07 to 0.63%) and 0.35% (95% CI −0.31 to 1.00%)—
for amniocentesis and CVS, respectively45. If this tendency con-
tinues, the training and maintaining of skillful clinicians will be  
a challenge for future prenatal care.

Fetal cell-based approach
After years of oblivion, several studies recently highlighted the 
non-invasive analysis of the fetal cells extracted from mater-
nal circulation. It is due to recent advances in single-cell  
genomics, which opens up opportunities for prenatal screening.  
Attention in this area has focused on fetal nucleated red blood 
cells (nRBCs) and trophoblasts. Fetal nRBCs have been the most 
commonly targeted cell type, however, owing to low-specificity  
markers and low concentration, trophoblasts have gained 
more attention46. The value of cell-based non-invasive prenatal  
diagnosis (cbNIPD) is that limitations of cffDNA-based NIPT 
can be overcome. In an effort to prevent the problems with  
fetoplacental mosaicism, Huang et al. propose a novel silicon- 
based nanostructured microfluidic platform (Cell Reveal™) 
for capturing circulating fetal nRBCs and extravillous cytotro-
phoblasts for cbNIPD47. This method uses a microfluidic device 
coated with antibodies which can capture the corresponding 

antigens on the targeted cells (Figure 2). The nRBCs isolated  
through this platform were confirmed to be of fetal, not placen-
tal, origin by short tandem repeat analysis, fluorescence in situ  
hybridization, array comparative genomic hybridization, and 
NGS47. Although the cell-based approach has limitations, it 
has been shown that individual fetal cells can be isolated from 
maternal circulation and that their pure fetal DNA can be used  
for the detection of copy number abnormalities of at least 1 
Mb by low-coverage NGS. Analysis of the fetal genome at a 
higher resolution would allow increased accuracy and improved  
positive and negative predictive values compared with cfDNA-
based NIPT in the detection of microdeletion syndromes48.

Bioinformatics
Frequent use of NGS led to the production of a large amount of 
genomic data which need to be processed, stored, analyzed, or 
transferred (or a combination of these). This maintenance is a 
challenge for bioinformatics and is the reason why the disci-
pline became an essential part of the modern clinical laboratory. 
For the acquisition of genetic data from NIPT, two primary 
massively parallel sequencing approaches are currently avail-
able: shotgun sequencing for sequencing of the whole genome  
and targeted sequencing for sequencing of specific genomic 
regions of interest34. There are many stages of NGS data  
analysis where bioinformatics takes place (for example, sequence 
generation, alignment, and detection of genomic variation)49.  
Downstream analysis of cfDNA requires bioinformatic algo-
rithms, many of which are based on detection and quantification 
of imbalances in allelic count, regional genomic representation, 
or size distribution (or a combination of these)50. Moreover, with  
the in silico bioinformatic approach, it is possible to signifi-
cantly increase the accuracy and specificity of genetic tests 
without additional investment for labware33,51. This highlights  
the importance and potential of bioinformatics in current NIPT.

Figure 2. Scheme of silicon-based nanostructured microfluidic platform (Cell Reveal™). The microfluidic device is coated with antibodies 
which can bind the corresponding antigens on the surface of circulating fetal nucleated red blood cells (RBCs). By this method, fetal cells can 
be separated from other components of whole maternal blood.
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Bioinformatic analysis typically consists of two intercon-
nected steps: detecting structural variation and calculating the 
proportion of fetal fragments in sequenced genomic mixture, 
called fetal fraction. Traditionally used methods are based on 
the abundance of sequenced DNA fragments from the affected  
chromosome. Standard z-score method52 may be refined by 
fine selection of reference chromosomes53, elimination of long 
fragments predominantly of maternal origin51, and correction 
of laboratory-induced bias54–56 that depart from the observed 
draw of sequenced reads from ideal uniform distribution57.  
There is also an emerging field of methods that detect struc-
tural aberrations on the basis of diversions of fragment length  
distributions15. Additionally, count-based and length-based scores 
may be combined to achieve better separation between euploid  
and aneuploid samples58,59 and reduction of false-positive and  
uninformative predictions33,60.

Even though count-based methods proved to be highly accu-
rate in routine testing, chromosomal counts alone are not  
sufficient to determine fetal fraction in cases of pregnancies with 
female fetuses61 that have the same karyotype as the mother.  
General methods therefore exploit other characteristics that  
differ between maternal and fetal DNA fragments, as an uneven  
distribution of fetal fragments over genome62. Specific devia-
tion has also been observed in regions influenced by packaging  
of DNA in nucleosomes63. Alternately, fragment length dis-
tributions may be used but with lower precision15. Although 
general methods do not achieve the precision of count-based  
methods64, their combination along with additional patient 
attributes such as gestational age and body mass index of the  
mother65 may further improve their predictions. Single-nucleotide 
polymorphism (SNP)-based approaches that determine a source of 
each fragment on the basis of known genotypes of the parents66,67 
would further revolutionize testing in the coming era of genomic 
biobanking.

Epigenetics
DNA methylation is a key biological factor that epigenetically 
regulates the development and function of placenta by gene 
repression, gene activation, splicing regulation, nucleosome  
positioning, and the recruitment of transcription factors68,69. 
It is known that the placenta plays a crucial role in the nor-
mal development of the fetus during pregnancy. Aberrations in  
placental DNA methylome led to abnormal expression of 
affected genes and are associated with developmental defects of  
the fetus68. Thus, current NIPT research is interested in the  
analysis of placental DNA methylation status70. Whole-genome 
massively parallel bisulfite sequencing enables clinicians to non- 
invasively analyze the placental methylome from maternal  
circulation71. The determination of methylation status is based on  
treating the DNA with sodium bisulfite, which results in the  
conversion of unmethylated cytosine into uracil while methylated 
cytosine remains unchanged50.

The approach of plasma DNA tissue mapping based on the fact 
that different tissues exhibit different DNA methylation patterns 
can be used to deduce the origin of cfDNA fragments72. This 
advantage has great potential to override NIPT limitations caused 

by maternal malignancy. It means that bisulfite sequencing can  
be used to differentiate between the origin of fetal-derived 
cfDNA and tumor-derived cfDNA and thus avoid the false-
positive result of NIPT analysis73. However, this advantage also 
brings the ethical question of how to handle incidental findings  
(for example, maternal malignancy)74.

To perform whole-genome NGS methylomic analysis, it is neces-
sary to use corresponding bioinformatic software. For example, 
Methy-Pipe is an integrated bioinformatic pipeline for whole-
genome bisulfite sequencing data analysis. This tool allows  
data pre-processing, sequence alignment, and downstream  
methylation data analysis, including basic statistics and 
sequencing quality report, calculation of methylation level, 
identification of differentially methylated regions for paired  
samples, annotation and visualization of methylation data for 
data mining, and easy interpretation75. However, high-resolution  
whole-genome reconstruction of the placental methylome in a 
non-invasive manner is still challenging. In an effort to reconstruct 
the whole fetal/placental methylome, Sun et al. propose a novel  
algorithm called FEMER (fetal methylome reconstructor)70. 
According to the authors, this approach provides a high-quality 
view of the placental methylome from the maternal plasma and  
might accelerate potential clinical applications70.

An approach that is equivalent to NGS and that could be effec-
tive for NIPT of trisomy 21 in pregnant women uses methylated 
DNA immunoprecipitation combined with quantitative polymer-
ase chain reaction76. This method is based on the selection of 
fetal–maternal differentially methylated regions, which are used 
to enrich and assess the fetal DNA ratio77. Statistical evaluation 
of diagnostic efficiency for trisomy 21 showed 100% specificity  
and 100% sensitivity of this methodology78. Another validation 
study showed 99.2% specificity (95% CI 95.62 to 99.98%) 
and 100% sensitivity (95% CI 92.89 to 100.00%)79. The main 
advantage of this method is that, in comparison with the 
NGS, this approach uses equipment that is available in most 
genetic diagnostic laboratories and is technically easier and  
less expensive77.

Conclusions
The current trend in prenatal testing can be characterized by a 
massive move from invasive sampling to using a non-invasive 
or more precisely less-invasive source in the form of blood. 
Despite some limitations of cffDNA analysis of pregnant women, 
it seems obvious that NIPT will replace other methods of  
screening for chromosomal aberrations. It is important to under-
stand that NIPT does not entirely replace invasive sampling  
procedures. Positive NIPT findings must be confirmed by 
diagnostic tests based on an invasive sample source, mainly 
amniocentesis. This is different in the case of monogenic  
disorders, where a haplotyping-based approach allows diagnosis 
without the need for further confirmation. Continuing research  
and development efforts are focused on overriding the NIPT 
limitations, increasing the accuracy, and extending tested  
defects to reach a diagnostic grade of results and thus to 
avoid the requirement for confirmation by invasive diagnostic  
procedures. Invasive testing remains an important part of prenatal 
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care. Recent studies show that procedure-associated risks in 
the case of amniocentesis are very low when it is performed by 
experienced clinicians. Unfortunately, widespread adoption of  
NIPT leads to a drop in performed invasive procedures and  
experience is decreasing. We believe that novel findings and 
technological progress will transform NIPT from screening to a  
final diagnostic test.
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