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Abstract

Background: There are currently no screening tests in routine use for oral and pharyngeal cancer beyond visual
inspection and palpation, which are provided on an opportunistic basis, indicating a need for development of
novel methods for early detection, particularly in high-risk populations. We sought to address this need through
comprehensive interrogation of CpG island methylation in oral rinse samples.

Methods: We used the Infinium HumanMethylation450 BeadArray to interrogate DNA methylation in oral rinse
samples collected from 154 patients with incident oral or pharyngeal carcinoma prior to treatment and 72 cancer-
free control subjects. Subjects were randomly allocated to either a training or a testing set. For each subject, average
methylation was calculated for each CpG island represented on the array. We applied a semi-supervised recursively
partitioned mixture model to the CpG island methylation data to identify a classifier for prediction of case status in
the training set. We then applied the resultant classifier to the testing set for validation and to assess the predictive
accuracy.

Results: We identified a methylation classifier comprised of 22 CpG islands, which predicted oral and pharyngeal
carcinoma with a high degree of accuracy (AUC = 0.92, 95 % CI 0.86, 0.98).

Conclusions: This novel methylation panel is a strong predictor of oral and pharyngeal carcinoma case status in
oral rinse samples and may have utility in early detection and post-treatment follow-up.
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Background
Oral and pharyngeal cancer are major public health
concerns in the USA, where there were an estimated
42,440 new cases of oral and pharyngeal cancer diag-
noses (it is the eighth most common form of cancer
in men) and 8390 deaths in 2014 [1]. This problem is
even more pronounced on the global scale, with
442,760 incident cases and 241,458 deaths worldwide
in 2012 [2]; rates are particularly high in parts of
Western Europe, Southeast Asia, and Oceania. The
relatively high mortality is, in part, due to the fact

that the majority of patients initially present at an ad-
vanced stage [3], which is associated with a much poorer
prognosis [4]. Additionally, oral and pharyngeal cancer
carries a very high morbidity, often with disfigurement
and impairment of basic functions, such as talking, swal-
lowing, eating, and breathing [3], that is exacerbated by
more advanced disease and the associated disease treat-
ments. Taken together, these considerations underscore
the critical importance of early detection in reducing the
adverse impact of this disease.
DNA methylation is a very common epigenetic event

associated with the genesis of oral and pharyngeal car-
cinoma, often preceding the onset of frank malignancy
[5]. DNA methylation occurs primarily in the context of
CpG dinucleotides [6], which are disproportionately con-
centrated in enriched regions referred to as CpG islands.
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CpG islands are commonly situated in the 5′ promoter
region of genes where their methylation is generally as-
sociated with transcriptional repression. However,
methylation of CpG islands situated in inter- and intra-
genic enhancer regions can also impact the timing or
spatial patterns of gene expression [7]; there is mounting
evidence that methylation of CpG islands located in the
gene body can lead to increased transcriptional activa-
tion [8, 9]. Furthermore, regional methylation can
impact the expression of non-coding RNA [7], the se-
quences of which are commonly situated in intronic or
intergenic regions. Methylation of CpG islands can arise

aberrantly during disease development and progression
[6] but can also occur as part of normal biological pro-
cesses, such as X-inactivation, imprinting [5], or tissue
differentiation [10–14].
Currently, no proven screening techniques are in

widespread use for oral and pharyngeal cancer aside
from visual inspection and palpation, which are provided
by dentists and clinicians on an opportunistic basis, lack
sensitivity (particularly for pharyngeal tumors), and vary
according to the skill of the clinician performing the
exam. Oral rinse can be utilized as a non-invasive ascer-
tainment technique for detection of DNA methylation in

Fig. 1 Schematic of the SS-RPMM algorithm for identification of a CpG island methylation profile predictive of oral and pharyngeal carcinoma
case status
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these cancers [15–27] and therefore has potential in
biomarker-based screening applications, particularly
among high-risk groups or for post-treatment surveil-
lance. While the existing literature has primarily focused
on a limited set of candidate promoter regions,
epigenome-wide strategies offer a more comprehensive
approach for discovery. Systematic evaluation of methy-
lation over predefined aggregate regions, such as CpG
islands, can help to mitigate issues relating to false dis-
covery rate and technical noise that can complicate
epigenome-wide assessment of large numbers of individ-
ual loci [28]. Hence, the goal of this study was to begin
to address these needs through epigenome-wide interro-
gation via the Infinium HumanMethylation450 BeadAr-
ray for identification and validation of a novel sentinel
CpG island methylation profile in non-invasive oral rinse

samples that may be useful in predicting oral and
pharyngeal carcinoma.

Results
The study population included 154 cases with incident
initial primary oral or pharyngeal squamous cell carcin-
oma from the greater Boston area and 72 cancer-free
controls, from whom oral rinse samples were obtained.
DNA methylation was interrogated in the oral rinse
samples using the Infinium HumanMethylation450
BeadArray (Illumina, San Diego, CA), which contains
probes for more than 450,000 CpG loci across 99 % of
annotated human genes. A general schematic of our
analytic workflow is presented in Fig. 1. Study partici-
pants were randomly partitioned into either a training
or testing set at a 2:1 ratio, which resulted in 157

Table 1 Characteristics of study subjects in the training and testing sets according to case-control status for oral and pharyngeal
carcinoma

Training set (n = 147) Testing set (n = 76)

Case (n = 101) Control (n = 46) pdifference Case (n = 51) Control (n = 25) pdifference

Age, median (range) 60.0 (23–86) 60.5 (46–88) 0.31e 58.0 (29–78) 59.0 (32–77) 0.82e

Sex

Female 29 (28.7 %) 17 (37.0 %) 0.34f 16 (31.4 %) 8 (32.0 %) >0.99f

Male 72 (71.3 %) 29 (63.0 %) 35 (68.6 %) 17 (68.0 %)

Racea

White 92 (91.1 %) 44 (95.7 %) 0.51f 47 (92.2 %) 20 (80.0 %) 0.15f

Other 8 (7.9 %) 2 (4.3 %) 4 (7.8 %) 5 (20.0 %)

Smokingb

Never 30 (31.3 %) 15 (32.6 %) >0.99f 15 (31.3 %) 14 (56.0 %) 0.048f

Ever 66 (68.8 %) 31 (67.4 %) 33 (68.8 %) 11 (44.0 %)

Pack-yearsc, median (range) 31.0 (0.6–120) 24.0 (0.1–200) 0.18e 22.0 (0.9–94) 13.7 (0.8–62.5) 0.23e

Alcohol useb

Non-drinker 7 (7.4 %) 7 (15.2 %) 0.18f 3 (6.3 %) 4 (16.0 %) 0.047f

≤2 drinks/day 51 (53.7 %) 27 (58.7 %) 25 (52.1 %) 17 (68.0 %)

>2 drinks/day 37 (38.9 %) 12 (26.1 %) 20 (41.7 %) 4 (16.0 %)

HPV serologyd (E6 or E7 antibodies)

Negative 62 (66.0 %) – – 26 (60.5 %) – –

Positive 32 (34.0 %) – 17 (39.5 %) –

AJCC stage group

I 24 (23.8 %) – – 13 (25.5 %) – –

II 12 (11.9 %) – 7 (13.7 %) –

III 13 (12.9 %) – 5 (9.8 %) –

IV 52 (51.5 %) – 26 (51.0 %) –
aRace data was missing for 1 case in the training set
bSmoking and alcohol data were missing for 5 cases in the training set and 3 cases in the testing set
cRestricted to ever-smokers
dHPV16 E6 and/or E7 serology was missing for 7 cases in the training set and 8 cases in the testing set
eWilcoxon rank-sum test
fFisher’s exact test
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subjects in the training set (101 cases, 46 controls) and
76 in the testing set (51 cases, 25 controls); 3 of the ori-
ginal 226 samples (2 cases, 1 control) failed initial qual-
ity control measures and were excluded from the
analyses. A description of the study population for the
training and testing sets by case-control status is pre-
sented in Table 1.
There were a total of 32,465 autosomal CpG islands

represented by at least three CpG probes on the
HumanMethylation450 BeadArray. After fitting a series
of individual linear mixed-effects models for average
methylation across each of these CpG islands and rank-
ing them according to absolute t-statistic using only the
training set data, we used a semi-supervised recursively
partitioned mixture modeling (SS-RPMM) algorithm
[29], through which we determined that a methylation
classifier based on 22 CpG islands formed the optimal
number of top CpG loci for discriminating between
cases and controls, resulting in seven distinct methyla-
tion classes. A description of each of these 22 CpG
islands, along with their bioinformatic attributes, is pre-
sented in Table 2.
We then validated this class structure and tested its

predictive power by applying the latent structure of the
methylation classes established in the training set to the
testing set. A heatmap of the methylation profiles of each
of the 22 CpG islands for the subjects assigned to the
testing set by methylation class is presented in Fig. 2a.
Two methylation classes, rRL and rRRR (denoted
according to left and right branches on the dendogram
from the clustering procedure), particularly stand out as
being “case-heavy” (Fig. 2b), which collectively include
33 cases and only one control. When considered to-
gether, the association of these two classes with case sta-
tus relative to all other classes is remarkably strong, with
a crude odds ratio (OR) = 43.8 (95 % CI 8.1, 816.7) and
adjusted OR = 76.9 (95 % CI 11.8, 1818.2). The sensitiv-
ity and specificity of classes rRL and rRRR for correctly
predicting case status is 64.7 and 96.0 %, respectively.
To further assess the performance of the classifier in

the testing set, we constructed receiver operating charac-
teristic (ROC) curves for the logistic regression models
and calculated the corresponding area under the curve
(AUC) (Fig. 3). When considering the association be-
tween case status and methylation class alone (i.e., no
other independent covariates in the model), the AUC was
0.84 (95 % CI 0.75–0.93). After additional adjustment for
age, sex, smoking pack-years, and alcohol consumption,
the AUC increased to 0.92 (95 % CI 0.86, 0.98).
In an effort to explore possible drivers of these find-

ings, we assessed the sociodemographic and clinical
characteristics of oral and pharyngeal carcinoma cases
for each “case” class (rRL, n = 20; rRRR, n = 13) relative
to cases in all other classes (n = 18) (Table 3). No

significant differences were observed across classes.
However, while non-significant, class rRRR had a higher
fraction of cases with seropositivity for HPV16 e6/e7
antibodies (p = 0.11), which were performed on study
subjects as a biomarker of HPV16-transformed invasive
tumors [30]. Additionally, the case classes contained a
somewhat higher, albeit non-significant, proportion of
advanced stage cases, although it is notable that both of
these cases also contain a sizable fraction of localized
cancers and that the majority of cases have relatively
smaller (T1–T2) tumors.
To evaluate the biological significance of the 22 CpG

islands that form the oral rinse methylation classifier, we
downloaded Infinium HumanMethylation450 BeadArray
data from The Cancer Genome Atlas (TCGA; http://
cancergenome.nih.gov/) for all oral and pharyngeal car-
cinoma cases with paired adjacent normal tissue (34
pairs). With respect to the CpG islands forming the clas-
sifier, 20 of 22 were found to be significantly differen-
tially methylated in tumor tissue relative to the adjacent
normal tissue, based on the Wilcoxon signed-rank test
and adjusting for false discovery rate (FDR) using the
methods of Benjamini and Hochberg [31]. The results of
this analysis are presented in the right-hand columns of
Table 2. Of note, the two CpG islands that were not sig-
nificantly differentially methylated exhibited broad vari-
ability from the minimum to maximum differentials,
which could potentially add information on a subset of
samples to the classifier, particularly when considered in
conjunction with other CpG islands.

Discussion
We have identified a CpG island methylation classifier
that can be used with oral rinse samples for predicting
incident oral and pharyngeal carcinoma with a high de-
gree of accuracy. Several other studies have examined
the potential utility of DNA methylation in oral rinse
samples for predicting head and neck cancers [15–25],
but our findings represent the strongest predictive panel
reported to date that was validated in an independent
study set, with an impressive adjusted AUC of 0.92
(several studies reporting high sensitivity and/or specifi-
city established methylation cut-points using the same
set of samples that predictive accuracy was tested, leav-
ing them susceptible to issues from over-fitting). By
applying a rigorous two-stage analysis of Infinium
HumanMethylation450 BeadArray data with an agnostic
genome-wide assessment that encompassed all anno-
tated CpG islands, including those outside of the gene
promoter context, our study provides contrast to the
majority of existing studies, which with few exceptions
employ a candidate-gene approach centered on pro-
moter methylation. As such, this study has given rise to
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Table 2 Description of the 22 CpG islands used to establish the methylation classifier in oral rinse samples

M CpG island
coordinatesa

Number
of CpGs
covered
by the
array

Associated
gene
(ncRNA)

CpG island
relationship to
gene

Enhancer
region

DNase
hypersensitivity
site

Associated gene
functione

Differential methylation in
oral/pharyngeal tumor
tissuef

FDR-
adjusted
Q-value

Median
differenceg

(range)

1 chr3:15286143-
15286274

3 SH3BP5 5′UTR: body True True Inhibits phosphorylation
activity of Bruton
Agammaglobulinemia
Tyrosine Kinase; may
play a role in BCR-
induced apoptosis

1.12E−07 −0.19
(−0.35, −0.04)

2 chr17:77848690-
77848800

3 (JD529337)b True True 9.86E−09 −0.14
(−0.17, −0.07)

3 chr12:118725604-
118725889

3 CIT Body True Serine/threonine-protein
kinase that plays a role
in cell division/
cytokinesis

3.04E−09 0.32
(0.13, 0.46)

4 chr1:154198084-
154198623

3 ARHGEF2 Body True True Plays a fundamental role
in cellular processes
initiated by extracellular
stimuli via G protein
coupled receptors

4.21E−09 −0.22
(−0.31, −0.01)

5 chr12:28015205-
28015607

3 PTHLH 5′UTR (TSS1500) Neuroendocrine peptide
member of the
parathyroid hormone
family that is a critical
regulator of cellular and
organ growth,
development, migration,
differentiation, survival,
and epithelial calcium
ion transport

3.97E−06 −0.19
(−0.29, 0.37)

6 chr11:2511670-
2512178

4 KCNQ1 Body True Voltage-gated potassium
channel required for the
repolarization phase of
the cardiac action
potential; exhibits tissue-
specific imprinting

3.04E−09 −0.29
(−0.52, −0.10)

7 chr1:8194584-
8194818

3 (JD505160) True True 1.40E−06 −0.13
(−0.26, 0.09)

8 chr12:110319267-
110319654

4 (see
footnote)c

1.12E−07 −0.04
(−0.06, 0.01)

9 chr5:161207831-
161208167

4 GABRA1 5′UTR
(TSS1500:TSS200)

Receptor for gamma-
aminobutyric acid (GABA),
which is the major inhibi-
tory neurotransmitter in
the brain

5.08E−06 0.09
(−0.03, 0.66)

10 chr19:5538686-
5538939

3 SAFB2 Body Binds to scaffold/matrix
attachment region (S/
MAR) DNA; may function
as an estrogen receptor
corepressor or inhibitor
of cell proliferation

0.00015 0.25
(−0.35, 0.27)

11 chr6:25135475-
25135786

3 BC070382d 3.04E−09 −0.29
(−0.47, −0.04)

12 chr10:134072408-
134072501

3 PWWP2B Body: 3′UTR PWWP Domain-
Containing Protein 2B

6.28E−08 0.21
(−0.10, 0.29)

13 chr1:10818517-
10818704

3 True True 0.00066 −0.16
(−0.28, 0.19)

14 chr1:1385949-
1386143

5 ATAD3C Body 9.23E−08 −0.17
(−0.36, 0.03)
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novel targets, the majority of which, to our knowledge,
have not been previously reported.
Adding further strength to our findings, 20 of the 22

CpG islands were observed to be differentially methyl-
ated in tumor tissue relative to adjacent normal tissue.
One of the two CpG islands that was not differentially
methylated in the TCGA tumors overlaps the promoter
region of DKK1, which has been reported to be hyper-
methylated in head and neck carcinoma [32, 33], and

lower expression has been associated with increased risk
of lymph node metastasis and poorer outcome [34, 35],
although other studies report conflicting findings [36, 37].
The other CpG island that was not differentially
methylated in the TCGA tumors is associated with
the zinc-finger protein ZCCHC14, which is an intri-
guing locus, as SNPs in that gene have been associ-
ated with nicotine dependence [38]. The CpG island
is located in the 3′UTR of ZCCHC14 and overlaps

Table 2 Description of the 22 CpG islands used to establish the methylation classifier in oral rinse samples (Continued)

ATPase Family AAA
Domain-Containing Pro-
tein 3C

15 chr10:53743705-
53744974

7 DKK1 5′UTR: Body TRUE Member of the dickkopf
protein-coding gene
family, which play an im-
portant role in vertebrate
development

0.59 −0.02
(−0.10, 0.57)

16 chr11:20588323-
20588561

3 SLC6A5 Body True Solute-carrier transporter
involved in the clearance
of extracellular glycine
during glycine-mediated
neurotransmission

3.51E−06 −0.03
(−0.06, 0.001)

17 chr10:134210902-
134211265

5 INPP5A Body Membrane-associated
type I inositol 1,4,5-
trisphosphate (InsP3) 5-
phosphate that mobilizes
intracellular calcium and
acts as a second messen-
ger for mediating cell re-
sponses to various
stimuli

1.89E−07 −0.09
(−0.42, −0.0004)

18 chr5:10702368-
10703458

3 ANKRD33B Body Ankyrin Repeat Domain-
Containing Protein 33B

7.67E−09 0.14
(0.03, 0.18)

19 chr16:85998896-
85999172

3 ZCCHC14 3′UTR TRUE Zinc Finger CCHC
Domain-Containing Pro-
tein 14; interacts with
nuclear transcription fac-
tors NFIC and NFIX

0.13 0.09
(−0.42, 0.20)

20 chr13:105827274-
105827476

3 (LINC00460) (long non-coding RNA of
unknown function)

3.34E−08 −0.26
(−0.48, 0.04)

21 chr5:1010475-
1010610

3 True True 8.09E−05 −0.19
(−0.34, 0.11)

22 chr2:216945117-
216945376

6 MARCH4 5′UTR (TSS1
500:TSS200)

E3 ubiquitin-protein lig-
ase that may mediate
ubiquitination of MHC-I
and CD4, and promote
their subsequent endo-
cytosis and sorting to ly-
sosomes via
multivesicular bodies

0.00076 −0.04
(−0.06, 0.08)

Abbreviations: M rank order of top CpG islands comprising the oral rinse methylation classifier, UTR untranslated region, kb kilobase, TSS200 within 200 bases of
transcription start site, TSS1500 within 1500 bases of transcription start site, ncRNA non-coding RNA, FDR false discovery rate (Benjamini and Hochberg)
aCoordinates correspond to CpG islands predicted by Hidden Markov Model (HMM) using the NCBI36/hg18 assembly
bCpG island is <2 kb downstream of a bioinformatically detectable short RNA sequence
cCpG island is <1 kb upstream (JD366788, JD497927, JD365992) and downstream (JD358111, JD476820, JD415033) of several bioinformatically detectable short
RNA sequences
dHypothetical short protein-coding sequence
eGene function was extracted from GeneCards (www.genecards.org)
fBased on Infinium HumanMethylation450 data from 34 tumor/matched-adjacent normal tissue pairs from The Cancer Genome Atlas (TCGA)
gMedian difference in beta value of tumors relative to controls (positive value denotes relative hypermethylation; negative value denotes
relative hypomethylation)
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putative microRNA-binding sites for miR-542-3p and
miR-615-3p [39].
The strengths of this study include the relatively large

number of cases and controls with oral rinse samples
compared to the majority of studies in the current body
of literature; the use of average CpG island methylation
in conjunction with the broad coverage from Infinium
HumanMethylation450 BeadArray helps to mitigate
technical noise that is often an impediment with single
locus analysis; and the inclusion of oropharyngeal and
hypopharyngeal cases along with oral cavity cases
broadens the potential applicability of this panel. Add-
itionally, our agnostic, data-driven approach with the in-
clusion of all CpG islands rather than select, candidate
promoter methylation can also be viewed as a strength.
This does not diminish the importance of the candidate
genes used in prior studies, but we have now added
novel CpG island loci for investigation in future studies.
One potential weakness of this study is its retrospective
design, although, conversely, the case-control design has
the advantage of providing us with a much larger num-
ber of oral and pharyngeal carcinoma cases than we
would be able to obtain using a population-based pro-
spective study. Future studies will be aimed at prospect-
ive validation the 22 CpG island methylation panel as a
screening tool in a high-risk population and as a poten-
tial tool for use in post-treatment follow-up surveillance
for head and neck cancer patients. Additionally, due to
coverage limitations of the Infinium HumanMethylation450

BeadArray, it is plausible that we may have missed some
CpG islands that could potentially play an important epi-
genetic role in oral and pharyngeal carcinoma by restricting
our analysis to CpG islands containing at least three CpG
probes on the array. However, this platform offers excel-
lent coverage of CpG-dense regions, allowing us to
analyze >32,000 distinct CpG islands (as defined by
Hidden Markov Model), and remains among the best
available options for epigenome-wide analysis of a large
number of samples [40–42].

Conclusions
Although further expanded testing is warranted in a pro-
spective setting, this panel may have utility for early de-
tection of disease, particularly in targeted, high-risk
populations. Importantly, methylation panels used in
conjunction with non-invasive oral rinse samples, such
as that described herein, may ultimately prove valuable
as an aid for post-treatment follow-up surveillance;
again, further prospective testing of this methylation
classifier is warranted to determine its applicability to
such applications. Continued discovery and development
of clinically relevant biomarkers that can help with early
detection of incident and/or recurrent head and neck
cancer will ultimately have a positive impact on public
health by reducing morbidity and mortality associated
with this devastating disease, both in the USA and
worldwide.

a b

Fig. 2 a Heatmap showing average methylation of the 22 CpG islands comprising the classifier for each of the 76 testing set subjects, clustered
according to methylation class. The numbers in the x-axis correspond to the rank-ordered M number displayed for each respective CpG island in
Table 2. b The distribution of cases (n = 51) and controls (n = 25) from the testing set across the seven methylation classes
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Methods
Study population
The study population included 154 cases with incident
initial primary squamous cell carcinoma arising in the
oral cavity (ICD-9: 141.1–141.5, 141.8, 141.9, 143–145.2,
145.5–145.9, 149.8, 149.9), oropharynx (ICD-9: 141.0,
141.6, 145.3, 145.4, 146, 149.0, 149.1), or hypopharynx
(ICD-9: 148) diagnosed between October 2006 and June
2011 at major teaching hospitals located in Boston, MA

(Brigham and Women’s Hospital, Beth Israel Deaconess
Medical Center, Boston Medical Center, Dana-Farber
Cancer Institute, Massachusetts Eye and Ear Infirmary,
Massachusetts General Hospital, and New England Med-
ical Center) as part of a population-based study of head
and neck cancer in the greater Boston area (Collaborative
Study of Head and Neck Diseases (CoHANDS)) that has
been previously described [43, 44]. For inclusion in the
study, cases were required to reside in the greater Boston

a

c

b

Fig. 3 Receiver operator characteristic (ROC) curves with corresponding area under the curve (AUC) and 95 % confidence intervals (95 % CI) for
logit regression for the association of oral and pharyngeal carcinoma case status in the testing set with a methylation class only; b age, sex,
smoking pack-years, and alcohol consumption only; and c methylation class adjusted for age, sex, smoking pack-years, and alcohol consumption
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area or any of 162 contiguous cities and towns within an
approximately 1-h drive from Boston at the time of diag-
nosis. Cases with a prior history of malignancy other than
non-melanoma skin cancer were excluded from the
analyses. Cancer-free control subjects (n = 72) were ran-
domly selected from 567 controls that were recruited into
CoHANDS using a population-based design [45] during
the same time frame as the cases. All patients included in
the analyses provided written informed consent prior to
enrollment in the study, as approved by the institutional
review boards of Brown University and the participating
institutions listed above.

Sample collection, DNA extraction, and bisulfite
modification
Upon enrollment into CoHANDS (and prior to initiation
of treatment for cases), subjects were asked to vigorously
swish with approximately 30 ml of commercial alcohol-
free mouthwash (Act™) for 30 s. Samples were then cen-
trifuged into cell pellets and stored at −80 °C in cryovials
until DNA extraction. DNA was extracted using the
QIAamp Blood Kit (Qiagen, Valencia, CA) using the spin
protocol for DNA purification from blood or body fluids.
Extracted DNA was bisulfite modified using the EZ-96
DNA Methylation-Direct Kit (Zymo Research, Irvine,

Table 3 Characteristics of testing set cases for each of the two case-associated methylation classes (rRL and rRRR) relative to those in
the other five classes

Methylation class

Characteristic rRL (n = 20) rRRR (n = 13) All other classes (n = 18) pdifference

Age, median (range) 56.5 (29–78) 54.0 (33–78) 62.5 (31–76) 0.43c

Sex

Female 8 (40.0 %) 2 (15.4 %) 6 (33.3 %) 0.33d

Male 12 (60.0 %) 11 (84.6 %) 12 (66.7 %)

Race

White 18 (90.0 %) 11 (84.6 %) 18 (100 %) 0.29d

Other 2 (10.0 %) 2 (15.4 %) 0

Cigarette smokinga

Never 7 (38.9 %) 4 (30.8 %) 4 (23.5 %) 0.63d

Ever 11 (61.1 %) 9 (69.2 %) 13 (76.5 %)

Pack-years, median (range) 16.5 (1.2–48) 25.0 (5.5–60) 22.0 (0.9–94) 0.56c

Alcohol usea

Non-drinker 1 (5.6 %) 2 (15.4 %) 0 0.21d

≤2 drinks/day 10 (55.6 %) 8 (61.5 %) 7 (41.2 %)

>2 drinks/day 7 (38.9 %) 3 (23.1 %) 10 (58.8 %)

HPV serologyb

(E6 or E7 antibodies)

Negative 12 (66.7 %) 4 (36.4 %) 13 (76.5 %) 0.11d

Positive 6 (33.3 %) 7 (63.6 %) 4 (23.5 %)

Primary tumor site

Oral cavity 13 (65.0 %) 6 (46.2 %) 10 (55.6 %) 0.53d

Oropharynx 4 (20.0 %) 6 (46.2 %) 7 (38.9 %)

Hypopharynx 3 (15.0 %) 1 (7.7 %) 1 (5.6 %)

AJCC stage group

Local (stage I or II) 6 (30.0 %) 4 (30.8 %) 10 (55.6 %) 0.25d

Advanced (stage III or IV) 14 (70.0 %) 9 (69.2 %) 8 (44.4 %)

Tumor size (T class)

T1–T2 14 (70.0 %) 9 (69.2 %) 16 (88.9 %) 0.29d

T3–T4 6 (30.0 %) 4 (30.8 %) 2 (11.1 %)
aSmoking and alcohol data were missing for 2 cases in class rRL and 1 case in “All other classes”
bHPV16 E6/E7 serology data was missing for 2 cases in class rRRR and 1 case in “All other classes”
cKruskall-Wallis test
dFisher’s exact test
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CA) according to Illumina’s recommendations for the
Infinium HumanMethylation450 BeadArray.

Infinium HumanMethylation450 BeadArray
The Infinium HumanMethylation450 BeadArray assay was
performed in three batches at the University of California
San Francisco (UCSF) Institute for Human Genomics Core
Facility (first and second batches) and University of Cincin-
nati (UC) Genomics, Epigenomics and Sequencing Core
(third batch). Approximately 500 ng of bisulfite-modified
genomic DNA was provided to the respective facility for
initial processing of the BeadArrays, with samples random-
ized to BeadChip positions to mitigate any impact of
potential batch or chip effects. Raw image files were pre-
processed using the RnBeads pipeline in R [46]. All array
data points are represented by fluorescent signals from
both methylated (Cy5) and unmethylated (Cy3) alleles,
and average methylation level (β) is derived from the ~18
replicate methylation measurements, β = (max(Cy5, 0))/
(|Cy3| + |Cy5| + 100). Beta (β) = 1 indicates complete
methylation; β = 0 represents no methylation. Outliers
were assessed using quality control plots generated
through the RnBeads pipeline designed to diagnose prob-
lems such as poor bisulfite conversion or signal intensity
issues. Functional normalization was performed using
minfi.funnorm [47] following background correction with
the normal-exponential using out-of-band probes (NOOB)
method [48]. Any probes with a detection p value >0.01 or
that contained a single-nucleotide polymorphism (SNP) in
the probe sequence were filtered out of the dataset prior
to analysis. To account for any residual batch or chip
effects, methylation data were adjusted using the ComBat
method [49] via the SVA package in Bioconductor. The
dataset supporting the results of this article are available
the Gene Expression Omnibus (GSE7097: http://www.nc
bi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70977).

Statistical analysis
Average methylation was calculated for each autosomal
CpG island (determined by the Hidden Markov Model
approach, which provides a more accurate approach for
identification of CpG islands than expected CG
content-based filtering strategies [50]) that spanned at
least three CpG loci on the HumanMethylation450
BeadArray (after filtering). It was our intent that assess-
ment of CpG island methylation (as opposed to the in-
dividual locus approach) would provide more stable
estimates that are less readily influenced by outliers due
to technical variation.
A semi-supervised recursively partitioned mixture

modeling (SS-RPMM) algorithm [29] was applied to
identify a novel set of CpG islands for which methylation
in oral rinse samples were predictive of oral and
pharyngeal carcinoma case status. This method is based

both on the semi-supervised procedure proposed by Bair
and Tibshirani [51, 52] and recursively partitioned
mixture models (RPMM) developed by Houseman et al.
[53]. To avoid over-fitting the data and provide for
validation of the model, subjects were randomly parti-
tioned into either a training set (for the initial analysis)
or a testing set (for subsequent validation) at a 2:1 ratio
(frontloaded to increase the precision of the classifier
identified in the training set), stratified by case-control
status to ensure an equal distribution between sets. A
series of linear mixed-effects models were then fit to
logit-transformed average methylation (M) values to
identify CpG islands most associated with case status,
and were adjusted for age, sex, smoking pack-years, and
alcohol consumption (typical number of alcoholic bev-
erages per week) with a random-effect term for batch/
processing site (UCSF or UC). CpG islands were ranked
based on the absolute value of the t-statistic for case
status. The top M loci were selected using a nested
cross-validation procedure to train a classifier for case/
control status by fitting a RPMM to the training data to
cluster subjects using the M selected loci. To predict
class membership in the testing set, the latent class struc-
ture from the RPMM fit to the training data was applied
using an empirical Bayes procedure. Unconditional
logistic regression was used to calculate the magnitude of
the association between methylation class and oral and
pharyngeal carcinoma, controlling for potential confound-
ing covariates (age, sex, smoking pack-years, and alcohol
consumption). Receiver operating characteristic (ROC)
curves and corresponding area under the curve (AUC)
were generated to assess the performance of the DNA
methylation classifier.
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