Received: 10 July 2018 Accepted: 28 October 2018 Published online: 12 November 2018 # **OPEN** Driving the expression of the Salmonella enterica sv Typhimurium flagellum using flhDC from Escherichia coli results in key regulatory and cellular differences Ayman Albanna^{1,2,6}, Martin Sim^{1,2,7}, Paul A. Hoskisson⁶, Colin Gillespie⁴, Christopher V. Rao⁵ & Phillip D. Aldridge 1,2 The flagellar systems of Escherichia coli and Salmonella enterica exhibit a significant level of genetic and functional synteny. Both systems are controlled by the flagellar specific master regulator FlhD₄C₂. Since the early days of genetic analyses of flagellar systems it has been known that E. coli flhDC can complement a $\Delta flhDC$ mutant in S. enterica. The genomic revolution has identified how genetic changes to transcription factors and/or DNA binding sites can impact the phenotypic outcome across related species. We were therefore interested in asking: using modern tools to interrogate flagellar gene expression and assembly, what would the impact be of replacing the flhDC coding sequences in S. enterica for the E. coli genes at the flhDC S. entercia chromosomal locus? We show that even though all strains created are motile, flagellar gene expression is measurably lower when $flhDC_{EC}$ are present. These changes can be attributed to the impact of FlhD₄C₂ DNA recognition and the protein-protein interactions required to generate a stable $FlhD_4C_2$ complex. Furthermore, our data suggests that in E. coli the internal flagellar FliT regulatory feedback loop has a marked difference with respect to output of the flagellar systems. We argue due diligence is required in making assumptions based on heterologous expression of regulators and that even systems showing significant synteny may not behave in exactly the same manner. The flagellum in the enteric bacteria, Escherichia coli and Salmonella enterica, has been studied extensively for over fifty years and provides the canonical example for bacterial motility. These studies have revealed not only the complex structure of the enteric flagellum but also its role in host colonization, pathogenesis, and cellular physiology¹⁻⁴. In addition, these studies have identified many of the complex regulatory processes that coordinate the assembly and control of this exquisitely complex biological machine³⁻⁵. The flagellum in E. coli and S. enterica are structurally very similar and are often tacitly assumed to be effectively identical aside from differences in the filament structure. However, in the case of regulation, these assumptions are based more on sequence similarity rather than on actual experimental data^{5,6}. Indeed, a number of studies have shown that these two systems are regulated in entirely different manners in response to environmental signals despite strong gene synteny. For example, many common E. coli strains are motile only during growth in nutrient-poor conditions whereas many common S. enterica strains are motile only during growth in ¹Centre for Bacterial Cell Biology, Baddiley Clark Building, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK. ²Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK. 3Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK. 4School of Mathematics & Statistics, Herschel Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. ⁵Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States. 6College of Environmental Science & Technology, Mosul University, Mosul, 41002, Iraq. ⁷Present address: Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK. Correspondence and requests for materials should be addressed to P.D.A. (email: phillip. aldridge@ncl.ac.uk) nutrient-rich conditions⁷. In addition, *E. coli* is more motile at 30 °C than at 37 °C whereas motility *S. enterica* is generally insensitive to these temperature differences⁸. *E. coli flhDC* are transcribed from a single transcriptional start site that is responsive to OmpR, RcsB and CRP regulation, to name only a few regulatory inputs⁸. In contrast *S. enterica flhDC* transcription is significantly more complex with up to 5 transcriptional start sites, albeit with only a subset being responsible for the majority of *flhDC* transcription⁹. Part of the problem is that different questions have been asked when studying the regulation of motility in these two bacterial species. Most studies in *E. coli* have focused on the environmental signals and associated regulatory process that induce bacterial motility. In particular, they have focused on the processes that regulate the expression of the master flagellar regulator, $FlhD_4C_2^8$. Most studies in *S. enterica*, on the other hand, have focused on the regulatory processes that coordinate the assembly process following induction⁴. In particular, they have focused on the downstream regulatory processes induced by $FlhD_4C_2^3$. Despite differences in regulation, the protein subunits of master flagellar regulators, FlhC and FlhD, exhibit high sequence similarity sharing 94 and 92% identity, respectively (Figure S1), between *E. coli* and *S. enterica*. For both proteins the most significant amino acid changes are within the last 8 amino acids. Other substitutions are scattered across each protein and do not provide a consistent mutational pattern that provide a clear phenotypic explanation. Given that modifications to transcription factors and/or promoter structure can lead to divergence in regulatory circuits¹⁰, we were interested in how FlhD₄C₂ functions in different genetic backgrounds. Previously, it was shown that *E. coli flhDC* can complement a $\Delta flhDC$ mutant in *S. enterica*, suggesting that these proteins are functionally identical in the two bacterial species¹¹. However, it is not clear whether they are regulated in the same manner. We, therefore, investigated the impact of replacing the native master regulator in *S. enterica* with the one from *E. coli*. Defining the impact of known FlhD₄C₂ regulators such as ClpP, RflP (previously known as YdiV), FliT and FliZ on the two complexes suggest that these two species have adapted in how they perceive FlhD₄C₂. We argue that these phenotypic differences arise from adaptations *E. coli* and *S. enterica* have made during evolution to expand or modify cellular function with respect to movement within specific environmental niches. #### Results Orthologous flhDC from $E.\ coli$ can functionally complement flhDC in $S.\ enterica$. Given the similarities between the flagellar systems in $S.\ enterica$ and $E.\ coli$, we sought to determine whether the $FlhD_4C_2$ master regulator is functionally equivalent in these two species of bacteria. To test this hypothesis, we replaced the flhDC genes in $S.\ enterica\ (flhDC_{SE})$ with the flhDC genes from $E.\ coli\ (flhDC_{EC})$. The reason that we performed these experiments in $S.\ enterica\ rather$ than $E.\ coli\ was$ that the flagellar system is better characterized in the former, particularly with regards to transcriptional regulation. To avoid plasmid associated artefacts associated with the ectopic expression of flhDC, we replaced the entire $S.\ enterica\ flhDC$ operon with the flhDC operon from $E.\ coli\$ at the native chromosomal locus (Figure S2). We first tested whether $flhDC_{EC}$ was motile as determined using soft-agar motility plates. As shown in Fig. 1A and B, these strains formed rings similar to the wild type. These results demonstrate that $flhDC_{EC}$ is functional in S. enterica. However, motility plates measure both motility and chemotaxis and do not provide any insights regarding possibly changes in the number of flagella per cell. To determine the impact $flhDC_{EC}$ had upon flagellar numbers we used a FliM-GFP fusion as a proxy for flagellar numbers (Fig. 1C). When this fluorescent protein fusion is expressed in cells, it forms spots associated with nascent C-rings that loosely correlate with the number of flagella $^{12-14}$. By counting the number of spots per cell, we can determine the number of flagella made per cell. As shown in Fig. 1C, $flhDC_{EC}$ did not change flagellar numbers as compared to the wild type. These results demonstrate $flhDC_{EC}$ induces flagellar gene expression at similar levels as the wild type. flhDC requires a specific transcription rate to maintain optimal flagellar numbers. The flagellar network in S. enterica contains a number of feedback loops to ensure that the cells regulate the number of flagella produced⁴. One possibility is that these feedback loops mask any differences in FlhD₄C_{2EC} activity. To test this hypothesis, we replaced the native P_{flhD} promoter with the tetracycline-inducible $P_{tetA}/_{tetR}$ promoters. We then measured flagellar gene expression using a luciferase reporter system¹⁵. In this case, a consistent and significant change (e.g at 10 ng for P_{flgA} ANOVA P = 0.0008) in flagellar gene expression was observed when comparing activity across all strains tested (Fig. 2A and B). Maximal expression of P_{flgA} and P_{fliC} , chosen to reflect flagellar gene expression at different stages of flagellar assembly⁵, for both complexes was observed between 10 and 25 ng/ml of anhydrotetracycline, when flhDC transcription was from P_{tetA} (Fig. 2A and B). In contrast, P_{tetR} , the weaker of the two tetracycline inducible promoters, reached a maximal output between 50 to 100 ng/ml anhydrotetracycline. When comparing P_{tetA} and P_{tetR} activity around the transition points in each experiment, for example 10 ng anhydrotetracycline for P_{flgA} , the difference between P_{tetA} and P_{tetR} expression was significant (see Fig. 2 legend for P_{values}). However, the observed differences between FlhD₄C_{2EC} to FlhD₄C_{2EC} for either P_{tetA} or P_{tetR} expression were not significant (e.g. at 10 ng for P_{flgA} via P_{fletA} expression ANOVA P = 0.186). We also measured the number of FliM-GFP foci at different anhydrotetracycline concentrations. P_{tetR} ::flhDC expression generated on average of approximately two FliM-foci per cell at 25 ng/ml of anhydrotetracycline for both FlhD $_4$ C $_2$ complexes (Fig. 2C). In contrast, 5 ng/ml induction of the P_{tetA} ::flhDC $_{EC}$ strain was sufficient to generate typical FliM-foci numbers (approx. 8 flagellar foci per cell). These data reflect the statistical significance of the expression data where a marked difference between P_{tetA} and P_{tetR} expression was observed (Fig. 2A and B). Even with the strong decrease in average foci per cell at these levels of induction for P_{tetR} , the number of basal bodies observed is sufficient to allow motility at comparable levels in the motility agar assay (Figure S3). Replacement of flhC but not flhD in S. enterica with the *E. coli* orthologs affects motility. The hetero-oligomeric regulator $FlhD_4C_2$ is unusual in bacteria as the majority of transcriptional regulators are believed to be homo-oligomeric complexes. To determine the relative contributions of the two subunits, we **Figure 1.** (**A**) Motility of $flhDC_{ST}$ and $flhDC_{EC}$ driven by P_{flhDC} . (**B**) Quantification of swarms produced in motility agar after 6 to 8 hours incubation. Error bars indicate calculated standard deviations. (**C**) Percentage frequency of FliM-GFP foci for $flhDC_{EC}$ compared to *S. enterica* with flhDC under the control of P_{flhDC} . Colors of bars in the graph correspond to the source of flhDC as shown in (**B**). individually replaced the flhC or flhD genes from S. enterica with their ortholog from E. coli (Figure S2). When we tested the two strains using motility plates, we found that motility was inhibited in the strain where $flhC_{EC}$ replaced the native S. enterica flhC (Fig. 3A; blue bars), with an 88% reduction in swarm diameter when compared to WT S. enterica. The introduction of $flhD_{EC}$ compared to $flhDC_{EC}$ or $flhDC_{SE}$ produced swarms of a comparable size (Fig. 3A; blue bars). Using the dose-dependent inducible P_{tetA} promoter¹⁶ we observed that P_{tetA} expression of $flhC_{EC}$ led to reduced P_{flgA} transcription and strongly reduced P_{fliC} transcription (Fig. 4). Strains expressing $flhD_{EC}$ in S. enterica showed a mild increase in P_{flgA} gene expression and a similar response for P_{fliC} although these changes were not significant (see Fig. 4 for P values). These data suggest that the combination of $FlhD_{SE}$ and $FlhC_{EC}$ generates an inefficient $FlhD_4C_2$ complex, resulting in reduced motility. Orthologous FlhC and FlhD interaction is species specific and a key determinant of promoter recognition by the FlhD₄C₂ complex. The results above demonstrate that $flhC_{EC}$ is not functionally identical to $flhC_{ST}$. One possibility is that that FlhC_{EC} is impaired in FlhD₄C₂ for DNA-binding. Alternatively, the stability of the FlhD₄C₂ complex is reduced in the $flhC_{EC}$ strain, leading to reduced FlhD₄C₂ activity. To test these hypotheses, we purified all combinations of the FlhD₄C₂ complex using affinity (Ni+ and heparin) chromatography (Fig. 5A). In each complex, FlhD was tagged with a carboxy-terminal hexa-histidine to facilitate affinity purification. Such expression constructs have previously been used successfully to purify the FlhD₄C₂ complex ^{17,18}. Using either Ni+ affinity or heparin purification, we observed complete complex retrieval for three combinations (Fig. 5A). FlhC recovery was less efficient in the FlhD_{SE}/FlhC_{EC} complex. In contrast, no FlhD_{SE}/FlhC_{EC} complex was recovered via Heparin purification, used to mimic DNA during protein purification of DNA-binding proteins (Fig. 5A). This suggests that the FlhD_{SE}/FlhC_{EC} complex is less stable, resulting on a lower yield of complex retrieval. We next used the EMSA assays to test all four protein complexes for their ability to bind the S. enterica P_{flgAB} promoter region. Quantification of the DNA shifts showed that complexes containing the orthologous $FlhC_{EC}$ reduced the P_{flgAB} promoter binding profile, compared to $FlhC_{SE}$ complexes (Fig. 5B). This difference is exemplified when calculating the SLOPE (an excel function) of each data set. For $FlhDC_{SE}$ and $FlhD_{EC}FlhC_{SE}$ the slopes were -906 and -784 respectively. In comparison $FlhDC_{EC}$ and $FlhD_{SE}FlhC_{EC}$ were much shallower at -1570 and -1116 respectively. This is consistent with FlhC being the DNA binding subunit of the complex and the variation **Figure 2.** Titration of P_{tetA} ::flhDC_{ST/EC} and P_{tetR} ::flhDC_{ST/EC} activity suggests a given rate of transcription drives optimal flagellar assembly. (**A**) Activity of P_{flgA} in response to P_{tetA} or P_{tetR} transcription of flhDC from S. enterica (S.e.) or E. coli (E.c.). Data sets that exhibit statistical significance at P < 0.03 are shown with '*'. Using 10 ng anhydrotetracycline as an example, due to this being where $FlhD_4C_{2SE}$ reaches maximal activity via P_{tetA} expression, the following comparisons are significant: S.e. P_{tetA} v P_{tetR} (P = 0.008) E.c. P_{tetA} v P_{tetR} (P = 0.009), while S.e. P_{tetA} v E.c. P_{tetA} is not (P = 0.186). Error bars show the standard error of the mean. (**B**) Activity of P_{fliC} in response to P_{tetA} or P_{tetR} transcription of flhDC. As in (A) the '*' identifies data sets that exhibit ANOVA statistical significance at P < 0.005. In agreement with P_{flgA} activity P_{tetA} v P_{tetR} ANOVA comparisions were significant for 5 to 25 ng anhydrotetracycline (e.g. at 10 ng S.e.: P = 0.012; E.c.: P = 0.002) while S.e. P_{tetA} v E.c. P_{tetA} or P_{tetA} or P_{tetR} transcription of flhDC. In agreement with the statistical analysis FliM-Foci profiles reflect the statistical significance associated with the expression data shown in (**A**) and (**B**). All data represents the analysis of gene expression or FliM-Foci from 3 independent repeats. FliM-Foci data is based on P = 0.000 cells for each data point. The colours of lines reflect the strains used in Figs 4, 5 and 6, for example in these figures, when graphs are used, S.e. flhDC is represented as gray and its E.c. flhDC replacement as light blue. in $FlhD_4C_2$ activated promoter-binding sites between *S. enterica* and *E. coli*¹⁹. Therefore, these results suggest that FlhC is a key determinant of DNA binding ability. Furthermore, the reduction in $FlhC_{EC}$ motility and flagellar gene expression in *S. enterica* is a result of the $FlhD_{SE}/FlhC_{EC}$ complex being unstable, ultimately reducing the cellular concentration of the $FlhD_4C_2$ complex. FlhD₄C_{2EC} responds to proteolytic regulation. S. enterica and E. coli both regulate the FlhD₄C₂ complex through ClpXP-mediated proteolytic degradation. Proteolytic degradation of FlhD₄C₂ plays a fundamental role in facilitating rapid responses to environmental changes that require motility^{20,21}. The FlhD₄C₂ complex has a very short half-life of approximately 2–3 minutes²². Proteolytic degradation of FlhD and FlhC is regulated in E. coli and S. enterica by RflP (previously known as YdiV)²³. However, rflP is not expressed under standard laboratory conditions in model E. coli strains, suggesting that ClpXP activity is modulated in a species-specific manner⁷. Previous work has shown that RflP delivers FlhD₄C₂ complexes to ClpXP for degradation 24 . We have assessed the impact on motility for $\Delta clpP$ and $\Delta rflP$ mutations (Fig. 3). The $\Delta clpP$ and $\Delta rflP$ mutants exhibited improved motility and flagellar gene expression, including the FlhD_{SE}/FlhC_{EC} strain (Fig. 3A and B). These results suggest that proteolytic degradation mechanism of FlhD and FlhC, and its regulation, is common to *E. coli* and *S. enterica*. To complement the motility assays, we investigated how $\Delta clpP$ and $\Delta rflP$ mutations impact the number of FliM-foci in cell. Both $\Delta clpP$ and $\Delta rflP$ mutants showed an increased number of FliM-foci compared to the wild **Figure 3.** Motility phenotypes and gene expression of $flhDC_{STP}$ $flhDC_{EC}$, $flhD_{EC}$ and $flhC_{EC}$ strains in the absence of known $FlhD_4C_2$ regulators. (**A**) Quantification of n=3 swarms per strain produced in motility agar after 6 to 8 hours incubation at 37 °C. Error bars indicate calculated standard deviations. (**B**) Relative activity of P_{fliC} in all strains as a percent of the maximal activity observed in $flhD_{EC} \Delta r flP$. type (Fig. 6A–C). For $flhC_{EC}$ strain, FliM-foci were observed in 13% of the population where individual cells exhibited just one or two foci. However, the $\Delta clpP$ or $\Delta rflP$ mutants increased the flagellated population of the $flhC_{EC}$ strains to 51 and 46% respectively, albeit with the majority still possessing only a single FliM focus (Fig. 6 B and C). **FliT and FliZ regulation of FlhD**₄**C**₂ **complexes.** FlhD₄**C**₂ activity has an additional level of regulation in *S. enterica* via the flagellar-specific regulators FliT and FliZ. FliT functions as an export chaperone for the filament cap protein, FliD, and is a regulator of FlhD₄**C**₂ activity ^{17,25}. FliT disrupts the FlhD₄**C**₂ complex but is unable to disrupt a FlhD₄**C**₂:DNA complex. Therefore, FliT modulates availability of FlhD₄**C**₂ complexes for promoter binding ¹⁷. In contrast, FliZ is a negative regulator of *rflP* expression ^{26,27} and modulates the activity of HilD ^{28,29} and thus increases the number of FlhD₄**C**₂ complexes in *S. enterica*. In motility assays of $\Delta fliT$ mutants, we observed a difference between the flhDC strains. Motility is increased in a $\Delta fliT$ mutant background in S. $enterica^{30}$ (and Fig. 3A). However, when $flhDC_{EC}$ and $flhD_{EC}$ replaced the native genes, a reduced swarm size was observed (Fig. 3A). Furthermore, quantification of P_{fliC} activity agreed with the motility profile for $\Delta fliT$ mutants, where $flhDC_{EC}$ and $flhD_{EC}$ containing strains had reduced promoter activity compared to wild type (Fig. 3B). This suggests that the $FlhD_4C_2$ complexes are being perceived differently by FliT in S. enterica. The results for $\Delta clpP$ and $\Delta rflP$ mutants suggest that this is not due to protein stability, as all complex combinations reacted in a comparable fashion (Figs 3 and 6). In contrast, the loss of *fliZ* resulted in a consistent reduction in motility, except for the *flhC*_{EC} strain. However, as the *flhC*_{EC} strain was already impaired in motility, it is possible that the resolution of the motility assay was unable to identify differences in the $\Delta fliZ$ mutant. Flagellar gene expression activity did, however, suggest a 2-fold drop in P_{fliC} expression in the *flhC*_{EC} $\Delta fliZ$ strain as compared to the otherwise wild-type (Fig. 3B). Analysis of FliM-foci distribution in $\Delta fliT$ mutant reinforced the observed discrimination of $flhDC_{EC}$ and $flhDE_{EC}$ gene replacements. Calculating the average foci per cell, S. enterica $\Delta fliT$ mutants showed an increased average number of foci per cell from 2.9 to 6.3, while the $flhD_{EC}$ ($fliT^+$: 3.4 versus $\Delta fliT$: 4.2) and $flhDC_{EC}$ replacements **Figure 4.** Titration of P_{tetA} ::flhDC for S. enterica, flhDC_{EC}, flhD_{EC} and flhC_{EC} suggests that flhC_{EC} exhibits low motility due reduced P_{flgA} activity and a strong reduction in P_{fliC} activity. Note that the legend indicates which gene has been replaced compared to S.e. flhDC. The colours of lines reflect the strains used in Figs 2, 5 and 6, for example in all figures S.e. flhDC is represented as gray and the E.c. flhDC replacement as light blue. Inducible expression was driven from the P_{tetA} promoter within the TetRA cassette of Tn10 as in Fig. 2. Data represents n=3 independent repeats of the expression assays. Data sets exhibiting ANOVA statistical significance of P<0.03 are indicated with a '*'. Error bars show the standard error of the mean. The P_{flgA} variation observed between S.e. flhDC, E.c. flhDC and E.c. flhD at 10 and 25 ng was not significant (ANOVA P=0.64 and 0.33 respectively). In agreement for P_{fliC} data S.e. flhDC, E.c. flhDC and E.c. flhD exhibits ANOVA P=0.64 and 0.36 and 25 ng: 0.07. All ANOVA statistical comparisons to E.c. flhC were significant P<0.04. ($fliT^+$: 3.6 versus $\Delta fliT$: 2.7) exhibited no significant changes (Fig. 7A). Interestingly, in a $\Delta fliZ$ mutant background, the FliM-foci analysis was able to differentiate $flhDC_{EC}$ and $flhD_{EC}$ from the native S. $enterica\ flhDC$ strain. Both replacements exhibited an increase in the average foci compared to S. $enterica\ \Delta fliZ$ (Fig. 7A). These data suggest that there is a fundamental difference in how the FlhD $_4$ C $_2$ complexes in E. coli and S. enterica respond to, at least, FliT regulation. There are two explanations for this: a) the E. coli combinations are being regulated via an unidentified mechanism in S. enterica or b) that they are insensitive to FliT regulation. Both arguments predict that in the species E. coli, FlhD $_4$ C $_2$ may respond differently to FliT regulation. Comparing the species, not gene replacement strains, S. enterica and E. coli does indeed identify a difference in the response to a $\Delta fliT$ mutant. While a $\Delta fliT$ mutant in S. enterica leads to a consistent increase in FliM-foci, no significant difference is noted for an E. coli $\Delta fliT$ mutant compared to E. coli wild type (Fig. 7B). This suggests that the regulatory impact of FliT is very different in these two flagellar systems and the role FliT plays in S. enterica is potentially adaptive and species specific. #### Discussion Two model flagellar systems that form the foundation of the flagellar field are those from the enteric species E. coli and S. enterica. These two systems have led to key discoveries in relation to many aspects of flagellar structure, type 3 secretion, flagellar cell biology and the regulation of flagellar assembly. Textbook explanations suggest that most flagellar systems are being activated, regulated and built according to the models for E. coli and S. enterica. Modifications of transcriptional regulatory circuits contribute to the phenotypic diversity we see in closely related gene sets and we are only now able to investigate this in depth due to the tools available. Here we have taken a simple step and asked how do orthologous $FlhD_4C_2$ complexes function in the closely related species E. coli and S. enterica? At the onset of our work it was known that $FlhD_4C_2$ from *E. coli* could sustain motility in *S. enterica*¹¹. Our work was focussed on understanding and defining the species-specific differences in the regulon of two orthologous genes. Here we took advantage of the well-defined flagellar assembly tools to measure outputs such as, motility, flagellar assembly per cell and flagellar gene expression. Bioinformatic analysis identifies only an 8 and 6% identity difference between FlhD and FlhC in *E. coli* and *S. enterica* respectively, suggesting that these proteins function in an analogous fashion. It is well established that related taxa usually rely on orthologous regulators to coordinate response to a given signal¹⁰. The fine detail of the differences in the $FlhD_4C_2$ complexes only became apparent when we began to focus on their effect on flagellar gene expression and flagellar assembly. Biochemical analysis of isolated complexes showed that $FlhC_{EC}$ had weaker DNA binding ability to the P_{flgAB} promoter region from *S. enterica*, consistent with previous investigations into $FlhD_4C_2$ DNA binding activity¹⁹. The isolation of $FlhD_4C_2$ complexes from our strains suggested that a key aspect of the phenotypes we observed, was the stability of the complexes formed. With respect to flhDC transcription we show a discrepancy in flagellar numbers defined by FliM-foci when using P_{tetA}/P_{tetR} : flhDC expression. This was somewhat surprising as all constructs exhibited good swarming ability on motility agar plates (Figure S3). Original studies on the regulation of P_{tetA}/P_{tetR} from Tn10 have shown that these two promoters have differing activities but both respond to TetR regulation. We show that even though **Figure 5.** The FlhD_{ST}FlhC_{EC} complex is an active but unstable complex. (**A**) Protein gel showing purified complexes with either HIS₆ or Heparin based purification protocols. The nature of the FlhDC complex allows isolation of both proteins in these assays. Arrows indicate the FlhC and FlhD bands. The image shown is the complete gel down to the leading edge of the loading buffer. The unprocessed raw image is shown in Figure S4. (**B**) Quantification of the unbound DNA during EMSA to define the binding ability of the complex combinations compared to *S. enterica* FlhD₄C₂. The protein complexes used in these assays were isolated via the HIS₆ protocol as indicated in A by the corresponding coloured symbols that the act as the key for (B). All colours reflect the same complex associated with data shown in Figs 2, 4 and 6 for continuity, for example FlhDC_{SE} is gray. Error bars show the standard error of the mean. See text for values of the calculated slopes using the excel built-in function SLOPE to highlight the impact of FlhC_{EC} in each isolated complex. maximal activity of P_{figA} and P_{fiiC} can reach 40–50% of P_{tetA} ::flhDC expression for P_{tetR} strains, this results in an average of 2 flagella per cell. This suggests that even though the majority of the literature states that E. coli and S. enterica produce between 4 and 8 flagella per cell, only 1 or 2 per cell is needed for an optimal output of the system with respect to motility agar assays. This conclusion correlates with the observation that swimming speed does not depend on flagella numbers in E. $coli^{31}$. It has been shown that FliT interacts with FlhC and that in *S. enterica* the output of this circuit is to destabilize $FlhD_4C_2$ complexes that are not bound to DNA. Our data suggests that this level of regulation does not impact *E. coli* FlhC. The nature of the adaptability needed by the favourable conditions to drive motility in *E. coli* may have led to the FliT regulatory input becoming less critical. Indeed, the specific amino acid substitutions between $FlhC_{EC}$ and $FlhC_{ST}$ merits further investigation, outside the focus of this study, to determine whether this can be defined by a single substitution or requires the combination of the changes observed between these two proteins (Figure S1). Similarly, the impact of FliZ regulation becomes apparent for $FlhD_{EC}$ containing complexes when we assess flagellar numbers. FliZ regulates the transcription of rflP in *S. enterica*²⁷. It is plausible that the impact in changing rflP regulation is the source of this differentiation, especially as RflP is proposed to interact with $FlhD_{SE}$. Furthermore, we know that rflP is not expressed in model *E. coli* strains, strengthening the argument that $FlhD_{EC}$ has adapted to the absence of RflP or vice versa $FlhD_{SE}$ to RflP. However, regulation of flagellar gene expression in *S. enterica* via FliZ must take in to consideration other regulators such as FliD and its impact on flhDC gene expression FliD and FliD must take in to consideration other regulators such as FliD and its impact on FlhDC gene expression FliD must take in to consideration other regulators such as FliD and its impact on FlhDC gene expression FliD must take in to consideration other regulators such as FliD and its impact on FlhDC gene expression FlhDC gene expression FlhDC gene expression FlhDC gene expression FlhDC must take FlhDC the such that FlhDC gene expression FlhDC gene expression FlhDC gene expression FlhDC gene FlhDC and FlhDC gene FlhDC is FlhDC and Flh Importantly our analysis shows that even though these two systems are genetically similar, investigation of $\mathrm{FlhD_4C_2}$ activity identifies subtle but key differences into how the $\mathrm{FlhD_4C_2}$ complex is modulated in two closely related species. We argue that this is a valid example of the caution needed in the age of synthetic biology to exploit heterologous systems in alternative species or chassis'. Our data shows that even systems showing significant synteny may not behave in exactly the same manner and due diligence is required in making assumptions based on heterologous expression. **Figure 6.** Impact of protein stability regulators of $FlhD_4C_2$ on flagellar numbers as defined by FliM-foci. Quantification of FliM-foci was performed using the semi-automatic protocols defined with in Microbetracker. (**A**) Wild Type foci distribution; (**B**) $\Delta clpP$; (**C**) $\Delta rflP$. All line and symbol colours reflect the same complex associated with data shown in Figs 2, 4 and 5 for continuity, for example *S. enterica* ($FlhDC_{SE}$) is gray. #### **Materials and Methods** **Bacterial Strains and Growth conditions.** *S. enterica* and *E. coli* strains used in this study have been previously described elsewhere^{12,15,17,30}. This study used *S. enterica* serovar Typhimurium strain LT2 as the chassis for all experiments. *E. coli* genetic material was derived from MG1655. All strains were grown at either 30 °C or 37 °C in Luria Bertani Broth (LB) either on 1.5% agar plates or shaken in liquid cultures at 160 rpm¹⁷. Antibiotics used in this study have been described elsewhere³². Motility assays used motility agar¹⁷ incubated at 37 °C for 6 to 8 hours. Motility swarms were quantified using images captured on a standard gel doc system with a ruler in the field of view and quantified using ImageJ to measure the vertical and horizontal diameter using the average as the swarm size. All motility assays were performed in triplicate using single batches of motility agar. **Figure 7.** FliT and FliZ regulation reflects when FlhC_{EC} or FlhD_{EC} are present. (**A**) FliM-Foci quantification is consistent with the observed motility phenotype of $\Delta fliT$ mutants. For $\Delta fliZ$ FliM-foci numbers discriminate between the source of FlhD, FlhD_{SE} exhibits a consistent drop in foci while FlhD_{EC} containing strains show comparable foci averages. (**B**) Testing the hypothesis that $\Delta fliT$ mutants respond differently in *E. coli* compared to *S. enterica*. Note: this experiment in (**B**) uses the species *E. coli* and *S. enterica* not engineered replacements. **Genetic Manipulations.** For the replacement of flhDC coding sequences the modified lambda red recombination system described by Blank et al. (2011) was used³³. Deletion of clpP, rflP, fliT and fliZ was performed using the pKD system described by Datsenko and Wanner (2000)³⁴. P_{tetA}/P_{tetR} replacements of the P_{flhDC} region was also performed using Datsenko and Wanner (2000) with the template being $Tn10dTc^{35}$. For Blank et al. (2011) replacement experiments we used autoclaved chlortetracycline instead of anhydrotetracycline as described for the preparation of Tetracycline sensitive plates³⁶. All other gene replacements were performed as previously described¹⁷. All primers used for these genetic manipulations are available on request. **Quantification of flagellar gene expression.** Flagellar gene expression assays were performed using the plasmids pRG39::cat (P_{fliC}) and pRG52::cat (P_{fligA})¹⁵. Both plasmids were transformed into strains using electroporation. Gene expression was quantified as described previously and analysis was based on a minimum of n=3 repeats for each strain tested¹⁵. **Quantification of FliM-GFP foci.** FliM-GFP foci were quantified using Microbetracker on images captured using a Nikon Ti inverted microscope using filters and exposure times described previously¹⁴. Strains were grown to an OD600 of 0.5 to 0.6 and cells immobilised using a 1% agarose pad containing 10% LB^{14,17}. For each strain a minimum of 5 fields of view were captured from 3 independent repeats. This allowed analysis of approximately 400–1000 cells per strain. For the comparison of FliM foci in *E. coli* Δ *fliT* to *S. enterica* Δ *fliT* shown in Fig. 7B the chemostat growth system described by Sim *et al.* (2017) was used. For this experiment the growth rate of both strains was similar to batch culture in LB at 37 °C where the media used was a Minimal E base salts, a minimal media previously described ^{14,17}, supplemented with 0.1% Yeast extract and 0.2% glucose. **Purification of FlhD**₄ C_2 **complexes.** Purification of proteins complexes was based on previously described methods¹⁷. Wild type FlhD ₄ C_{2SE} was purified using pPA158. The other 3 complexes were purified from plasmids generated using the New England Biolabs NEBuilder DNA Assembly kit on the backbone of pPA158. The *E. coli* strain BL21 was used for all protein induction experiments prior to protein purification using either a pre-equilibrated 5 ml His-trap column or a 5 ml heparin column (GE Healthcare). Proteins were visualised using Tricine-based SDS polyacrylamide gel electrophoresis and standard commassie blue staining¹⁷. **Electrophoretic mobility shift assay (EMSA).** All EMSA assays were performed using Ni++ (his-trap) purified proteins as this allowed analysis of all four complexes (Fig. 5A). Buffer exchange from elution buffer to a 100 mM Tris-HCl, 300 mM NaCl 1 mM DTT (pH 7.9) buffer was performed through 10 cycles of protein concentration in VivaSpin columns with 20 ml buffer reduced to 5 ml per round of centrifugation at 4500 rpm. A protein concentration range of 100 to 700 nM was used with 80 ng/ml of a PCR product containing P_{figAB} from *S. enterica*. After incubation bound and unbound DNA were resolved using 5% acrylamide gels made with 1x TBE buffer. Quantification of gel images was performed using ImageJ. #### References - 1. Duan, Q., Zhou, M., Zhu, L. & Zhu, G. Flagella and bacterial pathogenicity. J. Basic Microbiol. 53, 1-8 (2013). - 2. Minamino, T., Imada, K. & Namba, K. Mechanisms of type III protein export for bacterial flagellar assembly. *Mol Biosyst* 4, 1105–1115 (2008). - 3. Chevance, F. F. V. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Micro 6, 455-465 (2008). - 4. Aldridge, P. & Hughes, K. T. Regulation of flagellar assembly. Curr Opin Microbiol 5, 160-165 (2002). - 5. Chilcott, G. S. & Hughes, K. T. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and *Escherichia coli. Microbiol Mol Biol Rev* **64**, 694–708 (2000). - Minamino, T. & Namba, K. Self-assembly and type III protein export of the bacterial flagellum. J. Mol. Microbiol. Biotechnol. 7, 5–17 (2004). - Wada, T., Hatamoto, Y. & Kutsukake, K. Functional and expressional analyses of the anti-FlhD4C2 factor gene ydiV in Escherichia coli. Microbiology 158, 1533–1542 (2012). - 8. Soutourina, O. A. & Bertin, P. N. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27, 505–523 (2003). - 9. Mouslim, C. & Hughes, K. T. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. *PLoS Pathog* **10**, e1003987 (2014). - 10. Perez, J. C. & Groisman, E. A. Evolution of transcriptional regulatory circuits in bacteria. Cell 138, 233-244 (2009). - 11. Kutsukake, K., Iino, T., Komeda, Y. & Yamaguchi, S. Functional homology of fla genes between Salmonella typhimurium and Escherichia coli. Mol. Gen. Genet. 178, 59–67 (1980). - 12. Aldridge, P., Karlinsey, J. E., Becker, E., Chevance, F. F. V. & Hughes, K. T. Flk prevents premature secretion of the anti-sigma factor FlgM into the periplasm. *Mol Microbiol* **60**, 630–643 (2006). - Delalez, N. J. et al. Signal-dependent turnover of the bacterial flagellar switch protein Flim. Proceedings of the National Academy of Sciences 107, 11347–11351 (2010). - 14. Sim, M. et al. Growth rate control of flagellar assembly in Escherichia coli strain RP437. Sci Rep 7, 41189 (2017). - Brown, J. D. et al. The rate of protein secretion dictates the temporal dynamics of flagellar gene expression. Mol Microbiol 70, 924–937 (2008). - Bertrand, K. P., Postle, K., Wray, L. V. & Reznikoff, W. S. Construction of a single-copy promoter vector and its use in analysis of regulation of the transposon Tn10 tetracycline resistance determinant. J Bacteriol 158, 910–919 (1984). - 17. Aldridge, C. et al. The interaction dynamics of a negative feedback loop regulates flagellar number in Salmonella enterica serovar Typhimurium. Mol Microbiol 78, 1416–1430 (2010). - Wang, S., Fleming, R. T., Westbrook, E. M., Matsumura, P. & McKay, D. B. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. Journal of Molecular Biology 355, 798–808 (2006). - 19. Stafford, G. P., Ogi, T. & Hughes, C. Binding and transcriptional activation of non-flagellar genes by the *Escherichia coli* flagellar master regulator FlhD2C2. *Microbiology (Reading, Engl)* 151, 1779–1788 (2005). - 20. Kitagawa, R., Takaya, A. & Yamamoto, T. Dual regulatory pathways of flagellar gene expression by ClpXP protease in enterohaemorrhagic *Escherichia coli. Microbiology* 157, 3094–3103 (2011). - 21. Tomoyasu, T. *et al.* The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. *J Bacteriol* **184**, 645–653 (2002). - 22. Claret, L. & Hughes, C. Rapid Turnover of FlhD and FlhC, the Flagellar Regulon Transcriptional Activator Proteins, during Proteus Swarming. J Bacteriol 182, 833–836 (2000). - Wada, T. et al. EAL domain protein YdiV acts as an anti-FlhD4C2 factor responsible for nutritional control of the flagellar regulon in Salmonella enterica Serovar Typhimurium. J Bacteriol 193, 1600–1611 (2011). - 24. Takaya, A. et al. YdiV: a dual function protein that targets FlhDC for ClpXP-dependent degradation by promoting release of DNA-bound FlhDC complex. Mol Microbiol 83, 1268–1284 (2012). - Bennett, J. C., Thomas, J., Fraser, G. M. & Hughes, C. Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol Microbiol 39, 781–791 (2001). - Saini, S., Brown, J. D., Aldridge, P. D. & Rao, C. V. FliZ Is a posttranslational activator of FlhD4C2-dependent flagellar gene expression. J Bacteriol 190, 4979–4988 (2008). - 27. Wada, T., Tanabe, Y. & Kutsukake, K. FliZ Acts as a Repressor of the ydiV Gene, Which Encodes an Anti-FlhD4C2 Factor of the Flagellar Regulon in Salmonella enterica Serovar Typhimurium. *J Bacteriol* 193, 5191–5198 (2011). - Chubiz, J. E. C., Golubeva, Y. A., Lin, D., Miller, L. D. & Slauch, J. M. FliZ regulates expression of the Salmonella pathogenicity island 1 invasion locus by controlling HilD protein activity in Salmonella enterica serovar typhimurium. J Bacteriol 192, 6261–6270 (2010). - 29. Singer, H. M., Kuhne, C., Deditius, J. A., Hughes, K. T. & Erhardt, M. The Salmonella Spi1 virulence regulatory protein HilD directly activates transcription of the flagellar master operon flhDC. *J Bacteriol*, https://doi.org/10.1128/JB.01438-13 (2014). - Aldridge, P., Karlinsey, J. & Hughes, K. T. The type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL. Mol Microbiol 49, 1333–1345 (2003). - 31. Mears, P. J., Koirala, S., Rao, C. V., Golding, I. & Chemla, Y. R. Escherichia coli swimming is robust against variations in flagellar number. Elife 3, e01916 (2014). - 32. Bonifield, H. R. & Hughes, K. T. Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. *J Bacteriol* **185**, 3567–3574 (2003). - Blank, K., Hensel, M. & Gerlach, R. G. Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome. *PLoS ONE* 6, e15763 (2011). Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl* - Acad Sci USA 97, 6640–6645 (2000). 35. Rappleye, C. A. & Roth, J. R. A Tn10 derivative (T-POP) for isolation of insertions with conditional (tetracycline-dependent) - phenotypes. *J Bacteriol* **179**, 5827–5834 (1997). 36. Maloy, S. R. & Nunn, W. D. Selection for loss of tetracycline resistance by *Escherichia coli*. *J Bacteriol* **145**, 1110–1111 (1981). ### **Acknowledgements** PDA would like to recognize the internal financial support of ICAMB during this study. The stipend and research costs for the PhD of AA was provided by The Ministry of Higher Education and Scientific Research (Iraq). We would like to thank the financial support of the Newcastle University Faculty of Medicine for providing the John William Luccok and Ernest Jeffcock Research PhD Studentship to MS for this study. PAH would like to acknowledge the support of iUK/BBSRC (grant: BB/N023544/1), NERC (grant: NE/M001415/1), the University of Strathclyde and the Microbiology Society for funding. We would also like to thank all lab members for feedback on the project during the experimental and writing phases. ## **Author Contributions** A.A., M.S., P.A.H., C.S.G., C.V.R. and P.D.A. were involved in designing of experiments; A.A. and P.D.A. conducted the experiments; A.A., C.V.R. and P.D.A. analysed the data; and A.A., M.S., P.A.H., C.S.G., C.V.R. and P.D.A. contributed to the preparation of the manuscript. # **Additional Information** Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-35005-2. **Competing Interests:** The authors declare no competing interests. **Publisher's note:** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. © The Author(s) 2018