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Ophthalmic Manifestations of Paediatric Systemic Diseases

Introduction
Usher syndrome encompasses a group of inher­
ited disorders characterised by dual sensory 
impairment of the auditory and visual systems, 
with a variable presentation of vestibular dysfunc­
tion in a proportion of cases. It is the most com­
mon cause of combined sight and hearing loss, 
accounting for more than half of deaf–blindness 
cases.1,2 It has an estimated prevalence of between 
4 and 17 in 100 000 people worldwide.2,3 Further­
more, it has been estimated to represent 5% of all 
congenital deafness and 18% of all retinitis pig­
mentosa (RP) cases.2,4 Usher syndrome is both 
clinically and genetically heterogeneous and is 
divided into three distinct clinical subtypes, asso­
ciated with a number of genetic loci. The Usher 
genes encode a variety of proteins that are 
expressed in the inner ear and retina where they 
perform essential functions in sensory hair cell 
development and function, and photoreceptor 
maintenance. While many promising treatments 

are under investigation, there is no approved 
treatment for this disease to date.

Clinical characteristics
Usher syndrome involves a combination of bilat­
eral sensorineural hearing loss with progressive 
retinal degeneration in the form of RP. It is cat­
egorised into three major clinical subtypes 
according to severity and onset of hearing loss 
and whether vestibular dysfunction is present5 
(Table 1). However, there is clinical variability 
within each Usher subtype, with overlapping and 
atypical presentations described.

Usher syndrome type 1 (Usher 1) is the most severe 
subtype in which patients exhibit severe to pro­
found bilateral congenital sensorineural hearing 
loss (Figure 1), most frequently non-progressive, 
with vestibular areflexia. It accounts for approxi­
mately 25–44% of all Usher syndrome cases.11 
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Infants are detected through the newborn hearing 
screen (Figure 2), and where not undertaken/
available, the diagnosis is often suspected in 
infancy. Vestibular areflexia is reflected in delayed 
motor development and children usually do not 
walk independently before the age of 18 months. 
When older, they compensate for their vestibular 
areflexia using vision, until the onset of RP, 

although they often have higher accidental falls 
and difficulty in performing activities, which 
require balance, for example, riding a bicycle. 
Due to the profound nature of deafness, children 
with Usher 1 derive limited or no benefit from 
hearing aids and most patients with Usher 1 
would be sign language users if the hearing loss is 
not treated effectively. Timely use of cochlear 

Table 1.  Clinical features and genes associated with Usher syndrome types 1, 2 and 3.

Usher 
subtype

Causative genes Sensorineural 
hearing loss

Retinitis pigmentosa Vestibular function

Usher 1 MYO7A, USH1C, 
CDH23, PCDH15, 
USH1G, CIB2

Congenital, severe 
to profound

Prepubertal onset; 
average age of 
diagnosis in second 
decade; legal 
blindness in fourth 
decade

Vestibular hypofunction; 
motor development 
may be delayed; infants 
typically do not walk 
before 18 months of age

Usher 2 USH2A, ADGRV1, 
WHRN

Congenital, 
moderate to 
severe; high 
frequencies most 
affected

Onset in second 
decade; average 
age of diagnosis in 
third decade; legal 
blindness in sixth 
decade.

Normal vestibular 
function

Usher 3 CLRN1 Post-lingual onset, 
progressive, 
variable

Variable onset, 
typically in second 
decade

Variable; vestibular 
abnormalities in ~50% 
of patients, usually mild

Source: Data included from previous studies.6–10

Figure 1.  Audiograms of Usher syndrome type 1 and 2 patients. (a) Normal audiogram from a non-Usher 
individual. (b) Audiogram of a typical patient with Usher syndrome type 1 due to MYO7A mutation (homozygous 
c.4254del p.Asp1419fs) showing bilateral severe to profound sensorineural hearing loss (hearing loss in 
audiogram >95 dBHL). (c) Typical high frequency mild to severe sloping audiogram of an Usher syndrome  
type 2 patient (hearing loss in audiogram is 35–75 dBHL).
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implants can achieve oral communication and 
open set speech perception. An earlier age of 
implantation is correlated with improved out­
come.13,14 The standard approach is to offer bilat­
eral cochlear implants to Usher 1 patients within 
the first 2 years of life.

Usher syndrome type 2 (Usher 2) is the most 
common form of the disorder, representing over 
half of all cases.11 The sensorineural hearing loss 
is typically described as sloping, mild to moder­
ate in the low frequencies and severe to profound 
in the high frequencies (Figure 1).15 Hearing loss 
is congenital and infants are detected through the 
newborn hearing screen, however, if unavailable 
detection can be overlooked till the end of the 
first decade of life due to the high frequency 
configuration and degree of hearing loss.6 
Although thought to be non-progressive, there is 
evidence to indicate progression of hearing loss 
over the years, particularly in Usher type 2A.16–18 
Children derive benefit from conventional hear­
ing aids and often have close to normal speech 
acquisition. However, with progression of hear­
ing loss, cochlear implants are indicated. Up to 
10% of Usher type 2A patients had cochlear 
implants (mean age: 59 years),19 which increased 
speech intelligibility, quality of life and commu­
nication, with similar outcomes to a control 

group of adults with post-lingual hearing loss. 
Vestibular function is intact in Usher 2 patients 
and reflected in normal motor milestones. 
However, one study found vestibular abnormali­
ties in four out of five genetically confirmed Usher 
2 patients.20 Episodes of vertigo were reported by 
patients although clinical balance was normal, 
and the authors suggested that subclinical changes 
in the vestibular system should be looked for.

Usher syndrome type 3 (Usher 3) is rare in most 
populations, accounting for approximately 
2–4% of all cases, although it is particularly 
prevalent in Finland21 and among Ashkenazi 
Jewish people.22 The audiovestibular features 
are the most variable of the Usher subtypes. 
Hearing loss is of post-lingual onset and usually 
detected in the first decade of life, although 
onset can be delayed until adult life. It is typi­
cally of a progressive nature, with audiograms 
showing high frequencies more affected or a 
U-shaped configuration. Vestibular abnormali­
ties are present in approximately half of patients, 
although most report a normal age of independ­
ent walking.7 Hearing aids are of benefit early in 
the course of disease, but cochlear implants may 
be required with progressive hearing loss. 
Improved hearing and subjective benefit were 
demonstrated in Usher 3 patients with implants 

Figure 2.  Flowchart for investigation and treatment of bilateral profound sensorineural hearing loss.
Source: Adapted from the British Association of Audiovestibular Physicians (BAAP) guidelines.12
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(mean age at implantation: 41 years) compara­
ble with that observed in implanted patients 
without visual impairment.23

In all types of Usher syndrome, audiological 
findings are detected/present prior to ophthalmo­
logical signs and symptoms. Children and adults 
with Usher syndrome do not have dysmorphism, 
and the disorder is commonly mistaken for a 
non-syndromic isolated sensorineural hearing 
loss. They will often have the initial aetiologic 
investigations for hearing loss, which include 
cytomegalovirus (CMV) testing and magnetic 
resonance imaging (MRI) scan, genetic testing 
for GJB2 and mitochondrial m.1555A > G muta­
tions and electrocardiography (ECG) in some 
patients, which is expected to be normal.12,24 
Initial investigations for bilateral sensorineural 
hearing loss also include ophthalmological assess­
ment, which in the early years can be normal 
depending on the Usher subtype. Diagnosis of 
Usher 1 should be suspected in any infant with 
bilateral profound sensorineural hearing loss and 
delayed motor milestones, even if the initial oph­
thalmology screen is normal. Usher 2 should be 
considered in patients with typical sloping con­
figuration of hearing loss. Diagnosis of Usher 2 
or 3 is made after visual symptoms or signs are 
detected through routine examination or electro­
retinography (ERG). A meta-analysis of next-
generation sequencing (NGS) data in the United 
States indicates that 7.5% of patients with seem­
ingly ‘isolated deafness’ have mutations in the 
Usher genes and may be at high risk of develop­
ing RP.25 With the availability of NGS, Usher 
genes are included in the ‘deafness’ and ‘retinal’ 
gene panels to help with early genetic diagnosis.

Audiological rehabilitation in all forms of Usher 
syndrome is started soon after diagnosis by fitting 
of bilateral hearing aids. Hearing aid fitting in 
patients with Usher syndrome may need special 
considerations, especially with visual impair­
ment.19 The onset of RP has a significant impact 
on communication, as patients will have difficulty 
in lip reading and understanding gesture and sign, 
and on balance as visual compensation is compro­
mised. Patients with Usher syndrome and bilat­
eral vestibular areflexia should be advised about 
the risk of disorientation and potential drowning 
with underwater swimming, due to poor availabil­
ity of visual and proprioceptive inputs.26,27

RP develops in all three Usher subtypes but with 
variable onset; Usher 1 is most commonly 

pre-adolescent, with Usher 2 within the first two 
decades of life, and Usher 3 patients typically 
being post-pubertal.8,28 Visual prognosis also dif­
fers between the clinical types; Usher 1 patients 
generally show a more severe visual decline with 
age, reaching legal blindness on average 15 years 
earlier than patients with Usher 2.6,9 Typically, 
the first presenting symptom is night blindness 
(nyctalopia) with progressive visual field loss 
beginning in the mid-periphery caused by rod 
photoreceptor degeneration. It eventually pro­
gresses to involve cone photoreceptors, resulting 
in central and colour vision loss. Patients are 
often registered severely sight impaired but there 
can be significant intra- and interfamilial pheno­
typic variability. Fundus features include variable 
amounts of bone spicule pigmentation, retinal 
pigment epithelium (RPE) atrophy or depigmen­
tation, retinal arteriolar attenuation and optic disc 
pallor (Figures 3(a) and 4(a)). A significant pro­
portion of Usher patients may also develop cata­
racts and/or cystoid macular oedema.29

Retinal imaging using fundus autofluorescence 
shows a ring of hyperautofluorescence in the mac­
ula (Figures 3(b) and 4(b)), and spectral domain 
optical coherence tomography (SD-OCT) reveals 
loss of the outer retinal structure (Figures 3(c) and 
4(c)), sparing the fovea until late in disease ± cys­
toid macular oedema. A prospective study using 
optical coherence tomography angiography 
(OCTA) of patients with MYO7A and USH2A 
mutations showed reduced vessel density in the 
retinal circulation with changes in the superficial 
capillary plexus (SCP) and deep capillary plexus 
(DCP) in all patients compared with healthy age-
matched controls.30 However, peripheral defects 
were detected in the choriocapillaris (CC) earlier 
and more severely in MYO7A patients compared 
with the USH2A group. It was suggested that this 
is because the MYO7A protein (myosin VIIa) is 
mainly expressed in the RPE, thus affecting the 
CC directly. In the same study, patients were 
tested for macular sensitivity (MS) using microp­
erimetry with the Macular Integrity Assessment, 
and this detected decreased mesopic mean MS in 
all patients, especially in the periphery. Patients 
with MYO7A mutations had a slightly lower mean 
MS than patients with USH2A mutations; how­
ever, the differences were found not to be statisti­
cally significant (p = 0.66). Static and dynamic 
perimetry detects mid-peripheral visual field loss 
with progression to residual small central islands, 
with a small temporal peripheral field preservation 
in the most advanced stages of the disease. ERG 
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Figure 3.  Retinal imaging of a patient with MYO7A-
related Usher syndrome type 1. Images taken from 
a 34-year-old male with homozygous nonsense 
variants in MYO7A; c.2914C > T, p.(Arg972*). Best 
corrected LogMAR visual acuity was 0.24 in the 
right eye and 0.28 in the left eye. (a) Widefield 
colour imaging of the right fundus showing patchy 
RPE atrophy along the arcades with bone spicule 
pigmentation in the mid-periphery and peripapillary 
atrophy with arteriolar attenuation. In the temporal 
periphery, extensive chorioretinal atrophic 
patches are noted in this patient. (b) Widefield 
autofluorescence imaging of the right fundus showing 
dense hypoautofluorescence corresponding to RPE 
atrophy around the arcades extending into the mid-
periphery. A ring of hyperautofluorescence is seen at 
the macula with speckled loss centrally. (c) Spectral-
domain optical coherence tomography (SD-OCT) 
of the right eye showing loss of retinal lamination, 
cystoid macular oedema with intraretinal cystic 
changes and extensive loss of the ellipsoid zone.

Figure 4.  Retinal imaging of a patient with USH2A-
related Usher syndrome type 2. Images taken from 
a 58-year-old male with compound heterozygous 
variants in USH2A; c.2299delG, p.(Glu767Serfs*21) 
and c.100C > T, p.(Arg34*). Best corrected LogMAR 
visual acuity was 0.50 in the right eye and 0.30 in 
the left eye. (a) Widefield colour imaging of the right 
fundus showing scattered bone spicule pigmentation 
in the mid-periphery and areas of depigmentation 
with RPE atrophy. Preserved retinal island at the 
macula, arteriolar attenuation and a waxy pale disc. 
(b) Widefield autofluorescence imaging of the right 
fundus showing hyperfluorescence signal at the fovea 
with dense scalloped hypoautofluorescence around 
the macula, arcades and extending past the mid-
periphery corresponding with RPE atrophy.  
(c) Spectral-domain optical coherence tomography 
(SD-OCT) of the right eye showing retinal thinning 
and a small residual ellipsoid zone.

measurement can show reduction and delay of 
amplitudes in the early stages of the disease, and is 
a useful test to perform in an infant born with pro­
found deafness to determine the likelihood of 
underlying Usher 1, even before visual 

dysfunction is otherwise noted. Later, the full-
field ERG is often non-recordable.

Dual sensory clinics are now being established to 
improve the clinical pathways and experience of 
children with hearing and sight impairment. 
These clinics will provide access to the relevant 
multidisciplinary in one visit, hence reducing 
stress and the burden associated with numerous, 
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separate medical appointments. Children with 
Usher syndrome have been reported to develop 
mental and behavioural disorders, including 
autism, conduct disorder, schizophrenia and 
learning difficulty. This could be multifactorial, 
due to sensory deprivation, stress, difficulty in 
diagnosis and a possible unproven genetic asso­
ciation.31,32 Dual sensory clinics will promote 
faster accurate diagnosis through more extensive 
genetic testing and detection of visual symptoms 
and mental health issues at an earlier stage.

Genetics of Usher syndrome

Usher genes
All Usher syndrome types are inherited in an auto­
somal recessive manner. To date, at least 10 causa­
tive genes have been identified for the disease, which 
include six Usher 1 genes, three Usher 2 genes and 
one Usher 3 gene. Historically, traditional Sanger 
sequencing of all Usher gene exons was found to 
provide a genetic diagnosis for more than 80% of 
Usher families,33,34 but this is time-consuming and 
costly, particularly for large patient cohorts. 
Microarray-based testing provided ~33% detection 
for Usher patients but can only screen for known 
mutations.35,36 NGS, including whole exome and 
genome sequencing, is now the method of choice 
with high efficiency offering the advantage of detect­
ing a range of known and novel mutations, includ­
ing large genomic DNA rearrangements. Targeted 
exome gene panel testing can reach diagnostic rates 
of around 70–80% in Usher families.29,37–39

Currently, there are nine loci (USH1B-J) known 
to be involved in Usher 1. The genes identified for 
six of these loci are as follows: MYO7A (USH1B),40 
USH1C (USH1C),41,42 CDH23 (USH1D),43 
PCDH15 (USH1F),44 USH1G (USH1G),45 and 
CIB2 (USH1J).46 Of these genes, MYO7A is the 
most frequent cause of Usher 1, accounting for 
more than half of cases.34 The USH1E, USH1H 
and USH1K loci have been mapped to chromo­
somes 21q21, 15q22–23 and 10p11.21–q21.1, 
respectively,47–49 but the genes are yet to be identi­
fied. It is worth noting that CIB2 bi-allelic loss of 
function variants has been reported in patients 
with non-syndromic recessive hearing loss 
(DFNB48) but with no retinal symptoms.50

Three genes underlying Usher 2 have been identi­
fied as USH2A (USH2A),51 ADGRV1 (USH2C)52 
and WHRN (USH2D).53 USH2A mutations are 
the most common cause of Usher syndrome, 

accounting for around 80% of Usher 2 cases.34 In 
addition, PDZ domain-containing 7 (PDZD7) has 
been reported to act as a disease modifier and 
contributor to a digenic form of Usher 2.54

CLRN1 (or USH3A) is the only gene currently 
confirmed to cause Usher 3,55,56 with two preva­
lent mutations, p.(Tyr176*) and p.*Asn48Lys), 
accounting for most cases in Finnish and 
Ashkenazi Jewish patients, respectively.22,57 A 
homozygous missense variant in histidyl-tRNA 
synthetase (HARS) has also been reported in two 
patients with a phenotype compatible with Usher 
3 (sometimes referred to as USH3B).58

The Usher genes encode a number of structurally 
and functionally distinct proteins; these include 
an actin-binding motor protein (myosin VIIA, 
USH1B40), scaffolding proteins (harmonin, 
USH1C;41,42 sans, USH1G;45 whirlin, USH2D53), 
cell adhesion/transmembrane proteins (cadherin 
23, USH1D;43 protocadherin 15, USH1F;44 ush­
erin, USH2A;51,59 clarin-1, USH3A56), an adhe­
sion G-coupled receptor (ADGRV1, USH2C52) 
and a calcium- and integrin-binding protein 
(CIB2, USH1J46). Most are expressed as multiple 
splice and protein variants in a range of tis­
sues,59–64 but all of the Usher proteins are present 
in the inner ear and retina where most have been 
found to interact and form complexes that local­
ise to subcellular locations in the ciliated sensory 
neurons, that is, inner ear hair cells and retinal 
photoreceptors.65,66 Myosin VIIA is also an essen­
tial RPE protein,67–69 and evidence suggests that 
clarin-1 is restricted to the retinal Müller glia.70 
Various studies have indicated the involvement of 
Usher proteins in a range of processes, including 
cohesion, mechanotransduction, synaptic matu­
ration, and protein and organelle transport.

Genotype–phenotype correlations
The Usher genes show vast clinical heterogeneity 
and different mutations in most Usher genes have 
been linked to non-syndromic cases of autosomal 
recessive RP, or autosomal dominant or recessive 
sensorineural hearing loss (annotated as DFNA 
or DFNB).46,53,71–80 These include mutations in 
MYO7A, which have been associated with domi­
nant and recessive non-syndromic hearing loss 
(DFNA11 [OMIM #601317] and DFNB2 
[OMIM #600060], respectively).81,82 It has been 
suggested that mutations that allow some residual 
motor protein function, for example, in-frame 
deletion c.5146_5148delGAG p.(Glu1716del), 
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cause the milder non-syndromic phenotypes, 
whereas mutations associated with Usher 1, for 
example, c.1309G > A p.(Asp437Asn), have a 
more severe effect on protein function.83 A sepa­
rate study of 33 USH1B patients proposed that 
null MYO7A alleles, that is, those with stop muta­
tions within the motor domain coding region 
such as c.999T > C p.(Tyr333*), may cause 
milder visual dysfunction than missense variants 
owing to a lack of mutant protein contributing to 
disease pathology.10 Significant correlations have 
not been reported in other patient populations 
with MYO7A mutations.84 Mutations of MYO7A 
reported to cause DFNB2 are comparable with 
those causing Usher 1, leading to question 
whether this phenotype results from missed RP or 
whether there may be modifying factors which 
influence the phenotype.85 MYO7A mutations 
have also been reported to cause a phenotype of 
unilateral auditory neuropathy in a Chinese fam­
ily with Usher 186 and an Usher 2 phenotype,87 
expanding its phenotypic spectrum.

Among the other Usher 1 genes, there is evidence 
of a genotype–phenotype correlation in both 
CDH23 and PCDH15; missense variants are pri­
marily associated with non-syndromic deafness 
(DFNB12 [OMIM #601386] or DFNB23 
[OMIM #609533]) or more subtle RP symp­
toms, whereas frameshift, nonsense and splice 
site mutations cause Usher 1.72,74,88–90 However, 
missense mutations in CDH23 can also cause 
milder or ‘atypical’ Usher 1, and genotype–phe­
notype correlations are not always predictable.88 
Pathogenic USH1C variants, including a leaky 
splice site mutation IVS12 + 5G > C,73 have 
also been shown to cause recessive non-syndro­
mic hearing loss (DFNB18 [OMIM #602092]), 
which has been proposed to be related to the less 
deleterious effect of the variants being located 
within alternatively spliced exons.73,91 A family 
with non-syndromic sensorineural hearing loss 
caused by compound heterozygous missense and 
frameshift mutations in USH1G has been 
described;78 missense mutations in USH1G that 
are expected to result in residual protein function 
have been reported in Usher 1 families, thus 
expanding the phenotypic heterogeneity of Usher 
1G disease.

USH2A has a diverse mutation spectrum, which 
includes nonsense, frameshift, missense and splice-
affecting mutations, as well as deletions and dupli­
cations. The most common mutation found in 
USH2A is a single base pair (bp) deletion in exon 

13, c.2299delG p.(Glu767Serfs*21),34,92 which has 
been shown to be associated with exon splicing.93 
This variant is predicted to produce a severely trun­
cated protein and/or be subject to nonsense-medi­
ated decay; however, transcript analysis showed that 
it caused skipping of exon 13 or exons 12 and 13.93 
Mutations of USH2A are associated with up to 23% 
of non-syndromic RP cases,94 and specific mutant 
alleles are more frequent among such patients and 
families, the most common being missense variant 
c.2276G > T p.(Cys759Phe).95,96 Unusually, one 
patient with compound heterozygous USH2A 
mutations, c.1036A > C p.(Asn346His) and 
c.13316C > T p.(Thr4439Ile), was reported to 
have non-syndromic hearing loss, while their sibling 
harboured the same mutations and was diagnosed 
with typical Usher 2.97

Several USH2A phenotype-genotype studies have 
been carried out to date. A survey conducted by 
Lenassi and colleagues of patients with USH2A-
associated RP reported several ‘retinal disease-
specific’ alleles that were rarely found in Usher 2 
families, mostly missense variants that were likely 
to be less deleterious, while the Usher-associated 
variants mostly included those that were pre­
dicted to produce no viable protein (e.g. those 
causing premature truncation).96 They proposed 
an allelic hierarchy model in which the presence 
of at least one retinal disease-specific allele in a 
patient with USH2A-related retinopathy resulted 
in the preservation of hearing. While this has not 
been supported by subsequent studies,6,98,99 the 
same analysis on a different cohort100 combined 
with two large external cohorts98,101 found that 
the allelic hierarchy model was valid in 86% of 
individuals with non-syndromic USH2A-RP.100 
In addition, it has been reported that Usher 2 
patients with one copy of the p.(Cys759Phe) 
allele showed a later onset of RP and milder hear­
ing loss compared with the general Usher 2 popu­
lation,6 and the presence of the p.(Cys759Phe) 
variant in a homozygous state or in combination 
with other USH2A missense mutations has been 
associated with isolated RP or RP with late onset 
hearing loss.99 In contrast, the p.(Glu767Serfs*21) 
variant results in a more rapid deterioration and 
severe hearing threshold, heralding the need for 
careful audiological monitoring and considera­
tion of cochlear implants.100 In general, severe 
hearing impairment has been associated with 
truncating variants in USH2A.6,99,101,102 Further 
investigations into USH2A genotype–phenotype 
correlations have reported that the presence of 
two truncating mutations, or two missense 
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variants in the N-terminal laminin domain of the 
gene, were associated with Usher 2 patients and 
not those with non-syndromic RP,98,103 and the 
presence of at least one truncating mutation was 
related to earlier visual decline regardless of the 
phenotype.98,99

WHRN is an additional Usher gene that causes 
non-syndromic deafness, which is related to the 
mutation location affecting the two predomi­
nantly expressed variants (long and short): 
N-terminal mutations that affect the long isoform 
are found in USH2D patients,53,104 whereas 
mutations in the C-terminal region manifest as 
DFNB31.105,106

Development of therapies

Preclinical studies
While there is currently no available cure, there 
are numerous therapeutic strategies under devel­
opment for Usher-related RP and other inher­
ited retinal diseases (IRDs): these include gene 
replacement, gene editing, nonsense suppression 
and antisense oligonucleotide (ASO)–based 
approaches (Table 2). The eye is an attractive 
organ for therapeutic applications due to its 
accessibility and immune privilege, while the 
natural history of the disease with preserved 
cone photoreceptors at the fovea until a later 
stage provides an ideal window for intervention. 
Most therapeutic studies for Usher syndrome 
have been performed using patient-derived cells 
(typically fibroblasts) or mutant mice, of which 
there are many, with at least one existing for 
each causative gene.65,66 Most Usher mice dis­
play sensorineural hearing loss and vestibular 
phenotype reminiscent of their human counter­
parts, with only a limited number showing pro­
gressive retinal degeneration. Despite this, they 
have still aided in the assessment of potential 
treatments.

Gene replacement is an approach that has been 
shown to be effective in several Usher mouse 
models: adeno-associated virus (AAV) vectors 
have been used in Myo7a,107–110 Whrn131 and 
Clrn1,134 knockout mice via subretinal injection 
to restore expression of the wild-type Usher gene 
that was defective in each model. Dual overlap­
ping AAV vectors have also been tested for 
MYO7A delivery as a potentially safer alterna­
tive for large genes with promising results, 
although they were not found to be 

as efficient.108,109,111 Alternatively, delivery of 
functional MYO7A to the USH1B mouse model 
retina via lentiviral-based vectors with larger car­
rying capacities (9 versus 4.7 kb for single AAV) 
proved successful,112,113 although it harbours the 
risk of insertional mutagenesis. Among the other 
Usher models, gene delivery using AAV vectors 
has also produced significant improvements in 
auditory and vestibular hair cell function in 
mouse models of USH1C,114 USH1G,124 
USH2D,132 and USH3.135–137 This was achieved 
by viral injection into the inner ear through the 
round window membrane114,124,135–137 or poste­
rior semicircular canal132 in postnatal neonatal 
mice.

The mouse inner ear is immature at birth and 
continues to mature postnatally. The acquisition 
of hearing (measured by the onset of startle 
response) occurs 12 days postnatally in mice, pro­
viding a window of opportunity for effective inter­
vention with gene therapy.145 Comparatively, 
hearing in humans is fully mature at birth (onset 
of startle response at 19 weeks gestation). The 
hearing loss in Usher 1 is established at birth and 
it is not clear whether the hair cells in the human 
inner ear are a viable therapeutic target. In order 
to be effective, human intervention should be 
considered within the foetal stage, before estab­
lishment of hearing (at ~18 weeks of gestation).145 
Hence, where therapeutic response in mice is suc­
cessful when given soon after birth, it is question­
able whether the same effect will be seen in 
patients with postnatal treatment. Overall, further 
studies in non-human primates will be useful in 
addressing some of these issues.66

One alternative approach to gene replacement is 
gene editing, which involves cutting around 
genetic mutations through the use of nuclease 
enzymes and correcting the DNA error by homol­
ogous recombination with a DNA template con­
taining the wild-type sequence.146 This can be 
used to correct point mutations, small indels and 
splice site mutations, and is suitable for any gene 
size. Early investigations into the use of this strat­
egy for Usher-directed treatment employed the 
use of two zinc finger nucleases to correct an 
USH1C point mutation (c.91C > T p.[Arg31*]) 
and induce full-length harmonin expression in 
cultured cells.115 In recent years, the CRISPR/
Cas9 system has become highly popular for gene 
editing due to its efficiency and ease of use. This 
technique has been used for successful in vitro 
mutation repair in USH2A patient fibroblasts 
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Table 2.  Treatment approaches for Usher syndrome.

Gene Treatment type Method Model(s) tested Clinical trials References

Usher 1

  MYO7A Gene 
replacement

Subretinal injection of AAV vectors Myo7a–/– mice Previous 
studies107–110

  Subretinal injection of dual AAV 
vectors

Myo7a–/– mice Lopes and 
colleagues,108 
Trapani and 
colleagues,109 
Colella and 
colleagues111

  Subretinal injection of lentiviral 
vectors

Myo7a–/– mice NCT01505062, 
NCT02065011

Hashimoto and 
colleagues,112 
Zallocchi and 
colleagues113

  USH1C Gene 
replacement

Round window membrane injection 
of AAV vectors

Ush1c knock-in (c.216G > A) 
mouse

Pan and 
colleagues114

  Gene editing Transfection of zinc finger nucleases 
and HDR template plasmid

HEK293 cell line transfected with 
Ush1c c.91C > T p.(Arg31*)

Overlack and 
colleagues115

  Nonsense 
suppression

Incubation with NB30, NB54 and 
PTC124

HEK293 cell line and mouse 
retinas transfected with Ush1c 
c.91C > T p.(Arg31*),

Goldmann and 
colleagues116,117

  ASO Peritoneal injection or transuterine 
injection into the amniotic cavity 
or inner ear of ASOs designed to 
correct defective pre-mRNA splicing

Ush1c knock-in (c.216G > A) 
mice

Previous 
studies118–120

  PCDH15 Nonsense 
suppression

Incubation with gentamicin, 
paromomycin, NB30, NB54

COS-7 cell line transfected with 
mutant PCDH15 constructs

Nudelman and 
colleagues121–123

  USH1G Gene 
replacement

Round window membrane injection 
of AAV vectors

Ush1g–/– mice Emptoz and 
colleagues124

Usher 2

  USH2A Gene editing Transfection of CRISPR/Cas9 
components and HDR template

Patient fibroblasts and 
iPSCs with compound 
heterozygous USH2A c.2299delG 
p.(Glu767Serfs*21) and 
c.2276G > T p.(Cys759Phe) or 
homozygous p.(Glu767Serfs*21)

Fuster-Garcia 
and colleagues,125 
Sanjurjo-Soriano 
and colleagues126

  Nonsense 
suppression

Incubation with PTC124 HEK293 cell line transfected 
with USH2A c.11864G > A 
p.(Trp3955*). Patient fibroblasts 
with USH2A c.9424G > T 
p.(Gly3142*)

Neuhaus and 
colleagues,127 
Samanta and 
colleagues128

  ASO Transfection with ASOs designed to 
correct defective pre-mRNA splicing

Patient fibroblasts with USH2A 
c.7595-2144A > G and minigene 
splice assay

Slijkerman and 
colleagues129

  Treatment with ASO (QR-421a)
designed to induce skipping of 
USH2A exon 13

Patient iPSC-derived retinal 
organoids with USH2A 
p.(Glu767Serfs*21), ush2armc1 
zebrafish, wild-type macaque, 
wild-type mice

NCT03780257 ProQR 
Therapeutics130

  USH2D Gene 
replacement

Subretinal injection of AAV vectors Whirlin−/− mice Zou and 
colleagues131

(Continued)
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harbouring homozygous p.(Glu767Serfs*21) 
mutations,125 as well as patient-derived induced 
pluripotent stem cells (iPSCs) either homozygous 
for USH2A p.(Glu767Serfs*21) mutations or 
compound heterozygous for p.(Glu767Serfs*21) 
and p.(Cys759Phe).126 However, the efficiency of 
mutation correction was only 2.5% in fibro­
blasts125 and up to 3% in iPSCs,126 although the 
second study reported an 80% editing efficiency 
in the small number of homozygous USH2A 
clones that survived. Encouragingly, neither 
study reported off-target effects, which are 
unwanted mutations induced at DNA locations 
that show homology to the guide sequence. 
CRISPR/Cas9-based editing shows huge prom­
ise for the treatment of IRDs caused by a range of 
mutations; however, ensuring the absence of  
off-target effects and a high level of editing effi­
ciency in retinal cells will be essential for future 
investigations.

Small molecule-based methods for treatment of 
Usher syndrome have included the use of transla­
tional read-through-inducing drugs (TRIDs), 
which bind to the translational machinery and are 
able to induce insertion of an amino acid at the site 
of premature stop codons, allowing read-through 
of nonsense mutations. These small molecule 
drugs include ataluren (PTC124) and designer 
aminoglycosides (NB compounds such as NB54). 
Several TRIDs have been used to suppress Usher 
1-associated PCDH15 and USH1C nonsense 
mutations in vitro, in cell cultures and in retinal exp
lants.116,117,121–123 Furthermore, in vivo administra­
tion of NB54 and PTC124 was able to restore 
expression of full-length harmonin in mouse reti­
nas transfected with Ush1c reporter constructs.117 
For Usher 2 investigation, PTC124 was adminis­
tered to a human embryonic kidney (HEK) cell 
model expressing a cDNA fragment of USH2A 
containing the c.11864G > A p.(Trp3955*) 

Gene Treatment type Method Model(s) tested Clinical trials References

  Round window membrane injection 
or posterior semicircular canal 
injection of AAV vectors

Whirler mice Isgrig and 
colleagues,132 
Yasuda and 
colleagues133

Usher 3

  CLRN1 Gene 
replacement

Subretinal or intravitreal injection of 
AAV vectors

Wild-type mice Dinculescu and 
colleagues134

  Round window membrane injection 
of AAV vectors

Clrn–/– (KO-TgAC1) Previous 
studies135–137

  Round window membrane injection 
of AAV vectors

Clrn1ex4–/–, Clrn1ex4fl/f Myo15-
Cre+/– mice

Dulon and 
colleagues136

  Round window membrane injection 
of AAV vectors

Clrn–/– mice, wild-type rats and 
macaque

Isgrig and 
colleagues132

  Small molecule 
drug

Peritoneal injection of BioFocus 844, 
identified as stabilising CLRN1N48K 
protein

Clrn1N48K/N48K Alagramam and 
colleagues138

Non-gene-specific

  Cell transplant Subretinal injection of human neural 
progenitor cells

Ush2a–/– mice Lu and 
colleagues139

  Intravitreal implantation of 
encapsulated cells expressing CNTF

Rodent models of retinal disease NCT00447980, 
NCT01530659

Previous 
studies140–143

  Retrobulbar, subtenons, intravitreal, 
subretinal, intra-optic nerve and 
intravenous injections of BMSC

NCT01920867, 
NCT03011541

Weiss and 
colleagues144

AAV, adeno-associated virus; ASO, antisense oligonucleotides; BMSC, bone marrow–derived stem cells; CNTF, ciliary neurotrophic factor; HDR, 
homology-directed repair; HEK, human embryonic kidney; iPSC, induced pluripotent stem cell.

Table 2. (Continued)
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mutation and showed a substantial increase in 
USH2A expression compared with the control.127 
Further studies demonstrated PTC124 efficacy in 
restoring USH2A protein expression and primary 
ciliogenesis capability in USH2A patient-derived 
fibroblasts with the c.9424G > T p.(Gly3142*) 
mutation.128 Overall, TRIDs show promise as a 
safe and effective strategy to treat a range of Usher-
related nonsense mutations; however, these par­
ticular variants cause ~16% of USH2A-related RP 
and 13% of all IRD cases.128

An additional small molecule that has been of 
interest for Usher syndrome treatment, known as 
BioFocus 844 (BF844), was identified through 
cell-based high throughput screening as capable 
for stabilising the defective Clarin-1 protein pro­
duced by the common CLRN1 missense variant 
p.(Asn48Lys).138 BF844 was shown to protect 
against progressive hearing loss when adminis­
tered intraperitoneally to an Usher 3 knock-in 
mouse model.

A further therapeutic option is the use of ASOs, 
which are short synthetic modified nucleic acids 
that bind RNA through complementary base 
pairing. They can be designed to bind pre-mRNA 
at splice enhancer or silencer target sites, prevent­
ing or stimulating binding of the spliceosome 
thereby modulating pre-mRNA splicing. ASOs 
have been used to rescue both the hearing and 
vestibular defects in Ush1c knock-in mice, which 
possess a cryptic splice site mutation that results 
in truncated harmonin protein.118–120 Initially, 
peritoneal injection of ASOs in neonatal mice was 
shown to partially correct defective pre-mRNA 
splicing of mutant Ush1c transcripts; the same 
group delivered ASOs to Ush1c knock-in foetal 
mice in utero via transuterine injection into the 
amniotic cavity and observed partial correction of 
vestibular function and hearing in the mice post­
natally,119 while most recently transuterine injec­
tion directly into the developing inner ear 
produced more substantial improvements in both 
hearing and vestibular function that sustained 
into adulthood.120 ASOs have also been used to 
correct a splicing defect caused by a deep intronic 
mutation in the USH2A gene (c.7595-
2144A > G) which leads to insertion of a pseu­
doexon (PE40), in both patient-derived fibroblasts 
and a minigene splice assay.129

Overall, there are a number of promising thera­
peutic strategies in the development for the Usher 
subtypes. The use of patient-derived retinal 

organoids, which have already been generated for 
Usher syndrome caused by USH2A muta­
tions,147,148 will further aid in the testing of novel 
treatments by providing the opportunity to dem­
onstrate therapeutic potential in retinal-specific 
cells in vitro.

Identifying outcomes
Although several treatment strategies are already 
under development for Usher syndrome and 
other IRDs, identifying metrics that display 
detectable changes within relatively short time 
periods (e.g. 1–2 years) in otherwise slowly pro­
gressive conditions will aid the assessment of 
therapeutic efficacy in clinical trials. This is espe­
cially important when the treatments are admin­
istered systemically, such as orally, and the 
untreated eye cannot be used as a control. As the 
hearing loss is congenital and relatively stable 
throughout the lifetime of Usher patients (aside 
from Usher 3), a number of natural history stud­
ies have focussed on the progress of the retinal 
disease in Usher patients; these have included 
longitudinal assessment of patients with 
MYO7A9,10,84,149 and USH2A9,98,150–152 muta­
tions using various clinical functional and struc­
tural measures, including visual acuity, perimetry, 
ERG, fundus autofluorescence and OCT-derived 
measurements.

For Usher 2, longitudinal data from a cohort of 
patients carrying the common USH2A 
c.2299delG mutation were studied and rod 
perimetry across the visual field was highlighted 
as a potential clinical measure for timely investi­
gations, predicted to show detectable change 
within 1.4 years.150 Ellipsoid zone (EZ) line 
width, which is the inner/outer segment boundary 
measured from OCT scans, was an effective sur­
rogate measure of central visual loss and was pre­
dicted to show a detectable decrease in 2.3 years. 
A recent investigation into an Usher 2 patient 
population carrying a range of USH2A variants 
used retrospective longitudinal data to identify 
suitable clinical outcome metrics.151 Both EZ line 
and hyperautofluorescent outer retinal ring area 
showed significant reductions within the follow-
up period (2–5 years); however, there was consid­
erable variability in the population. Visual acuity 
was not found to be a suitable measurement due 
to its slow decline, consistent with previous 
work.150 Furthermore, measuring retinal thick­
ness from OCT images was confounded by the 
presence of macular oedema.

http://journals.sagepub.com/home/oed


Therapeutic Advances in Ophthalmology 12

12	 journals.sagepub.com/home/oed

Data from ongoing longitudinal natural history 
studies, such as the ‘Rate of Progression in 
USH2A-related Retinal Degeneration’ 
(RUSH2A, NCT03146078) and the ‘Multicentre 
Longitudinal, Observational Natural History 
Study to Evaluate Disease Progression in Subjects 
With Usher Syndrome Type 1B’ (NCT03814499), 
in addition to the use of artificial intelligence–
based methods will further aid in identifying suit­
able outcome metrics for clinical trials for Usher 
syndrome. This will likely be tailored to the 
mechanism (gain of function or slowing of disease 
progression) and target of treatment, that is, ret­
ina-wide or central retina. If gain of function is 
anticipated, trials could be relatively short 
(between 12 and 18 months) to arrive at an esti­
mate of potential longevity.

Clinical trials
Owing to the success of preclinical investigations, 
there are several completed and ongoing clinical 
trials for patients with Usher-related RP. For 
Usher-specific gene therapy, the first clinical trial 
evaluated subretinal injection of a recombinant 
equine infectious anaemia virus (EIAV)–based 
lentiviral vector for delivery of MYO7A cDNA 
(UshStat) for treating patients with MYO7A-
related Usher 1 (NCT01505062).113 However, 
this phase I/IIA trial has been terminated by the 
sponsor Sanofi due to review of clinical develop­
ment plans and priorities. A second trial is ongoing 
to assess long-term safety of patients who received 
UshStat (NCT02065011). A further clinical trial 
is being prepared using dual hybrid AAV vectors to 
deliver MYO7A to the retina of USH1B patients 
(https://cordis.europa.eu/project/id/754848/
it).109,153 Considering the Food and Drug 
Administration and European Medicines Agency 
approval of Spark Therapeutics Luxturna gene 
therapy for patients with RPE65-related retinal dis­
ease, gene replacement therapy has become a more 
likely future option for the treatment of several 
Usher subtypes. However, such therapies are likely 
to be highly costly, and conventional viral methods 
are not appropriate for very large genes like USH2A 
(cDNA length >15 kb).

For ASO-based treatments, there is currently a 
trial sponsored by ProQR for an ASO candidate 
(QR-421a), which has been designed to exclude 
the whole exon 13 in the USH2A mature mRNA 
transcript; this has been shown preclinically to 
result in restoration of functional usherin pro­
tein.130 Considering that two of the most 

common pathogenic USH2A mutations occur in 
exon 13,34,92,96 if successful this treatment would 
be suitable for a large proportion of patients with 
USH2A-related Usher 2 and RP. The phase I/II 
clinical trial is currently ongoing for intravitreal 
injection of QR-421a in patients with USH2A 
exon 13 variants (NCT03780257).

In addition to Usher gene-specific clinical trials, 
subretinal implantation of capsules containing 
human NT-501 cells that release ciliary neuro­
trophic factor (CNTF) has been trialled in 
patients with choroideremia and RP, including 
some with Usher 2 and Usher 3 (NCT00447980, 
NCT01530659).140,141 CNTF has been found to 
prolong photoreceptor survival in mouse and rat 
models of retinal degeneration.142,143 Viral deliv­
ery of rod-derived cone viability factor (RdCVF) 
is also under investigation for the treatment of 
RP; RdCVF is a factor naturally secreted by rods 
to protect cone photoreceptors,154 and has been 
found to promote photoreceptor survival in 
mouse models of RP after viral-mediated expres­
sion in the retina.155 If such strategies are effective 
in humans, this could be suitable for the signifi­
cant number of IRD patients without a confirmed 
molecular diagnosis.

When choosing the method of treatment for 
Usher syndrome and other IRDs, the stage of dis­
ease will be an important consideration. The 
strategies already described are likely to be only 
effective at a stage where retinal photoreceptors 
are still intact. At the advanced stages of retinal 
degeneration, cell replacement therapies156 or 
retinal prosthesis157 may be the most feasible 
options. Advances in embryonic stem cell and 
iPSC technology make cell transplantation an 
ever-likely option for patients with late-stage reti­
nal disease.156 Bone marrow–derived stem cells 
(BMSC) have been trialled in five ungenotyped 
patients with varying subtypes of Usher syndrome 
as part of the Stem Cell Ophthalmology 
Treatment Study (SCOTS; NCT01920867 and 
NCT03011541).144 Each Usher patient received 
autologous BMSC through either retrobulbar, 
subtenons, intravitreal, subretinal or intra-optic 
nerve injections into both eyes, followed by intra­
venous injections. The average pre-treatment 
logarithm of the minimum angle of resolution 
(LogMAR) acuity was 0.635, and the average 
postoperative change was a gain of 0.18 LogMAR. 
In the murine retina, it has been found that 
endogenous BMSC migrate and fuse with Müller 
glia cells after damage has been inflicted.158 The 
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resulting hybrids were found to contribute to the 
replacement of damaged neurons, demonstrating 
the regenerative potential of BMSC in the mam­
malian retina.

Although there are no ongoing clinical trials for 
the Usher-specific hearing loss, there was a clini­
cal trial for a recombinant adenovirus 5 (Ad5) 
vector containing the human atonal transcription 
factor (ATOH1) cDNA for administration via 
intra-labyrinthine infusion in patients with severe 
to profound sensorineural hearing loss 
(NCT02132130). The results are yet to be pub­
lished. The successful preclinical work with sev­
eral Usher mouse mutants makes gene therapy a 
promising future option; however, as discussed, 
these studies have involved treatment administra­
tion in prenatal or neonatal mice when the inner 
ear is still developing, and the use of similar thera­
pies in children or adults with Usher syndrome 
may not be able to achieve reversal of the con­
genital inner ear defects.

Conclusion
Usher syndrome is a disorder with vast clinical 
and genetic heterogeneity, typically resulting in 
significant dual sensory loss causing great impact 
on patient quality of life. More than ever, the 
prospect of an available treatment for at least 
some Usher subtypes looks promising. However, 
there are still obstacles to overcome in developing 
safe treatments that work for each gene size and 
mutation. In addition to the many gene- and 
mutation-specific treatments under investigation, 
finding universal treatments that use common 
mechanisms for the treatment of RP should be a 
priority for the many patients that remain without 
a molecular diagnosis. Further patient analysis is 
necessary to determine better genotype–pheno­
type correlations for each clinical subtype to pre­
dict prognosis; this will inform genetic counselling, 
preimplantation diagnosis and the choice of best 
outcomes for each treatment trial.
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