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Abstract: Cardiac Ca2+ cycling and signaling are closely associated with cardiac function. 

Changes in cellular Ca2+ homeostasis may lead to aberrant cardiac rhythm and may play a 

critical role in the pathogenesis of cardiac diseases, due to their exacerbation of heart 

failure. MicroRNAs (miRNAs) play a key role in the regulation of gene expression at the 

post-transcriptional level and participate in regulating diverse biological processes. The 

emerging evidence indicates that the expression profiles of miRNAs vary among human 

diseases, including cardiovascular diseases. Cardiac Ca2+-handling and signaling proteins 

are also regulated by miRNAs. Given the relationship between cardiac Ca2+ homeostasis 

and signaling and miRNA, Ca2+-related miRNAs may serve as therapeutic targets during 

the treatment of heart failure. In this review, we summarize the knowledge currently 

available regarding the role of Ca2+ in cardiac function, as well as changes in Ca2+ cycling 

and homeostasis and the handling of these processes by miRNAs during cardiac  

ischemia-reperfusion injury.  
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1. Introduction 

Myocardial ischemia-reperfusion (I/R) injury is one of the leading causes of heart failure, and the 

signs and symptoms of I/R injury are characterized by an insufficient supply of oxygen and nutrients to 

the body; slowed, asynchronous contraction; and impaired relaxation of the heart muscle [1,2]. The 

key regulator of cardiac function is intracellular calcium (Ca2+), as Ca2+ acts as a second messenger 

and plays an important role in regulating cardiac physiology and pathophysiology. Altered expression 

and activity of Ca2+-related proteins are associated with cardiac dysfunction, which is observed in 

many patients with heart failure [3,4].  

Recently, endogenous small noncoding RNAs known as microRNAs (miRNAs) have been 

identified as novel regulators of gene expression at the post-transcriptional level and regulate several 

cellular processes, such as cell proliferation, differentiation, and apoptosis [5,6]. The biogenesis of 

miRNAs begin with primary miRNAs (pri-miRNAs), which transcript miRNA gene by RNA 

polymerase II, and have hundreds to thousands of nucleotides and single or multiple stem-loop 

structures with a 5' cap and a poly(A) tail. The pri-miRNAs are cleaved by the microprocessor 

complex, composed of RNase-III endonuclease Drosha, RNA-binding protein (RBP) DGCR8, and 

other cofactors, which produce 70–100-nucleotide-long hairpin-shaped precursor miRNAs  

(pre-miRNAs). The pre-miRNAs are exported to the cytoplasm by the nuclear export protein  

exportin-5, and then they are finally trimmed by another RNase-III ribonuclease Dicer, generating a 

mature miRNA duplex that is approximately 21 nucleotides long. Finally, only one strand (a guide 

strand) of mature miRNA duplex is loaded to the RNA-induced silencing complex (RISC), whereas 

the other strand (the passenger strand) is degraded. The guide strand is the functional strand of the 

mature miRNAs and negatively regulates gene expression either by inhibiting mRNA translation or 

inducing mRNA degradation, which results from the complete or incomplete binding to the 3' 

untranslated region (3' UTR) of target mRNAs [7–10].  

Recently, a number of miRNAs have been discovered; however a small portion of miRNAs are 

known to be expressed in the heart and an even smaller portion of miRNAs have been identified to be 

related to cardiac Ca2+ homeostasis [11]. Changes in the expression profiles of miRNAs are linked to 

several diseases, including cardiovascular disease, cancer, and diabetes [12–14]. Given the relationship 

between intracellular Ca2+ homeostasis and miRNAs during the regulation of cardiac function, the 

ability of miRNAs to regulate Ca2+-handling proteins may be an important therapeutic target in the 

treatment of heart disease [1,14–16]. Among the heart-expressed miRNAs, in this review, we focused 

on miRNAs related to the intracellular Ca2+ homeostasis and Ca2+ regulation within myocardial  

I/R injury. 

2. Role of Calcium in Cardiac Function 

The maintenance of intracellular Ca2+ homeostasis in the heart is essential for many aspects of 

cardiac function, including cardiac excitation, contraction, and relaxation. Cardiac excitation-contraction 

coupling (EC-coupling) is associated with Ca2+-induced Ca2+ release (CICR) [17]. Transmembrane and 

intracellular calcium channels and transporters participate in the movement of Ca2+. Cardiac 

contraction is initiated by membrane depolarization, which leads to the activation of voltage-gated  
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L-type Ca2+ channels (LTCCs) and a subsequent increase in intracellular Ca2+ concentration due to the 

influx of extracellular Ca2+ [18]. This Ca2+ influx prompts a substantial release of Ca2+ from the 

sarcoplasmic reticulum (SR) into the cytoplasm through ryanodine receptor (RyR) channels. Cytosolic 

Ca2+ binds to Ca2+-sensitive proteins, such as troponin, myosin, and actin, and subsequently initiates 

muscle contraction. During cardiac relaxation, Ca2+ is released from the myofilaments and pumped 

back into the SR via the SR Ca2+-ATPase (SERCA2a) and is then transported to the extracellular space 

through the sarcolemmal Na+/Ca2+ exchanger (NCX) [4,19].  

Figure 1. Cardiac Ca2+-handling and Ca2+-mediated signaling. LTCC, L-type Ca2+ channel; 

NCX, Na+/Ca2+ exchanger; CaM, calmodulin; CaMKII, Ca2+/calmodulin-dependent 

protein kinase II; Cn, calcineurin; RyR2, ryanodine receptor type-2; SERCA2a, 

sarcoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; PLB, phospholamban; 

CICR, Ca2+-induced Ca2+ release; MCU, mitochondrial Ca2+ uniporter; ANT, adenine 

nucleotide transporter; VDAC, voltage-dependent anion channel; TCA, tricarboxylic acid; 

OXPHOS, oxidative phosphorylation; HDAC, histone deacetylase; NFAT, nuclear factor 

of activated T-cells; MEF2, myocyte enhancer factor-2; P, phosphorylation. 

 

Another important role of Ca2+ is the maintenance of cardiac cellular energy homeostasis. ATP is a 

key energy source in cardiac excitation and contraction, and the synthesis of ATP is tightly linked to 

oxidative phosphorylation in mitochondria [20,21]. The mitochondrial calcium uniporter (MCU) 

contributes to Ca2+ uptake in the mitochondria from the cytosol, which activates TCA cycle enzymes 

and then creates the electrochemical gradient. The TCA cycle generates electrons during the 
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conversion of NADH to NAD+, and these electrons are transferred through complexes I–IV of the 

electron transport chain (ETC). As a result of these processes, ATP is produced and released from the 

matrix of the mitochondrial inner membrane to the cytosol through two proteins, the adenine 

nucleotide transporter (ANT) on the mitochondrial inner membrane and the voltage-dependent anion 

channel (VDAC) on the mitochondrial outer membrane [3,22]. Therefore, cellular Ca2+ homeostasis 

plays a critical role in regulating both cardiac function and mitochondrial ATP production (Figure 1). 

3. MicroRNA Regulation of Calcium Signaling in Myocardial Ischemia-Reperfusion Injury 

Recent research has demonstrated that miRNAs participate in cardiovascular development, 

function, and diseases. Several miRNAs either exert cardioprotective effects or play a role in the 

pathogenesis of diseases [23,24], and the expression profiles of miRNAs are dynamically different 

during various diseases states [15,25,26]. Thus, the regulation of disease-mediated miRNAs is related 

to the pathophysiological mechanisms [27]. A number of miRNAs associated with cardiac I/R injury 

have been discovered; however, little is known regarding the detailed mechanisms by which they 

perform their functions. Nevertheless, miRNAs mediating cardiovascular disease, including I/R injury, 

have potential as therapeutic targets in disease management [28]. 

In this section, we focus on cardiac I/R injury, which is one of the leading causes of heart failure, 

cardiovascular disease, and sudden death, and provide a comprehensive summary of the changes in 

Ca2+ cycling during cardiac I/R injury and the relationship between Ca2+-regulating miRNAs and 

cardiac function. 

3.1. Altered Ca2+ Homeostasis During Cardiac Ischemia-Reperfusion Injury 

Cardiac I/R injury is directly linked to cardiac dysfunction and results in an imbalance in Ca2+ 

homeostasis [29,30]. I/R-injured cardiomyocytes are characterized by increased Ca2+ concentrations in 

both the cytosol and the mitochondria, which are associated with abnormal cardiac function and 

damage to cardiac tissues [31,32]. During ischemia, a decrease in O2 levels inhibits oxidative 

phosphorylation, which subsequently reduces ATP synthesis. The accumulation of lactate and the 

acceleration of acidification via anaerobic glycolysis inhibit the Na+/H+ exchanger (NHE) and the 

Na+/K+-ATPase, which triggers Na+ overload and a subsequent rise in Ca2+ concentration in the cytosol 

via the NCX, as well as abnormal activity of the Ca2+-ATPase. In addition, the pH of the cytosol is 

acidic [33,34]. Paradoxically, reperfusion is necessary to enhance the functioning of the ischemic heart; 

however, it also exacerbates cardiac damage due to myocardial cell death [35]. During reperfusion, 

mitochondrial membrane potential (ΔΨm) are rapidly reestablished, leading to uncoupling of oxidative 

phosphorylation and a sustained rise in Ca2+ uptake into the mitochondria and the generation of 

reactive oxygen species (ROS). Ca2+ and ROS, as well as the restoration of neutral pH in the cytosol, 

accelerate the opening of the mitochondrial permeability transition pore (mPTP), which subsequently 

results in a significant loss of ATP and causes mitochondria-mediated apoptosis [36,37] (Figure 2). 
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Figure 2. Cardiac Ca2+ protein-regulated microRNA during ischemia-reperfusion injury. 

LTCC, L-type Ca2+ channel; NCX, Na+/Ca2+ exchanger; AnxA5, annexin A5; NHE, 

Na+/H+ exchanger; CaM, calmodulin; CaMKII, Ca2+/calmodulin-dependent protein kinase 

II; RyR2, ryanodine receptor type-2; SERCA2a, sarcoplasmic reticulum Ca2+-ATPase; SR, 

sarcoplasmic reticulum; PLB, phospholamban; CICR, Ca2+-induced Ca2+ release; MCU, 

mitochondrial Ca2+ uniporter; ROS, reactive oxygen species; CyP-D, cyclophilin D; mPTP, 

mitochondrial permeability transition pore; OXPHOS, oxidative phosphorylation; HDAC, 

histone deacetylase; P, phosphorylation. 

 

3.2. MicroRNA Regulation of Ca2+ Signaling During Cardiac Ischemia-Reperfusion Injury 

Cardiac I/R injury leads to an increase in intracellular Ca2+ concentration, and these Ca2+ ions bind 

to and elevate the activity of calmodulin (CaM), which activates calcineurin (Cn), a downstream 

molecule of both CaM and Ca2+/calmodulin-dependent protein kinase II (CaMKII) [11,38]. Cn has 

phosphatase activity and dephosphorylates nuclear factor of activated T-cells (NFAT), which 

translocate into the nucleus from the cytosol and upregulate the expression of cardiac pathophysiology-

related genes [4]. CaMKII is a serine/threonine-specific protein kinase and a critical regulator of Ca2+ 

signaling that plays a role in cardiac disease [39,40]. Four CaMKII isoforms (α, β, γ, and δ) have been 

identified and have different tissue distributions. In particular, CaMKIIδ is the predominant isoform in 

the adult mammalian heart and has two splice variants, CaMKIIδB and CaMKIIδC [41]. CaMKIIδB 

has an 11 amino-acid nuclear localization signal, which is absent in CaMKIIδC; therefore, 
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CaMKIIδB localizes to the nucleus, whereas CaMKIIδC localizes to the cytosol [42]. The histone 

deacetylase (HDAC) class II isoforms HDAC4 and HDAC5 are phosphorylated by activated CaMKII, 

which regulates myocyte enhancer factor-2 (MEF-2)-mediated cardiac hypertrophy-related gene 

expression [43,44].  

Because of the importance of Ca2+ in regulating proteins related to cardiac function and damage, the 

regulation of intracellular Ca2+ is considered to be a therapeutic target [35]. Several strategies have 

been implemented to improve Ca2+ regulation and to attenuate Ca2+ overload. Phospholamban (PLB) is 

a major player in regulating SERCA2a activity; in addition, PLB activity is modulated by CaMKII. 

Dephosphorylation of PLB inhibits SERCA2a activity, thereby preventing Ca2+ uptake in the SR. In 

this context, Shintani-Ishida et al. used calcineurin inhibitor cyclosporin A to prevent PLB 

dephosphorylation [45] and Gorbe et al. demonstrated that B-type natriuretic peptide (BNP) elevates 

PLB phosphorylation via the cGMP-dependent protein kinase (PKG) pathway [46]. In an I/R heart, 

CaMKII activity is increased; thus Vila-Petroff et al. investigated the cardioprotective effects of the 

CaMKII inhibitor KN-93 or the CaMKII inhibitory peptide AIP. In addition, KB-R7943, which 

inhibited the reverse mode NCX, showed outcomes similar to CaMKII inhibition [47]. To reduce Ca2+ 

overload, Tani et al. suggested a contractile inhibitor using 2,3-butanedione monoxime (BDM) [48], 

and Dou et al. identified blebbistatin, a more powerful inhibitor of the actin–myosin interaction than 

BDM [49]. BDM and blebbistatin maintain a cardiac muscle contractile system, including 

cardiomyocyte and contraction inhibition and shortening. The loss of Ca2+ homoeostasis activates the 

non-lysosomal cysteine proteases calpains, which contribute to contractile dysfunction by impairing 

Ca2+ regulation, and necrotic cell death. Therefore, calpain inhibitors promote cardioprotection against 

I/R injury; however, some calpain inhibitors, such as leupeptin, N-Ac-Leu-Leu-norleucinal (ALLN or 

calpain inhibitor I), and MDL-29170 (calpain inhibitor III) are unsuitable for in vivo applications due 

to poor aqueous solubility [50]. Improving the water solubility of calpain inhibitor A-705253 reduces 

the infarct size and improves left ventricular contractility in porcine I/R model [51]. However, the 

effectiveness of calpain inhibitors must be clearly confirmed in more clinically relevant animal models 

of human diseases, and calpain selectivity must be improved. Few clinical studies of Ca2+ regulation 

have been performed, including (1) a study of nisoldipine, a vascular-selective organic calcium 

antagonist [52]; (2) the DATA trial with diltiazem, another calcium antagonist [53]; (3) the CASTEMI 

and EVLVE randomized trials using caldaret (MCC-135), an NCX inhibitor [54,55]; (4) studies using 

NHE inhibitors, such as the GUARDIAN or EXPEDITION studies of cariporide [56,57] and the 

ESCAMI trial with eniporide [58]; and (5) the J-WIND-ANP trial, which used either human atrial 

natriuretic peptide or nicorandil [59]. Unfortunately, the results of these clinical trials have been 

insignificant or have not proven the effectiveness of these inhibitors; thus, there is still a need to 

understand the mechanism behind the effects of cardiac Ca2+ on cardiac function to develop more 

potent and selective modulators of Ca2+-related molecules. 

Emerging evidence in the study of disease-related miRNAs has shown that changes in dynamic 

miRNA expression are linked to cardiac I/R injury, and Ca2+ signaling molecules are also involved in 

changes in the expression of several miRNAs, as discussed in further detail below (Figure 2). 
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3.2.1. miR-25 

Recently, Wahlquist et al. reported that miR-25 leads to an impairment in Ca2+ uptake and 

exacerbates heart failure by directly interacting with SERCA2a mRNA [60]. To identify the miRNAs 

that control SERCA2a, the authors constructed an eGFP-SERCA2a 3' UTR reporter vector to perform 

a high-content screen of 875 miRNAs and compared the results to those of SERCA2a siRNA (100% 

inhibition). The results of this experiment demonstrate that miR-25 is perhaps the most potent inhibitor 

of SERCA2a and is upregulated both in patients with severe heart failure and during trans-aortic 

constriction (TAC)-induced heart failure in a mouse model. Overexpression of miR-25 in vivo using 

adeno-associated virus 9 (AAV9) is related to declines in both fractional shortening and left ventricular 

(LV) function, whereas the inhibition of miR-25 with antagomiR reduces fibrosis and hypertrophy and 

improves cardiac contractility via the restoration of SERCA2a. Therefore, a strategy designed to 

inhibit miR-25 may be a key to developing a potential treatment for heart failure. 

3.2.2. miR-1 

MiR-1 is one of the best-characterized miRNAs in the heart, and has been linked to cardiac 

development, physiology, and pathophysiology, although studies of its function are still in 

progress [61–63]. In the I/R-injured heart, cardiac-enriched miR-1 exacerbates cardiac injury and 

apoptosis, whereas oligonucleotides modified to act against miR-1 (e.g., LNA-antimiR-1 or loss-of-

function miR-1) attenuate I/R injury by restoring protein kinase C ε (PKCε) and heat shock protein 60 

(HSP60), which are targeted by miR-1 [64]. Both the overexpression and suppression of miR-1 have 

strong effects on Ca2+ flux in cardiomyocytes. The serum-response factor (SRF) regulates the 

transcription of NCX1 and miR-1. Tritsch et al. reported that the SRF/miR-1 axis regulates the 

expression of NCX1 and annexin A5 (AnxA5), a Ca2+-binding protein that interacts with NCX1, and 

that miR-1 is directly suppressed by both NCX1 and AnxA5 [65]. Cardiomyocyte-specific  

tamoxifen-inducible inactivation of the SRF gene (SRFHKO) results in downregulation of NCX1 

mRNA and primary miR-1 expression, but the translation of both NCX1 and AnxA5 is upregulated 

due to the downregulation of mature miR-1. Ultimately, the upregulation of NCX1 and AnxA5 

restricts intracellular Ca2+ extrusion during heart failure.  

Ali et al. suggested that miR-1 had an indispensable role in cardiac contractility, in which 

tamoxifen-induced cardiac-specific Dicer knockout mice demonstrated a significant decrease of miR-1 

expression among the examined cardiac-specific miRNAs [66]. Decreases in miR-1 are correlated with 

increases in Sorcin, which resides on RyR2 and is a modulator of both calcium signaling and  

EC-coupling. Overexpression of Sorcin leads to dysregulation of Ca2+ signaling and deterioration of 

cardiac function under conditions of cardiomyopathy, whereas the siRNA-mediated knockout of 

Sorcin leads to the recovery of cardiac contractility in cardiac-specific Dicer knockout mice.  

The PP2A regulatory subunit B56α is another target of miR-1 and miR-133, and the inhibition of 

PP2A’s function via miR-1 overexpression induces hyperphosphorylation and activation of RyR2, 

which subsequently promotes Ca2+ release from the SR, leading to abnormal Ca2+ cycling, and 

increased cardiac arrhythmogenesis [67,68].  
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3.2.3. miR-145 

Increases in intracellular Ca2+ concentration are closely associated with the activation of CaMKIIδ, 

which upregulates the expression of apoptotic genes. Cha et al. determined that miR-145 inhibits Ca2+ 

overload and Ca2+-related signals by targeting CaMKIIδ, and the overexpression of miR-145 protects 

against ROS-induced cardiomyocyte apoptosis [69].  

3.2.4. miR-214 

MiR-214 protects cardiomyocytes susceptible to cardiac I/R injury and heart failure and is 

upregulated in a variety of cardiac disease models [70]. Aurora et al. discovered a potential role of 

miR-214 in I/R injury. The heart-specific miR-214 knockout mice demonstrates that heart structure, 

size, and function are not significantly affected by the mutation, but Ca2+ regulator genes are 

upregulated compared to wild type mice. Additionally, miR-214 knockout mice exhibit more severe 

cardiac injury, including a greater extent of cardiomyocyte loss, larger fibrotic regions, and impaired 

cardiac performance compared to wild type mice according to a left anterior descending coronary 

artery (LAD) model [71]. The primary Ca2+ pump NCX1, a proapoptotic Bcl2 family protein known as 

BIM, CaMKIIδ, and cyclophilin D (a major regulator of mPTP) are direct targets of miR-214. 

Cardiomyocytes from miR-214 knockout mice show both high levels of intracellular Ca2+ and Ca2+ 

overload. Therefore, miR-214 regulates Ca2+ homeostasis, and prevents cardiomyocyte death and 

protects against cardiac I/R injury by inhibiting the expression of the Ca2+-handling molecule NCX1, 

as well as CaMKIIδ, BIM, and cyclophilin D. 

3.2.5. miR-494 

MiR-494 is one of the miRNA transcripts that is downregulated in human infarcted and murine  

I/R-injured heart [11]. Wang et al. demonstrated that cardiac-specific overexpression of miR-494 in 

transgenic mice heart improves the recovery of cardiac function, reduces myocardial infarction size 

and prevents apoptosis by targeting the proapoptotic proteins PTEN, ROCK1, and CaMKIIδ, as well 

as antiapoptotic proteins FGFR2 and LIF, and via the subsequent activation of AKT signaling in 

mitochondria [72].  

3.2.6. miR-574-3p 

In the infarcted myocardium, both the expression and function of SERCA2 are reduced, thereby 

inhibiting Ca2+ reuptake into the SR and subsequent Ca2+ overload, and the expression profiles of 

miRNAs are altered. The results of microarray and bioinformatics analyses demonstrate that miR-574-3p, 

which is upregulated in the area of myocardial infarcted, is a putative candidate miRNA that targets 

SERCA2a, but the authors suggest that further study (as opposed to immediate retesting) is necessary 

to confirm the relationship between miR-574-3p and SERCA2a [73]. 
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3.2.7. miRNAs Related to Cardiomyocyte Cell Death: miR-15, miR-21, and miR-144/451 Cluster 

MiR-15a/b are increased in the mice I/R injury model, and the inhibition of miR-15 (anti-miR-15 

LNA) protects cardiomyocytes from hypoxia-induced cell death [74,75]. In addition, miR-21 is 

sensitive to ROS and protects against I/R-induced cardiac cell death by targeting programmed cell 

death 4 (PDCD4) [76]. The expression of the miR-144/451 cluster is regulated by GATA-4, a critical 

transcription factor in the heart, and the miR-144/451 cluster protects against I/R-induced 

cardiomyocyte apoptosis [77].  

3.3. Circulating MicroRNAs as New Biomarkers 

Circulating disease-mediated miRNAs are new biomarkers and therapeutic targets in the treatment 

of cardiovascular diseases [78,79]. The release mechanism, the causes of secretion and the altered 

expression profiles of the circulating miRNAs are still unknown. Some evidence suggests that 

circulating miRNAs may be released extracellularly, assisted by lipid vesicles such as exosomes, 

microvesicles, or apoptotic bodies that guard miRNAs against degradation by RNases [80,81]. During 

the I/R injury, plasma levels of miR-1, miR-133a, miR-499-5p, and cardiac-specific miR-208b rapidly 

increase in both rodent models and in human patients presenting with ST-elevation myocardial 

infarction (STEMI). In addition, circulating miR-1, miR-133a, miR-328, miR-499, and miR-208b 

levels also increase in patients who present with acute myocardial infarction [82,83]. Circulating 

miRNAs are attractive diagnostic biomarker; however, because of the low levels of miRNAs in the 

blood, it is necessary to develop reliable detection and analysis methods. However, the study of 

circulating disease-related miRNAs enables the development of the next generation of potent 

biomarkers and the early diagnosis and treatment of many diseases [81].  

4. Conclusions  

Recent research has provided increasing evidence that miRNAs are an important regulator of 

cardiac contractility and diseases, which are processes that are mediated by Ca2+ cycling abnormalities. 

Given the importance of cellular Ca2+ homeostasis and signaling in cardiac function and pathogenesis, 

a relatively small set of only a few Ca2+-handling miRNAs have been discovered. In addition, clinical 

trials of cardiac disease-related miRNAs have not yet been initiated. Further research is necessary and 

may help us to identify new miRNAs that serve as potent therapeutic targets treating I/R-injured heart, 

allowing the elucidation of more detailed mechanisms of the role of miRNA-Ca2+-related proteins and 

genes in cardiac physiology and pathophysiology. These study results should facilitate more 

appropriate clinical trials to confirm the therapeutic function of miRNAs and the development of new 

drugs to treat cardiovascular diseases. 
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