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Objectives: This study constructed and validated a machine learning model to predict
CD8+ tumor-infiltrating lymphocyte expression levels in patients with pancreatic ductal
adenocarcinoma (PDAC) using computed tomography (CT) radiomic features.

Materials and Methods: In this retrospective study, 184 PDAC patients were randomly
assigned to a training dataset (n =137) and validation dataset (n =47). All patients were
divided into CD8+ T-high and -low groups using X-tile plots. A total of 1409 radiomics
features were extracted from the segmentation of regions of interest, based on
preoperative CT images of each patient. The LASSO algorithm was applied to reduce
the dimensionality of the data and select features. The extreme gradient boosting classifier
(XGBoost) was developed using a training set consisting of 137 consecutive patients
admitted between January 2017 and December 2017. The model was validated in 47
consecutive patients admitted between January 2018 and April 2018. The performance
of the XGBoost classifier was determined by its discriminative ability, calibration, and
clinical usefulness.

Results: The cut-off value of the CD8+ T-cell level was 18.69%, as determined by the X-
tile program. A Kaplan−Meier analysis indicated a correlation between higher CD8+ T-cell
levels and better overall survival (p = 0.001). The XGBoost classifier showed good
discrimination in the training set (area under curve [AUC], 0.75; 95% confidence interval
[CI]: 0.67–0.83) and validation set (AUC, 0.67; 95% CI: 0.51–0.83). Moreover, it showed a
good calibration. The sensitivity, specificity, accuracy, positive and negative predictive
values were 80.65%, 60.00%, 0.69, 0.63, and 0.79, respectively, for the training set, and
80.95%, 57.69%, 0.68, 0.61, and 0.79, respectively, for the validation set.
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Conclusions:We developed a CT-based XGBoost classifier to extrapolate the infiltration
levels of CD8+ T-cells in patients with PDAC. This method could be useful in identifying
potential patients who can benefit from immunotherapies.
Keywords: pancreatic ductal adenocarcinoma, CD8 positive T lymphocytes, contrast-enhanced computed
tomography images, radiomics, prognosis
INTRODUCTION

The microenvironment of pancreatic ductal adenocarcinoma
(PDAC) is highly immunosuppressive and heterogeneous,
characterized by an abundant desmoplastic stroma,
inflammatory response, and neovascularization (1). Even with
surgical resection, the radical resection rate is only approximately
18% (2), and the prognosis remains poor (3). Traditional
chemotherapy is minimally effective, despite some recent
success (4).

Tumors are a proliferation of abnormal cells that can escape
immune eradication (5). The occurrence of immune escape is a
key process in cancer progression. Immunotherapy, which aims
to stimulate the body’s immune system against tumor cells, can
overcome this problem. The recent success of immunotherapy
targeting immune checkpoint inhibitors (ICI), such as the
programmed cell death protein 1 (PD1) and PD1 ligand (PD-
L1) pathways, has shed new light on the treatment of patients
with tumors (6, 7). Nonetheless, treatment with these drugs has
failed to show significant clinical benefit in unselected patients
with PDAC, whose objective response rate to ICI therapy has
been approximately 5% in previous clinical trials (8, 9).
Therefore, there is a clear need to develop related predictive
biomarkers to identify subsets of patients who may benefit from
ICI therapy. An effective ICI therapy prerequisite is a high level
of CD8+ tumor-infiltrating lymphocytes (TILs) in the tumor
tissues, suggesting the importance of investigating CD8+

TILs (10). Immunohistochemistry is the gold standard for
evaluating CD8+ TILs. However, the clinical application of
immunohistochemistry is limited by its invasiveness, time
consumption, tumor heterogeneity, and unrepeatability. In
recent years, liquid biopsy is a hot spot of research. As a rapid
and noninvasive alternative to tissue biopsy, liquid biopsy can
capture circulating leukocytes to reflect cancer immunity (11). In
general, cancer immunity consists of the local immunity in the
tumor microenvironment and the systemic immunity in
circulating peripheral blood (12). However, it is unclear
whether systemic immune response always correlates with
local immune response (12, 13). Takahiro Tsujikawa et al. have
emphasized the utility of local immune monitoring for patient
stratification, which could improve immunotherapy’s success
rate (14).

Computed tomography (CT) is widely used for tumor
detection, staging, and treatment response monitoring in
clinical practice. Recently, radiomic biomarkers have been of
great interest. They may extract spatial and temporal features
from images that are useful in predicting the underlying
molecular mechanisms, the tumor-immune microenvironment,
2

and clinical outcome. Studies dealing with glioma, esophagus,
lung, and liver cancers have shown that several imaging features
extracted by radiomics were closely related to CD8+ TIL density
(15–19). While reports are predicting clinicopathological results
from tissue sections in PDAC (20–22), so far, there are no
radiomic studies revealing the immune environment in PDAC.
Subtyping of the immune microenvironment in PDAC will help
design personalized immunotherapy for patients with PDAC.

Thus, we aimed to develop and validate a radiomic signature
of immune infiltration in PDAC using radiomic data extracted
from contrast-enhanced CT images in this study, which might
help us identify the novel predictors of immunotherapy efficacy.
MATERIALS AND METHODS

Patients
This retrospective single-center cross-sectional study was reviewed
and approved by the Biomedical Research Ethics Committee of
our institution. The requirement for informed consent was waived
by the Institutional Review Board. Data were obtained from
consecutive patients treated for pancreatic cancer at our
institution between January 2017 and April 2018 (Figure 1).

We included patients who (1) had undergone surgical treatment
and (2) had pathologically confirmed PDAC. We excluded patients
who (1) had undergone treatment of any type (radiotherapy,
chemotherapy, or chemoradiotherapy) before the imaging studies,
(2) did not undergo immunohistochemical CD8+ staining, (3) were
not evaluated by contrast-enhanced multidetector computed
tomography (MDCT) within 1 week preoperatively, or (4) had
pancreatic lesions that could not be visualized on MDCT.
Consequently, 184 consecutive patients with PDAC, including 120
men (age: 60.75 ± 10.31 years; range: 27–81 years) and 64 women
(age: 63.11 ± 7.99 years; range: 37–80 years), were included. The
prediction model was developed for a primary set that consisted of
137 consecutive patients, including 93men (age: 60.44 ± 10.16 years;
range: 27–80 years) and 44 women (age: 63.32 ± 7.96 years; range:
37–80 years), admitted between January 2017 and December 2017.
Thus, 47 consecutive patients, including 27 men (age: 61.81 ± 10.94
years; range: 42–81 years) and 20 women (age: 62.65 ± 8.25
years; range: 42–71 years), admitted between January 2018
and April 2018, constituted an independent validation set.

CT Scanning
Multiphasic CT was performed with a pancreas-specific protocol
using 320-slice multidetector-row CT scanners (Aquilion ONE,
Canon Medical Systems, Tokyo, Japan). The details are shown in
Appendix 1.
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Pathological Image Analysis
All specimens were analyzed by two pathologists, one with 30 and
the other with 20 years of experience in pancreatic pathology.
Pathological examination and analysis were standardized as
described previously (23). A CD8 antibody (DakoCytomation,
Glostrup, Denmark) was used in pathological examinations. Each
CD8-stained section was converted to digital pathological images
by the scanner (NanoZoomer S60, Hamamatsu Healthcare,
Japanese). The tumor boundaries were manually delineated,
after which a customizable digital microscopy analysis platform
(Visiopharm, Hørsholm, Denmark) was used to quantify CD8 in
the tumor. The two pathologists examined the results, and the
outcomes were determined by consensus. Subsequently, the
proportion of the area of CD8 was calculated in the tumor.
Frontiers in Oncology | www.frontiersin.org 3
All pathologic results for the following factors were recorded:
(1) T and N stages, which were evaluated based on the American
Joint Committee on Cancer TNM Staging Manual, 8th Edition
(24); (2) grade of differentiation; (3) duodenal invasion;
(4) common bile duct invasion; (5) lymphovascular space
invasion (LVSI); and (6) peripancreatic nerve.

Radiological Imaging Analysis
The details are shown in Appendix 1.

Radiomics Workflow
The radiomics workflow included: (1) image segmentation,
(2) feature extraction, and (3) feature reduction and selection.
The detailed method is shown in Figure 2.
FIGURE 1 | Flow chart visualizing the patient selection process.
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We used the draw tool, which is available in the Editor
module of 3D Slicer version 4.8.1 (open source software;
https://www.slicer.org/), to delineate the tumors in multiple
slices. The details are shown in Appendix 1.

To assess interobserver reliability, ROI segmentation was
performed in a blinded fashion by two radiologists (readers 1
and 2, respectively). To evaluate intraobserver reliability, reader 1
repeated the feature extraction twice during a week period. This
reader completed the remaining image segmentations, and the
readout sessions were conducted over 2 weeks period. Assessments
of interobserver and intraobserver reliability were performed by
obtaining the intraclass correlation coefficient (ICC). ICC values
>0.75 were selected for subsequent investigation.

Statistical Analyses
Normal distribution and variance homogeneity tests were
performed on all continuous variables. Those with normal
distribution were expressed as mean and standard deviation,
Frontiers in Oncology | www.frontiersin.org 4
while those with non-normal distributions were expressed as
medians and ranges. We evaluated the overall survival (OS).
Deaths were set as events, and deaths attributed to other causes
were set as censored observations. Survival times were calculated
from surgery date to the time of death or the end of follow-up
(August 1, 2020). First, the optimal cut-off CD8 level was
determined with the help of X-tile (25). The X-tile program
divided the patients into CD8-low and CD8-high groups,
according to the optimal cut-off value. Kaplan−Meier estimates
were applied to graph the survival curves, and the log-rank test was
performed to analyze the differences between the curves. Second,
we examined the differences in all variables between the CD8-low
and CD8-high groups. Student’s t-test (normal distribution),
Kruskal−Wallis H test (skewed distribution), and the chi-square
test (categorical variables) were used to determine the intergroup
statistical differences. Third, univariate regression analysis was
applied to estimate the effect size between all variables and the
CD8 groups. Fourth, the prediction model was constructed using
FIGURE 2 | Radiomics workflow.
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https://www.slicer.org/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. XGBoost Classifier for Tumor-Infiltrating T-Cell Prediction
an extreme gradient boosting classifier (XGBoost). XGBoost was
performed using R software supplemented with the XGBoost
package. The discrimination of the model was evaluated using a
receiver operating characteristic (ROC) curve. The area under
the curve (AUC) was calculated concurrently. The calibration
of the model was assessed using the calibration curves and
Hosmer−Lemeshow test. Finally, the model’s clinical usefulness
was tested with a decision-curve analysis (DCA) by quantifying the
net benefit at different threshold probabilities.

A two-tailed p-value <0.05 was considered statistically
significant. All analyses were performed using R software
(version 3.3.3, The R Foundation for Statistical Computing,
Vienna, Austria).
RESULTS

Clinical Characteristics
Based on the optimal CD8 level cut-off determined by X-tile
(18.69%; Figures 3A, B), all patients were divided into CD8-
Frontiers in Oncology | www.frontiersin.org 5
high (CD8 >18.69%, n = 101; 54.89%) and CD8-low
(CD8 ≤18.69%, n = 83; 45.10%) groups (Figure 3C). CD8
expression was 28.07 ± 9.12% and 14.17 ± 2.93% in the CD8-
high and CD8-low groups, respectively. Forty-six patients in
the CD8-high group and 48 patients in the CD8-low group
died. The Kaplan−Meier curves of the two groups were
significantly distinct (p = 0.001). A log-rank test showed that
the survival duration in the CD8-high group (22.63 months,
95% CI: 20.20–36.20) was significantly longer than that in the
CD8-low group (14.67 months, 95% CI: 12.13–22.37) (Figure
3D). Among the clinical, pathological, and imaging
characteristics that we investigated, T and N stage in the
training set differed significantly between the two groups. The
patient characteristics are shown in Table 1.

Radiomics Analysis
A total of 1409 radiomics features were extracted from arterial
and portal venous phases, respectively. The ICC interobserver
and intraobserver were good, with 0.70–0.93 and 0.85–
0.90, respectively.
A B

C D

FIGURE 3 | X-tile analysis of survival data in patients with pancreatic ductal adenocarcinoma (A, B) The optimal cut-off CD8+ T-cell level of 18.69%, determined by
X-tile, is used to define the CD8+ T-high and CD8+ T-low groups. (C) CD8+ T in the CD8+ T-low group and the CD8+ T-high group. The chart includes a box plot,
density plot, and dot plot. The 25th and 75th percentiles are shown as connecting lines between groups. (D) The Kaplan-Meier curve and log-rank test suggest that
patients in the CD8+ T-high group survive significantly longer than those in the CD8+ T-low group.
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TABLE 1 | Baseline characteristics of patients with pancreatic cancer.

Characteristics Training set Validation set

CD8+T-high (n=75) CD8+T -low (n=62) P-value CD8+T -high (n=26) CD8+T -low (n=21) P-value

Clinical characteristics
Sex, n (%) 0.48 0.97
Male 49 (65.33) 44 (70.97) 15 (57.69) 12 (57.14)
Female 26 (34.67) 18 (29.03) 11 (42.31) 9 (42.86)

Age, years (mean ± SD) 61.20 ± 9.96 61.56 ± 9.16 0.83 61.85 ± 9.78 62.57 ± 10.04 0.80
BMI, kg/m2 (mean ± SD) 22.98 ± 2.81 23.16 ± 2.88 0.71 94.55 ± 369.17 23.10 ± 2.40 0.38
Operation, n (%) 0.12 0.48
Pancreaticoduodenectomy 41 (54.67) 42 (67.74) 16 (61.54) 15 (71.43)
Distal pancreatectomy 34 (45.33) 20 (32.26) 10 (38.46) 6 (28.57)

Pathological characteristics
T stage, n (%) 0.007 0.12
T1 3 (4.00) 7 (11.29) 0 3 (14.29)
T2 31 (41.33) 37 (59.68) 13 (50.00) 11 (52.38)
T3-4 41 (54.67) 18 (29.03) 13 (50.00) 7 (33.33)

N stage, n (%) 0.01 0.50
N0 33 (44.00) 23 (37.10) 12 (46.15) 7 (33.33)
N1 26 (34.67) 35 (56.45) 9 (34.62) 7 (33.33)
N2 16 (21.33) 4 (6.45) 5 (19.23) 7 (33.33)

Grade of differentiation, n (%) 1.00 0.22
Well-moderately 53 (70.67) 44 (70.97) 17 (65.38) 10 (47.62)
Poorly-undifferentiated 22 (29.33) 18 (29.03) 9 (34.62) 11 (52.38)

Duodenum Invasion, n (%) 0.82 0.97
Negative 51 (68.00) 41 (66.13) 15 (57.69) 12 (57.14)
Positive 24 (32.00) 21 (33.87) 11 (42.31) 9 (42.86)

Bile Invasion, n (%) 0.29 0.13
Negative 49 (65.33) 35 (56.45) 18 (69.23) 10 (47.62)
Positive 26 (34.67) 27 (43.55) 8 (30.77) 11 (52.38)

LVSI n (%) 0.17 0.13
Negative 46 (61.33) 45 (72.58) 18 (69.23) 10 (47.62)
Positive 29 (38.67) 17 (27.42) 8 (30.77) 11 (52.38)

Perineural invasion, n (%) 0.73 1.00
Negative 5 (6.67) 3 (4.84) 2 (7.69) 1 (4.76)
Positive 70 (93.33) 59 (95.16) 24 (92.31) 20 (95.24)

CT characteristics
Tumor size, cm (median, rang) 3.98 ± 1.72 3.44 ± 1.48 0.05 4.17 ± 1.73 3.24 ± 1.42 0.06
Location, n (%) 0.12 0.48
Head 41 (54.67) 42 (67.74) 16 (61.54) 15 (71.43)
Body and tail 34 (45.33) 20 (32.26) 10 (38.46) 6 (28.57)

Pancreatitis, n (%) 0.94 0.41
No 44 (58.67) 36 (58.06) 13 (50.00) 13 (61.90)
Yes 31 (41.33) 26 (41.94) 13 (50.00) 8 (38.10)

PD cutoff and dilation, n (%) 0.86 0.87
No 16 (21.33) 14 (22.58) 8 (30.77) 6 (28.57)
Yes 59 (78.67) 48 (77.42) 18 (69.23) 15 (71.43)

CBD cutoff and dilation, n (%) 0.60 0.72
No 48 (64.00) 37 (59.68) 15 (57.69) 11 (52.38)
Yes 27 (36.00) 25 (40.32) 11 (42.31) 10 (47.62)

Parenchymal atrophy, n (%) 0.30 0.92
No 32 (42.67) 32 (51.61) 12 (46.15) 10 (47.62)
Yes 43 (57.33) 30 (48.39) 14 (53.85) 11 (52.38)

Contour abnormality, n (%) 0.94 0.71
No 10 (13.33) 8 (12.90) 6 (23.08) 3 (14.29)
Yes 65 (86.67) 54 (87.10) 20 (76.92) 18 (85.71)

Cyst, n (%) 0.33 0.30
No 71 (94.67) 56 (90.32) 22 (84.62) 20 (95.24)
Yes 4 (5.33) 6 (9.68) 4 (15.38) 1 (4.76)

Vascular invasion, n (%) 0.47 0.63
No 54 (72.00) 48 (77.42) 19 (73.08) 14 (66.67)
Yes 21 (28.00) 14 (22.58) 7 (26.92) 7 (33.33)
Frontiers in Oncology | www.frontier
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The radiomics features were reduced and selected in the arterial
and portal venous phase images. The radiomics features that did
not significantly differ between the groups or did not show
significant correlations with CD8 expression were excluded. The
remaining 67 radiomics features were further reduced using a
LASSO logistic regression model. Finally, the radiomics
characteristics were reduced to 10 features (Supplemental
Figures 1A, B), and the LASSO logistic regression formula was
used to obtain the rad-score (Table 2). The rad-score was
significantly lower (p < 0.001) in the CD8-high group (median:
-0.43; range: -1.61−1.42) than in the CD8-low group (median:
-0.16; range: -1.16−2.35) (Supplemental Figure 1C).

Univariate Analysis
The results of the univariate analysis (Table 3) demonstrated
that the rad-score and T stage were significantly associated with
CD8 expression.

Development, Performance, and Validation
of the Prediction Model
The performance of the prediction model combining
radiomics features and tumor size is shown in Figures 4 and
5. The AUC values were 0.75 (95% CI: 0.67–0.83) and 0.67
(95% CI: 0.51–0.83) for the training and validation sets,
respectively. The sensitivity, specificity, accuracy, positive
predictive value, and negative predictive value for the
training set were 80.65%, 60.00%, 0.69, 0.63, and 0.79,
respectively, whereas those for the validation set were
80.95%, 57.69%, 0.68, 0.61, and 0.79, respectively. The
calibration curve showed good calibration of the training
(p = 0.92) and validation sets (p = 0.23).
Frontiers in Oncology | www.frontiersin.org 7
Clinical Utility of the Prediction Model
The decision curve of the rad-score is shown in Figure 6. The
decision curves show that with a threshold probability >0.16,
using the XGBoost classifier to predict CD8+ T-cell added more
benefit than the “treat all patients as high CD8+ T-cell” scheme
or the “treat none as low CD8+ T-cell” scheme.
DISCUSSION

Immunotherapy has emerged as a promising treatment in
cancer; assessing patients’ different immune statuses with
PDAC can better help physicians identify those who can
benefit from immune therapies. Although relevant genetic
subtypes have been identified (26, 27), clinicians still lack
reproducible and biologically meaningful biomarkers to
identify patients with favorable prognoses at initial diagnosis.
We focused on the radiomic features extracted from the
pancreatic protocol CT scan, which is widely used in practice,
to identify such a biomarker. Compared with histopathologic
and molecular biomarkers, radiomics has the potential to predict
the molecular profiles of tumors from image phenotypes
inexpensively, non-invasively, and easily. In this study, we
observed that the infiltration of CD8+ TILs is associated with
the prognosis of patients with PDAC. Further, we established a
CT-based radiomic score to extrapolate the tumor immune
infiltration levels in patients with PDAC.

Cellular immunity is important for the immune system and
plays a critical role in eliminating cancer and preventing
inflammation. CD8+ T-cells can lyse tumor cells directly that
expose tumor-specific antigens in various cancers, including
PDAC (28). Quantification of CD8+ TILs, known as the
immunoscore, was developed to evaluate the association
between the infiltration level of CD8+ TILs and patients with
PDAC survival (27, 29–32), with results consistent with those
in our study. Our study used X-tile plots (25), a new
bioinformatics tool for biomarker assessment and outcome-
based cut-point optimization, to provide a global assessment of
every possible way of dividing the patients with PDAC into low-
and high-level CD8 expression. All patients were divided into
either CD8-high (CD8 >18.69%, n = 101; 54.89%) or CD8-low
(CD8 ≤18.69%, n=83; 45.10%) groups, based on the optimal
cut-off of CD8 level, as determined by x-tile (18.69%).
Furthermore, a log-rank test showed that the survival
duration in the CD8-high group (22.63 months, 95% CI:
20.20–36.20) was significantly longer than that in the CD8-
low group (14.67 months, 95% CI: 12.13–22.37).

Compared to the immunoscore of surgical tissue samples,
measuring the level of CD8+ TILs by radiomics is more
convenient, which is especially important in patients with
unresectable PDAC. Sun et al. built a CT-based radiomic
signature to assess CD8+ TIL infiltration determined by RNA-
seq data (33). More than fifteen types of tumors were included in
this study, but not PDAC. We are the first to have investigated
the possibility of extrapolating the infiltration levels of CD8+

TILs in PDAC using radiomics based on CT in both a training
TABLE 2 | The radiomics features selected by Lasso Regression.

Phase Prediction model

Intercept -0.1905
ß Radiomics name

Arterial phase
-0.095 exponential_firstorder_Median
0.028 exponential_firstorder_Variance
0.0403 square_glszm_SmallAreaLowGrayLevelEmphasis
-0.0705 wavelet-LHH_firstorder_Mean
0.0965 wavelet-HLH_glszm_SizeZoneNonUniformity
-0.1691 wavelet-HLH_glszm_LowGrayLevelZoneEmphasis
0.2466 wavelet-HHH_firstorder_Mean
0.1375 lbp-2D_firstorder_Skewness

Portal venous phase
-0.1429 wavelet-LLH_glszm_SmallAreaHighGrayLevelEmphasis
-0.2314 wavelet-HHL_glszmSmallAreaEmphasis
Radiomics score = -0.1905 - 0.095 × exponential_firstorder_Median (Arterial phase).
+ 0.028 × exponential_firstorder_Variance (Arterial phase).
+ 0.0403 × square_glszm_SmallAreaLowGrayLevelEmphasis (Arterial phase).
- 0.0705 × wavelet-LHH_firstorder_Mean(Arterial phase).
+ 0.0965 × wavelet-HLH_glszm_SizeZoneNonUniformity(Arterial phase).
- 0.1691 × wavelet-HLH_glszm_LowGrayLevelZoneEmphasis (Arterial phase).
+ 0.2466 × wavelet-HHH_firstorder_Mean (Arterial phase).
+ 0.1375 × lbp-2D_firstorder_Skewness (Arterial phase).
- 0.1429 × wavelet-LLH_glszm_SmallAreaHighGrayLevelEmphasis (Portal phase).
- 0.2314 × wavelet-HHL_glszmSmallAreaEmphasis (Portal phase).
May 2021 | Volume 11 | Article 671333
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and validation cohort. The rad score can reflect the infiltration
level of CD8+ TIL, and the association between lower rad scores
and higher CD8+ TIL infiltration can be observed, suggesting
Frontiers in Oncology | www.frontiersin.org 8
that the rad score may be an important prognosis biomarker for
patients with PDAC. Furthermore, the DCA test showed that the
rad-score could effectively facilitate clinical decision-making.
TABLE 3 | The result of univariate analysis.

Variables Training set Validation set

OR (95% CI) p- Value OR (95% CI) p- Value

Rad-score 5.16 (2.10, 12.68) 0.0004 4.99 (1.47, 16.93) 0.01
Sex
Male 1.0 1.0
Female 0.77 (0.37, 1.59) 0.48 1.02 (0.32, 3.27) 0.97

Age 1.00 (0.97, 1.04) 0.82 1.01 (0.95, 1.07) 0.80
BMI 1.02 (0.91, 1.15) 0.71 1.00 (0.98, 1.01) 0.70
Operation
Pancreaticoduodenectomy 1.0 1.0
Distal pancreatectomy 0.57 (0.29, 1.16) 0.12 0.64 (0.19, 2.20) 0.48

T stage
T1-2 1.0 1.0
T3-4 0.34 (0.17, 0.69) 0.0029 0.50 (0.15,1.64) 0.25

N stage
N0 1.0 1.0
N1 1.93 (0.93, 4.03) 0.08 1.33 (0.34, 5.19) 0.68
N2 0.36 (0.11, 1.21) 0.10 2.40 (0.55, 10.53) 0.25

Grade of differentiation
Well-moderately 1.0 1.0
Poorly-undifferentiated 0.99 (0.47, 2.07) 0.97 2.08 (0.64, 6.74) 0.22

Duodenum Invasion
Negative 1.0 1.0
Positive 1.09 (0.53, 2.23) 0.82 1.02 (0.32, 3.27) 1.00

Bile Invasion
Negative 1.0 1.0
Positive 1.45 (0.73, 2.90) 0.29 2.47 (0.75, 8.17) 0.14

LVSI
Negative 1.0 1.0
Positive 0.60 (0.29, 1.24) 0.17 2.47 (0.75, 8.17) 0.14

Perineural invasion
Negative 1.0 1.0
Positive 1.40 (0.32, 6.13) 0.66 1.67 (0.14, 19.76) 0.69

Tumor size (cm, mean ± SD) 0.80 (0.64, 1.01) 0.06 0.66 (0.42, 1.04) 0.07
Location
Head 1.0 1.0
Body and tail 0.57 (0.29, 1.16) 0.12 0.64 (0.19, 2.20) 0.48

Parenchymal atrophy
No 1.0 1.0
Yes 0.70 (0.35, 1.37) 0.30 0.94 (0.30, 2.98) 0.92

PD cutoff and dilation
No 1.0 1.0
Yes 0.93 (0.41, 2.09) 0.86 1.11 (0.31, 3.92) 0.87

CBD cutoff and dilation
No 1.0 1.0
Yes 1.20 (0.60, 2.40) 0.60 1.24 (0.39, 3.94) 0.72

Pancreatitis
No 1.0 1.0
Yes 1.03 (0.52, 2.03) 0.94 0.62 (0.19, 1.98) 0.42

Contour abnormality
No 1.0 1.0
Yes 1.04 (0.38, 2.82) 0.94 1.80 (0.39, 8.27) 0.45

Cyst n (%)
No 1.0 1.0
Yes 1.90 (0.51, 7.07) 0.34 0.28 (0.03, 2.67) 0.27

Vascular invasion
No 1.0 1.0
Yes 0.75 (0.34, 1.64) 0.47 1.36 (0.39, 4.76) 0.63
May 2021 | Volume 11 | Articl
OR, odds ratio; CI, confidence interval; Rad-score radiomics score; BMI, body mass index; LVSI, lymphvascular space invasion; PD, pancreatic duct; CBD, common bile duct; Rad-score,
radiomics score.
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The intra-tumor heterogeneity assessed by radiomics may
reflect genomic heterogeneity, and tumors with more genomic
heterogeneity are more likely to resist therapy and develop distant
metastasis; thus, they tend to predict a worse prognosis (14, 34–36).
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Textureanalysis is anobjectivemathematicalmethodbasedon their
gray levels and spatial relationships (37). The most widely used
texture analysis methods are the gray-level co-occurrence matrix
(GLCM) and gray-level run-length matrix (GLRLM) (38).
FIGURE 4 | Comparison between patients with low and high CD8+ T-cell infiltration (A–C) Patient 1: A 65-year-old man with PDAC in the CD8+ T-high group.
(A) CD8+ T-cell infiltration is high (×20). (B) The axial portal-phase CT image shows an infiltrative, low-attenuation mass (arrows) located at the pancreatic head. (C)
The prediction probability of low CD8+ T infiltration was 80.58% by XGBoost classifier. (D–F) Patient 2: A case of a 49-year-old man with PDAC in the CD8+ T-low
group. (D) CD8+ T-cell infiltration is low (×20). (E) The axial portal-phase CT image shows an infiltrative, low-attenuation mass (arrows) located at the pancreatic body
and tail. (F) The prediction probability of low CD8+ T-cell infiltration is 70.07% by XGBoost classifier.
A B

FIGURE 5 | Receiver operating characteristic (ROC) curves and calibration curves of the extreme gradient boosting (XGBoost) classifier (A) ROC curves of the
XGBoost classifier in the training and validation set. (B) Calibration curves of the XGBoost classifier in the training and validation set.
May 2021 | Volume 11 | Article 671333
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GLCM can describe the pixel distribution within a region and
indicate the frequency of various combinations of grey values
observed (38). GLRLM describes the relationships in linear one-
dimensional terms (39). Chen et al. observed that highly immune
infiltratedHCCsweremorehomogenous, explaining thehigh value
of GLCM (17). Sun et al. observed that GLRLM could be
representative of inflammatory infiltrate, which could reflect
homogeneity or heterogeneity of an image (33). In our study, the
radiomic signature comprised textural features from the gray-level
size-zone matrix (GLSZM). GLSZM is an extended version of
GLRLM that describes the size and intensity of voxels clusters in
a region of interest (40), which has proven useful when the main
characteristic is heterogeneity (40).

There are several limitations to this study. First, our validation
cohort was from the same center as the training cohort, which
restricts our findings’ generalizability to other centers. Second, as a
retrospective single-center study, the relatively small sample size
may weaken our conclusion. The sample size should be increased
to help draw a more reliable result. Third, a few studies have found
the importance of joint analysis of PD-L1 expression with CD8
expression, which may explain the mechanism of the
immunosuppressive microenvironment of PDAC (20, 41, 42).
However, several studies (20, 41) have observed that the PD-
L1-/CD8high subtype had the best survival, whereas patients with
low CD8 expression had similar survival regardless of PD-L1
status, which means the endogenous CD8+ TIL-mediated
antitumor immune response may play a key role in the
Frontiers in Oncology | www.frontiersin.org 10
prognosis of patients with PDAC. Therefore, evaluating CD8
infiltration levels should be prioritized in a limited timeframe.
Fourth, a few recent studies have suggested that the combination
of intratumoral and peritumoral radiomics is more effective in
predicting therapeutic outcomes (17, 43). Therefore, in the future,
further studies involving peritumoral radiomics in larger
populations are needed. In addition, the prediction performance
of XGBoost in this study is not fully satisfactory, so we will
continue to explore other deep learning models to improve the
diagnostic efficiency in the future.
CONCLUSION

In conclusion, our study established and validated an enhanced
CT-based rad-score for predicting the infiltration level of CD8+

TILs in patients with PDAC. This rad-score may be useful in the
pretreatment prediction of individual patient immunoscores
to guide accurate prognosis prediction and precision
immunotherapy for patients with PDAC.
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