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Functional annotation of sixty-five 
type-2 diabetes risk SNPs and its 
application in risk prediction
Yiming Wu1, Runyu Jing2, Yongcheng Dong3, Qifan Kuang1, Yan Li1, Ziyan Huang1, Wei Gan4, 
Yue Xue1, Yizhou Li1 & Menglong Li1

Genome-wide association studies (GWAS) have identified more than sixty single nucleotide 
polymorphisms (SNPs) associated with increased risk for type 2 diabetes (T2D). However, the 
identification of causal risk SNPs for T2D pathogenesis was complicated by the factor that each risk SNP 
is a surrogate for the hundreds of SNPs, most of which reside in non-coding regions. Here we provide 
a comprehensive annotation of 65 known T2D related SNPs and inspect putative functional SNPs 
probably causing protein dysfunction, response element disruptions of known transcription factors 
related to T2D genes and regulatory response element disruption of four histone marks in pancreas and 
pancreas islet. In new identified risk SNPs, some of them were reported as T2D related SNPs in recent 
studies. Further, we found that accumulation of modest effects of single sites markedly enhanced 
the risk prediction based on 1989 T2D samples and 3000 healthy controls. The AROC value increased 
from 0.58 to 0.62 by only using genotype score when putative risk SNPs were added. Besides, the net 
reclassification improvement is 10.03% on the addition of new risk SNPs. Taken together, functional 
annotation could provide a list of prioritized potential risk SNPs for the further estimation on the T2D 
susceptibility of individuals.

Type 2 diabetes currently believed to be a complex disease and affects millions of peoples worldwide. While 
onset and progression of T2D are due to a complex interplay of multiple genetic, epigenetic, environmental and 
developmental factors1. The prevalence of T2D poses a scientific and methodological challenge and appeal to 
researches in prediction of high-risk subjects.

The incidence of T2D can be prevented substantially through insistently physical and pharmacological inter-
ventions in high-risk individuals while receiving forewarning alert from risk predictions. The clinical factors, 
including BMI index, sex, hypertension, fasting plasma glucose, waist circumstance and family history of diabe-
tes, are frequently used in previous risk models2–9. These apparent traits are considered to be direct or indirect 
inducing factors to make individuals susceptible to type 2 diabetes. As a matter of fact, the nature of clinical 
factors is phenotypes of genomes which are born to maintain individual differences. With the genome wide asso-
ciation studies, more and more common genetic variants are identified having convincing associations with risk 
of diabetes10. These variants may account for onset of obesity and familial forms of diabetes and their discovery 
promote a dozen of work in predicting individuals at risk of T2D by integrating clinical factors and genetic risk 
scores in form of summing up the number of risk alleles11,12. However, the increase in predictive scores is under 
expectation. It seems that T2D risk prediction at the limit of risk loci detection13,14. Novel analytic methods and 
more efficient use of biomarkers are required for more accurate risk models.

Fortunately, due to ongoing advances provided by genome-wide association studies (GWAS) and next gen-
eration sequencing analyses, the genomic and epigenetic data enrich the field about understanding functional 
significance of known risk SNPs15. Although the identification of risk SNP is critical in illustrating the relation-
ship between human variants and risk for polygenetic disorders, most risk SNPs reside in large introns or distal 
to coding exons, which in the past are treated as the junk areas in human genome. However, regulatory elements 
are confirmed in these gene deserts through massive efforts16. Also, it is known that the tag SNPs identified in 
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association study are usually in linkage disequilibrium to surrogate SNPs. They are proxy SNPs for each other, 
the surrogate SNPs often play the functional role in related to risks, but not the tag SNPs in the GWA study17–19. 
Invoking by recent works which successfully annotated known tag SNPs in several kind of cancers, we conducted 
functional annotation of 65 known risk SNPs related to type 2 diabetes. To meet the demand of improving the 
T2D risk model. The identified putative risk SNPs are further employed in risk predictions as new biomarkers 
(see Fig. 1).

In present work, we extract all linked SNPs in a 1 MB window around the 65 tag SNPs. Further analyses were 
implemented on the candidate SNPs that are in high LD (r2 ≥​ 0.5) with tag SNPs and meanwhile overlap exons, 
transcription stat site (TSS) regions and histone modification related regions. For SNPs in exons, we primarily 
identified the non-synonymous SNPs which probably shift protein functions. In TSS regions, the linked SNPs 
were inspected whether they will affect the proximal regulatory elements by generating disruptions on binding of 
transcription factors (TFs), especially, those related to genes involving in onset of diabetes. For the SNPs locating 
in histone modification regions, depending on epigenetic data and RNA-seq data of pancreas and pancreas islet, 
we set up three conditions to sort out SNPs having a high probability of affecting gene regulations and expres-
sions. Among all putative risk SNPs through our functional annotations, some of them were yet reported to have 
relations with T2D in previous works or have eQTL hits, several of them were analyzed in very recent T2D stud-
ies, only a small fraction of them have not been reported to have T2D relations.

All putative risk SNPs in aforementioned analyses are mapped to the GWAS data of 4989 British cohort from 
WTCCC, the genotyped sites are employed to test the hypothesis that the accumulation of tiny effects of risk 
SNPs would enhance the risk model. Consequently, the area under the curve (AROC) increases from 0.58 to 0.62 in 
logistic regression model by only using genotype score. Additionally, the net reclassification improvement (NRI) 
index is 10.03% by adding the new biomarkers. Our work suggested that the integration of genetic and epigenetic 
data provides a deeper understanding of known disease-related SNPs, and functional annotations are capable of 
collecting modest effects of risk SNPs. It may potentially improve the T2D risk models based on clinical factors.

Methods
Study population.  The WTCCC group devotes massive effort to exploring the utility, design and analy-
ses of genome-wide association studies. Their unflagging effort has provided us available genotype data of over 
60,000 individuals, including 2,000 T2D samples20. Among them, eleven individuals having duplicated genotypic 
data are excluded, thus 1989 T2D samples remain in our study. The control group contains 3,000 healthy con-
trols, including 1,500 samples from the 1958 British Birth Cohort and 1,500 samples from the UK Blood Service 
Control Group. For the genotypes called by BRLMM, it is recommended that those with score >​0.5 be treated as 
no calls. Finally, over 500,000 SNPs related to samples are genotyped.

Genetic and epigenetic data.  The integration genetic and epigenetic data enable a comprehensive func-
tional annotation of risk SNPs, which are considered as the first step in understanding the underlying molecu-
lar mechanism of pathogenesis of type 2 diabetes. Here, as many as sixty-five confirmed risk SNPs of T2D are 
employed (details see Supplementary Table S1). They were employed in a recent T2D risk estimation research21.

Figure 1.  The flowchart of whole procedures, including FunciSNP results on 65 T2D related SNPs. Shown 
is the flowchart of present work. SNPs in linkage disequilibrium with 65 T2D risk SNPs were obtained by 
FunciSNP. Functional annotations were executed on high LD SNPs (r2 >​ 0.5) by integrating genomic, epigenetic 
and transcriptomic data. The putative risks result from annotations were employed for the improvement of risk 
model.
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A key part of our work is to determine whether the LD SNPs affect the gene expression or regulations on genes 
at their locations. Herein, we concentrate on three regions on the human genome: the exon regions, TSS regions 
and histone modification areas. The coding exon comes first because they are the determinants of transcription 
products. The annotations of the exons are obtained from ENCODE V19. This dataset also provide us positions 
of the transcription start sites of human genome. Based on these TSS positions, 2 kb upstream and downstream 
of the start site are included as the TSS regions because several works have shown that transcription factors can 
bind on both side of a start site. The histone modification datasets are provided by Roadmap Epigenomics Project, 
whose data repository on the NCBI Epigenomics Gateway where the chromatin state datasets are open sources. 
As we know that epigenetic events contribute to the etiology of diabetes, H3K4me1, H3K4me3 and H3K27ac 
are selected for gene activation analyses and H3K27me3 is employed for gene repression analysis22. Besides, 
the RNA-seq data of pancreas and pancreas islet are also obtained from NCBI for gene expression analysis. All 
genomic location information is based on hg19, the data on other genome coordinates is converted to hg19 by 
LiftOver in UCSC.

Functional annotation and related tools.  The present work initiates from 65 tag SNPs. the putative risk 
SNPs in linkage disequilibrium with these known risk SNPs are identified by FunciSNP, an R package that allows 
a population based identification of LD SNPs from 1,000 genome project23. FunciSNP had successfully assisted 
annotation works of risk SNPs associated with several kinds of cancer17,18,24. SNPs involved in coding exons are 
known to probably cause single amino acid substitutions, which are considered as risk factors related to dysfunc-
tion of proteins. Four well-known predictor, poly-phen2, SIFT, PROVEAN and FATHMM, are used to identify 
the deleterious missense variants25–28. In analyses of SNPs involved in TSS region, we perform in silico search 
of detecting TF response elements by utilizing FIMO and HOMER, aiming at a full utilization of known TF 
motifs. In addition, an R/Bioconductor package MotifBreakR measures the extent that how much variant affects 
the TF response elements29. For identification of SNPs may cause dysregulations, we use cufflinks to analyze the 
RNA-seq data of pancreas and pancreas islet30.

Model construction and measurements.  In present work, we quantify the performance of putative risk 
SNPs from aforementioned functional annotation works in testing the hypothesis that cumulative effects of risk 
SNPs would elevate predictive scores. The risk score/genotype score is obtained by summing up the number of 
risk alleles. Logistic regression model is fitted to get the odds ratios of SNPs, including the known risk variants 
and the putative ones. To assess the performance of new added biomarkers, we calculate the area under curves 
(AROC) through the overall results, which are generated from a 10-fold cross-validation by logistic regression 
classification in R. Improvement in the ROC areas represent for the enhancement that new biomarkers bring 
in. Furthermore, the contributions of putative risk SNPs are more precisely assessed by the net reclassification 
improvement (NRI) method which tells the numbers of subjects moving to another risk category or remaining 
in the same risk category while the risk model updates by adding new SNPs. This procedure is operated through 
R package ‘PredictABEL’.

Results
Functional annotation of LD SNPs in exons.  132 exon SNPs were identified in linkage disequilibrium 
(r2 >​ 0.5) with the 65 tag SNPs for type 2 diabetes. Among these linked SNPs, only 37 (28%) locate in the coding 
region, including 20 synonymous and 17 missense SNPs. While the synonymous SNPs are usually known as 
benign variants which not change the coding products, the missense SNPs are potential to generate deleterious 
single amino acids substitutions. We preliminarily estimated the functional effects of these 17 missense SNPs 
by using four well-established tools SIFT, Polyphen2, PROVEAN and FATHAMM, respectively. The results are 
summarized in the Table 1. Six SNPs (rs2228603, rs58542926, rs17240268, rs13266634, rs1260326, rs1051334) 
were regarded as suspected in generating deleterious single amino acid changes which was predicted dysfunc-
tion by at least one algorithm. The rs13266634 is firmly associated with decreased insulin release31. The effects 
of rs58542926 could influence the hepatic fibrosis progression in patients with non-alcoholic fatty liver disease 
(NAFLD)32. The rs2228603 is most strongly associated with hepatic triglyceride content (HTGC), an index closely 
related to fatty liver disease33. The rs1260326 is another missense variant related with hyperglycemia, which was 
also related with liver fat content confirmed in a very recent work34. The rs17240268 and rs1051334 were also 
analyzed in some works but no conclusions were drawn that they are relevant to onset of T2D. For the other exon 
SNPs, located in the UTR regions, ten have phased genotype information for both T2D samples and healthy con-
trols. We then investigated whether these SNPs involved in the microRNA binding by the integrated resources 
of miRcode and miRNASNP database35,36. Three SNPs were identified related to gain/loss target of miRNA. One 
regulated gene NOTCH2 was reported in pathogenesis of T2D in previous works (see Table 2).

LD SNPs affect TF binding in Promoter regions.  We then investigated those SNPs located in the pro-
moter regions for their effects on the transcript factor binding. 2 kb upstream and downstream of the transcript 
start site (TSS) was taken as the TSS region which harbors proximal promoters. Through using the FunciSNP 
by taking TSS regions as the biofeatures, we detected 252 high LD (r2 >​ 0.5) SNPs. These SNPs involving in TF 
binding sites are likely to alter response elements, further possibly affect regulated genes. Limited by the experi-
mentally verified TF binding motif, two well-established tools, HORMER and FIMO37,38, were employed to define 
the binding motif in the promoter regions. The former used build-in known motifs and the later employed TF 
binding profiles from JASPAR 201639. 188 LD SNPs were found involved in binding sites, among which 125 SNPs 
related to more than two binding events. Firstly, the activity of SNPs and motifs are simply measured by count-
ing the number of affected motifs and disturbing SNPs in respectively (See details in Supplementary Table S2). 
On our hypothesis that the active SNPs/motifs are largely considered increasing risks in gene dysregulations. 
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Actually, we have found some cases related to T2D in high ranking SNPs/motifs. For example, Ptf1a40, identified 
as the most heavily affected motif in HOMER, is broadly accepted as a vital TF in pancreases functions. To fur-
ther assess the effects of LD SNPs on likely transcription factor binding sites, we used motifbreakR to identify 
the extent that how much information gain or lost in a loci where the alternate allele compares to the reference 
allele. Through an in-house calculating by R program, we separately obtain effects that the 188 LD SNPs play on 
HOMER motifs and JASPAR motifs with default setting (See details in Supplementary Tables S3 and S4). Among 
these LD SNPs in TSS region, only 17 SNPs are genotyped in our GWAS data, thus we analyze these genotyped 
SNPs. The results from motifbreakR are collectively displayed in Supplementary Table S5. We found all the geno-
typed SNPs have strong effects on binding more or less, but how much the correlation with the T2D related genes? 
We next made an analysis on the function of the related genes.

Functional annotation of TF affected genes.  To identify the T2D related genes that may affected by the 
TF binding, we first collected the nearby genes of the TSS SNPs and analyzed their functions by DAVID41. Finally, 
we got 13 enrichments for representing function of the TSS SNP related genes. The highest enrichment score is 
5.29 and it contains only four disease terms directly towards type 2 diabetes (see Supplementary Fig. S1A). The 
second cluster (enrichment score: 2.02; Supplementary Fig. S1B) tremendously associated with the GO terms 
about biological process of homeostasis. We took out genes from the top two enrichments (enrichment score >​2):  
CDKAL1, ADIPOQ, WFS1, NOTCH2, MAEA, THADA, PROX1, IGF2BP2, PPARG, ADAM30 and GCKR. 
Comparing with 65 known risk SNPs related genes, we found that ADIPOQ and ADAM30 are only related to LD 
SNPs. Actually, both of them are not newly detected T2D related genes. ADIPOQ is expressed in adipose tissue 
exclusively and it is dysregulated in obesity42. ADAM30 is also frequently discussed in T2D researches because 
it is related to some proxy SNPs in high linkage disequilibrium with risk SNPs. Next, we look up genes in afore-
mentioned two enrichment sets from TF strong related genes in Supplementary Table S5. As a result, only one 
gene, the PPARG, is hit among T2D high correlated genes. By inspection, it is a vital gene appeared in dozen of 
T2D researches and it mainly expresses in adipose tissue43,44. Once it was designed as target of small molecules in 
curing T2D and obesity. The SNPs strongly affect TF binding and further possibly dysregulate genes are treated as 
putative high risk SNPs (red one in Supplementary Table S5).

T2D risk-related SNPs in distal regulatory elements.  We have analyzed the T2D LD SNPs in exon 
and promoter region. Actually, most of LD SNPs do not fall within these areas but in non-coding regions. They 
don’t have close relation with specify genes or gene correlated promoter regions, which make them not easily to 
be interpreted. However, still it is possible that a LD SNP laying in distal regulatory element increases T2D risk 

SNP gene AA change SIFT polyphen2 PROVEAN FATHMM

rs7578597 THADA T1187A Tolerated benign Tolerated Tolerated

rs2228603 NCAN P92S Tolerated probably damaging Tolerated Tolerated

rs58542926 TM6SF2 E167K Tolerated probably damaging Tolerated Tolerated

rs2641348 ADA30 L359P Tolerated benign Tolerated Tolerated

rs11073964 VP33B G514S Tolerated benign Tolerated Tolerated

rs56200889 ARAP1 Q1047E Tolerated benign Tolerated Tolerated

rs17240268 AMPN A311V Tolerated possibly damaging Tolerated Tolerated

rs13266634 ZNT8 R276W Tolerated NA NA Damaging

rs1801212 WFS1 V333I Tolerated benign Tolerated Tolerated

rs1801214 WFS1 N500K Tolerated NA Tolerated Tolerated

rs734312 WFS1 R611H Tolerated benign Tolerated Tolerated

rs5219 IRK11 K23E Tolerated benign NA Tolerated

rs757081 NUCB2 Q338E Tolerated benign Tolerated Tolerated

rs757110 ABCC8 A1369S Tolerated benign Tolerated Tolerated

rs2276904 UVSSA R391H Tolerated benign Tolerated Tolerated

rs1260326 GCKR L446P Tolerated possibly damaging Tolerated Tolerated

rs1051334 TSPAN8 S213A Damaging benign Tolerated Tolerated

Table 1.   Assessment of missense SNPs in exon regions. SNPs potentially disrupting the functions of proteins 
were assessed by four well-known predictors.

SNP gene miRNA_id location

rs3810511 GDAP1L1 miR-423/486/3184/4688 3′​UTR

rs17069879 PRICKLE2 miR-582/320e 3′​UTR

rs835575 NOTCH2 miR-5590 3′​UTR

Table 2.  MicroRNA target SNPs. 13698345156. The genotyped SNPs located in exons and involved in 
microRNA targets.
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by activating or repressing gene expressions. To address this issue, we use histone marks to determine which of 
the LD SNPs are likely to be part of regulatory elements. Four histone modifications for pancreas and pancreas 
islet are obtained from the NIH Roadmap Epigenome Mapping consortium, including H3K4me1, H3K4me3 
and H3K27ac associated with gene activation and H3K27me3 related to gene repression. We broadly retrieved 
candidate risk SNPs by separately using these eight histone modification datasets as biofeatures in FunciSNP. 
As a result, 2786 unique SNPs are in high LD (r2 >​ 0.5) with known risk SNPs and 191 of these unique SNPs are 
successfully genotyped in our T2D GWAS data. Only genotyped SNPs can be utilized in risk model, so we limit 
our studies to prioritizing the genotyped LD SNPs. Among the SNPs strongly affected TFs, those ultimately regu-
lating expressed genes are considered as high risk SNPs. The prioritizing procedure includes three steps to choose 
SNPs with high probability in regulating genes. The first step, we inspect the overlapped SNPs involving in distal 
regulatory element and transcription factor binding sites, 128 of 191 genotyped SNPs affected at least one motif. 
Secondly, like the procedure in analyzing TSS SNPs, we retrieved the SNPs that have strong effects on binding 
assessed by motifbreakR. The threshold set to 0.85 to obtain SNPs having strong effects on binding, only seven 
SNPs are eliminated in this process. The final step, we download the RNA-seq data of pancreas and pancreas-islet 
from NIH epigenomic roadmap and calculated the FPKM values of genes by using cufflinks (reference genome: 
RefSeq gene, hg19). 649 genes (FPKM >​ 1) are considered as expressed genes. Next, we inspect the SNPs whose 
strongly affected transcript factors targeting at these expressed genes. As a result, 18 SNPs involved in regulating 
gene expression and two expressed genes (JUN, FOXC1) are affected (see Supplementary Table S6).

SNPs involved in co-occurrence of histone marks.  Histone modifications are known to act in a com-
binatorial fashion n to determine the overall outcome of gene expression. Besides, it is believed that combina-
tional transcription factor binding existed in human gene transcription. In a recent work, Lorenzo found that 
five β​-cell transcription factors frequently bind to overlapping genomic sites45. However, the gene transcription 
mechanism driven by these combinational effects remain poorly described. How a tiny variant effect is ampli-
fied in these combined events is yet to know. Driven by these concerns and support from existing works, we 
preliminarily discussed SNPs residing in the colocalizations of histone marks. Among the genotyped SNPs 
related to histone modifications, the numbers of SNPs occupying the overlaps between two histone marks are 
listed in Fig. 2. In general, the activation related histone modifications harbored more high LD SNPs, which is 
in consistent with Lorenzo’s finding that risk SNPs associated with type 2 diabetes are enriched in clustered islet 
enhancers. Besides, the minimized overlapping existed between H3K27me3 and H3K27ac. Once, Reena found 
that H3K4me3 marks and H3K27me3 marks are usually mutually exclusive in islets22. In this work, H3K27me3 
marks broadly harbored less overlapped SNPs with the activation marks. Our results supported Reena’s finding, 
but the underlying mechanism need to be addressed in future works. The similar results can be obtained by 
using all LD (r2 >​ 0.5) SNPs related to histone modifications, the results are shown in Fig. S2. Considering the 
localization offsets between tissues, we separately obtained 188 and 166 overlapped SNPs in islet and pancreas. 
The intersections (163 SNPs) between them are of high confidence affecting multiply histone marks. To further 
address their potential risks in T2D pathogenesis, we identified those strongly affect motifs in aforementioned 
works and located in active enhancer clusters which were demonstrated to be regions where are bound by mul-
tiple transcription factors in a recent research45. Finally, 102 and 16 SNPs remained respectively. The annotation 
results of histone marks related SNPs are summarized in Supplementary Table S6, rs7901695 and rs2612069 
meet all three conditions set in detecting SNPs affecting regulations, rs7901695 had been reported in many T2D 

Figure 2.  Distributions of genotyped SNPs reside in different colocalization histone marks. It was reported 
that variants associated with type 2 diabetes are enriched in clustered iselet enhancers. In present work, 
H3K27me3 marks broadly harbored less overlapped SNPs with the activation marks.
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researches, rs2612069 was reported as a T2D related SNP in Ballantyne’s very recent work46. Besides, three of 
them (rs1333051, rs1531343, rs1470579) were reported as the confirmed T2D risk SNPs in Europeans in a recent 
work10. We also provide the number of eQTL hits which are obtained from HaploReg for SNPs in histone marks 
(see details in Supplementary Table S7)47. Here we have finished the functional annotation of 65 T2D related risk 
SNPs, a detailed circos plot (Fig. 3) summarized the locations and annotations of known risk SNPs. In Fig. 3, the 
potential risk LD SNPs, those pointed by shot orange lines, were further employed by risk model.

The cumulative effects of risk SNPs.  So far the underling mechanism of such risk SNPs is unknown; it 
is believed that single SNPs have too modest effects to lead pathogenic changes. Although the developing GWAS 
study was increasing the number of identified risk SNPs of T2D, the updating researches find the predicting 
evaluation is small by using latest risk SNPs. However, the accumulation of such modest effects is considered 
to widen the implicated process leading to T2D over a lifetime. To address this issue, we count the risk alleles 
of all the high risk SNPs and compared the deviation of unweighted genotype scores distribution between T2D 
samples and healthy controls. At different genotypic risk scores by summing up risk alleles of SNPs from different 
genomic regions, generally, a greater proportion of T2D individuals carry more risk alleles than healthy controls 
(t-test, P =​ 1.5583 ×​ 10−51). Besides, the degree of separation between two distributions increased along with the 
increasing number of risk SNPs (see Fig. 4).

Association and discrimination using putative risk SNPs.  Unlike previous works adding genotypic 
risk score to multiple clinical factors to improve risk model, we primarily test the accumulative effects of putative 
risk SNPs. We used the 17 genotyped SNPs of 65 known risk SNPs as the benchmark. The putative high risk SNPs 
identified in aforementioned functional annotation works are employed as new biomarkers in logistic regression 
and discrimination. The model 1 and model 2 were fitted by using benchmark data set and all SNPs respectively. 
The two models were compared by Chi-squared test (P =​ 2.2 ×​ 10−16). The regression coefficients of all putative 
risk SNPs are estimated from logistic regression model. SNPs with P-value less than 0.05 were listed in Table 3. 
Next, we obtained the AROC result from the discrimination based on unweighted genotype score. We compared 
the performances by integrating benchmark sets with SNPs from different genomic regions. The results are shown 
in Fig. 5. The AROC for the known risk SNPs is 0.58. It marginally increased to 0.59 after the addition of exon SNPs 
and TSS SNPs. The AROC reached 0.62 when the genotype sore is generated by summing up risk alleles of all SNPs. 

Figure 3.  Genome-wide summary of functional annotations of 65 risk SNPs. Detailed map of the locations 
and annotations associated with risk for type 2 diabetes throughout the human genome. From central circle to 
outside, each gives the names of proximal genes, tag- or risk- SNPs, correlated SNPs in high LD with risk SNPs. 
Correlated SNPs pointed by orange short lines are putative risk SNPs through functional annotations.
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The addition of histone SNPs almost reached the greatest AROC value. Although the magnitude of improvement 
seems small still, it is worth noting that the genotype score is the only feature in the risk model. Moreover, its 
cumulative effect was detected in prediction, we anticipated that it will enhance the risk model by integrating with 
multiple well established clinical factors.

Net reclassification improvement.  Furthermore, the contribution of our identified putative risk SNPs 
are assessed by net reclassification improvement (NRI) measurement48, which representing the proportion of 
individuals that correctly move from one category to another while the new risk biomarkers are added into the 
regression model, i.e. a T2D individual shift to a higher risk category or a heathy control step into the lower risk 
categories. The unweighted genotype score including all putative risk variants are added into the reclassification 
and the results are shown in Table 4. With The risk cutoff of (≥​0.2, 0.2–0.4, 0.4–0.6, ≤​0.6), we obtain a categorical 
NRI of 10.03% [95% CI: 6.58%–13.46%; P <​ 0.001], composed of an absent NRI of −​0.63% and a present NRI 
of 10.66%, which indicated that he addition of new risk markers primarily enhanced the identification of T2D 
samples. For the continuous NRI, which is free from cutoff point, the improvement is 23.48% [95% CI: 17.86%–
29.11%; P <​ 0.001], and for IDI, the improvement is 0.0249 [95% CI: 0.0199–0.0299; P <​ 0.001].

Discussion
In this study, we conduct a comprehensive functional annotation of 65 tag SNPs known to increase the risk of 
type 2 diabetes. After a careful inspection on high LD SNPs by integrating genomic data, GWAS data, chip-seq 
data and RNA-seq data, the putative risk SNPs, with higher probability affecting the pathogenesis of T2D, were 
sorted out for improving the risk model based on 1989 T2D samples and 3000 healthy controls provided by the 
Wellcome Trust Case Control Consortium. Through prediction works, the AROC, NRI, IDI increased in different 
magnitudes.

Since the GWAS study were confirming more risk SNPs of type 2 diabetes, almost every year, there were new 
published researches about utilizing expanded risk SNPs to enhance the risk model. However, no matter weighted 
or unweighted genotype scores, their performances are no good than traditional clinical factors. Although mas-
sive efforts had been devoted in utilizing known common variants, it seems that predictive scores reached a pla-
teau in risk allele summing-up fashion. Invoking by recent researches on several kind of cancers, which identified 
a dozen of disease related SNPs based on known risk SNPs through functional annotation, we plan to exert effects 
of risk SNPs through a comprehensive search for putative risk SNPs on whole genome and to demonstrate the 
cumulative risk effect of these SNPs.

Therefore, we analyzed latest 65 T2D related SNPs which were recently used for risk prediction. Integrating 
with genomic and epigenomic data, we obtained a number of SNPs in high LD with 65 risk SNPs via programme 
FunciSNP. Next, we separately discussed the LD SNPs in different genomic regions that may lead to T2D in 

Figure 4.  The distribution of genotype score for T2D samples and healthy controls. The degree of separation 
between two distributions increased along with the increasing number of risk SNPs. In general, T2D samples 
carry more risk alleles.
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different molecular mechanisms. As a result, we detected relatively new SNPs/genes involving in pathogenesis of 
T2D comparing to the 65 tag SNPs. Of them, some are identified as T2D related SNPs in previous works, several 
SNPs are newly discussed after Talmud’s research, but the functions of majorities are needed to be addressed in 
further works. Purposefully, those were genotyped in our GWAS data (3 in exon, 15 in TSS regions, 112 in histone 
modified regions), were further employed in regression and discrimination. On the condition of using only one 
unweighted genotype score on discriminating 1989 T2D samples and 3000 healthy controls. The new biomarkers 
improved the AROC from 0.58 to 0.62. After a net reclassification improvement test, the categorical NRI and con-
tinuous NRI were 10.03% and 23.48%, respectively.

Meanwhile, there are some limitations to our study. Our GWAS data only contains gender and genotype data 
of individuals, but without comprehensive clinical factors, we cannot measure the incremental value that genomic 
data brings to traditional clinical risk model. Although the improvement had been assessed on known risk SNPs 
based model, we still expect that these cumulative effects would bring us some encouraging results on clinical 
factor based predictions. The utilization of potential risk SNPs bring another problem, as it is known that the risk 
allele does not equal to the minor allele, an accurately identification of risk allele could avoid the introduction of 
bias. However, there is no consensus on how many samples could accurately identify the risk allele. At least, fortu-
nately, the risk alleles, derived from statistical analysis on our T2D and healthy samples, are exactly the same with 

SNPs Categories Odds Ratio (95% CI) P value Nearest gene

rs780094 Known risk SNP 1.66 (1.02–2.75) 4.45E-02 GCKR

rs10203174 Known risk SNP 1.21 (1.04–1.39) 1.10E-02 THADA

rs1496653 Known risk SNP 1.33 (1.01–1.76) 4.46E-02 UBE2E2

rs13233731 Known risk SNP 1.55 (1.03–2.36) 3.63E-02 KLF14

rs5215 Known risk SNP 1.12 (1.01–1.25) 2.79E-02 KCNJ11

rs2793823 TSS region SNP 0.77 (0.61–0.98) 3.26E-02 ADAM30

rs713113 TSS region SNP 1.17 (1.06–1.29) 1.49E-03 CCNE2

rs9311910 Histone modification 0.77 (0.59–0.98) 3.78E-02 MIR548A2

rs11857450 Histone modification 1.41 (1.10–1.81) 7.42E-03 HMG20A

rs1993669 Histone modification 1.89 (1.11–3.39) 2.40E-02 HMGA2

rs7575024 Histone modification 1.16 (1.02–1.32) 2.42E-02 THADA

rs713113 Histone modification 1.19 (1.08–1.30) 2.00E-04 CCNE2

rs11178602 Histone modification 2.66 (1.15–7.80) 4.12E-02 TSPAN8

rs9939973 Histone modification 1.18 (1.05–1.34) 6.96E-03 FTO

rs2260671 Histone modification 1.49 (1.00–2.23) 4.96E-02 HMGA2

rs2868093 Histone modification 1.51 (1.07–2.16) 2.10E-02 R3HDML

rs5018648 Histone modification 0.46 (0.24–0.84) 1.42E-02 WFS1

Table 3.   Odds ratio and 95% CI of putative risk SNPs (P < 0.05). The ORs (95% CIs) and P values for type 2 
diabetes were calculated using logistic regression analysis in 1989 T2D samples and 3000 healthy controls.

Figure 5.  The comparisons of AROC by adding SNPs from different genomic regions to the known risk 
SNPs. The additivity of tiny SNP effects markedly improved the prediction.
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the known SNPs (P =​ 0.5 ×​ 10−16). Moreover, we have noticed that a potential bias could be introduced by sum-
ming up risk alleles. E.g., for one T2D sample and one healthy control, the risk allele distribution for SNP A is (1, 0),  
and for SNP B is (0, 1). When summing up them to obtain the unweighted genotype score (T2D: 1, Healthy: 1), 
the existed discriminative information will lost. Especially under the condition that without enough known risk 
SNPs, the majority of individuals harbor intermediate number of risk allele, thus there is a substantial overlap of 
distributions of risk alleles between T2D samples and healthy controls as reported in previous work21 and present 
work (see Fig. 4). Consequently, the genetic information cannot contribute as much as we expect. Although we 
have demonstrated that the accumulation of more risk SNPs would give us better results, an effectively utilization 
of known SNPs could better exert genomic discriminative power.

In conclusion, we have conducted two complementary works: a comprehensive functional annotation of latest 
65 known risk SNPs and risk estimation through logistic regression. In combination with genomic, epigenomic 
and transcriptomic data, we have identified a number of SNPs that are of high probability increase risks to T2D. 
Although their actual functional mechanisms still need to be addressed, they could be prioritized for analysis 
in T2D study. Besides, our results in consistent with previous report that risk SNPs enriched in T2D associated 
enhancers. In the risk prediction, we have demonstrated the hypothesis that the cumulative effects of SNPs could 
enhance the risk model. The values of AROC and NRI give consensus results, also, we present our opinion about 
the utilization of known risk SNPs. We hope this work would invoke motivations in broadening the way to T2D 
pathogenic analysis and promote the T2D risk predictions which are aided by genomic information.
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