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Abstract: In this study, Li-based blue- and green-emitting core@shell (C@S) upconversion
nanophosphors (UCNPs) and NaGdF4-based red-emitting C@S UCNPs were synthesized, and IR-808
dyes were conjugated with the C@S UCNPs to enhance upconversion (UC) luminescence. The surface
of the as-synthesized C@S UCNPs, which was originally capped with oleic acid, was modified with
BF4

− to conjugate the IR-808 dye having a carboxyl functional group to the surface of the UCNPs.
After the conjugation with IR-808 dyes, absorbance of the UCNPs was significantly increased. As a
result, dye-sensitized blue (B)-, green (G)-, and red (R)-emitting UCNPs exhibited 87-fold, 10.8-fold,
and 110-fold enhanced UC luminescence compared with B-, G-, and R-emitting Nd3+-doped C@S
UCNPs under 800 nm near-infrared (NIR) light excitation, respectively. Consequently, dye-sensitized
UCNPs exhibiting strong UC luminescence under 800 nm NIR light excitation have high applicability
in a variety of biological applications.

Keywords: upconversion nanophosphors; core@shell; IR-808 dye; dye-sensitized upconversion
nanophosphors

1. Introduction

Lanthanide-doped upconversion nanophosphors (UCNPs) have been widely used in biological
applications owing to their unique features such as large anti-Stokes shift luminescence
under invisible near-infrared (NIR) light and non-cytotoxicity [1–9]. Tang’s group reported
the results of in vivo upconversion (UC) luminescence/magnetic resonance imaging using
NaYF4:Yb,Er@NaGdF4@PEG-CD326 micelles under a 980 nm NIR laser [10]. Our group synthesized
Li(Gd,Y)F4:Yb,Er@LiGdF4 core@shell (C@S) UCNPs and modified the surface of the C@S UCNPs
with poly(acrylic acid) for their dispersion in water [9]. In this study, in vitro cell imaging and
in vivo imaging were performed with 980 nm NIR light. In general, the Yb3+ ions, which are used
as sensitizers, absorb NIR light at 980 nm. However, under irradiation with 980 nm NIR light for
a long time, an overheating problem, that is, the increase of the temperature of the biomolecules,
can cause cell death [11]. To solve this problem, many researchers have studied 800 nm-excitable
C@S or core@multi-shell UCNPs in which the shell is doped with Nd3+ ions because Nd3+ ions
have a high absorption cross-section at around 800 nm [1,12–19]. Almutairi’s group synthesized
a high concentration of Nd3+-doped C@S UCNPs that showed blue and green UC luminescence
(UCL) under 800 nm NIR light [16]. In addition, Hirsch’s group reported Yb3+/Er3+-doped core and
Yb3+/Nd3+-doped C@S UCNPs, and the synthesized C@S UCNPs showed green emission under
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980 nm and 800 nm excitation, respectively [18]. Previously, our group reported the sub-20 nm-sized
red-emitting NaGdF4:Yb,Ho,Ce@NaYF4:Nd,Yb@NaGdF4 core@double-shell UCNPs and we showed
in vivo UCL imaging and magnetic resonance imaging results utilizing the core@double-shell UCNPs [1].
Recently, NIR dye-sensitized UCNPs have been studied to significantly increase the absorption at
around the 800 nm region and hugely enhance the emission intensity [20–25]. Wu’s group synthesized
C@S UCNPs and showed that the UCL from the C@S UCNPs was largely enhanced under 820 nm
NIR excitation by the conjugation of IR-820 dye to the C@S UCNPs [21]. Prasad’s group reported
that the energy absorbed by the organic dye is efficiently transferred to Tm3+ ions doped in the core
UCNPs through Nd3+ ions doped in the shell. Through Nd3+-mediated efficient energy transfer
from the organic dye to the UCNP core, Tm3+ luminescence was significantly enhanced [22]. Jiang’s
group synthesized IR-806 sensitized NaYF4:Yb,Er@NaYF4:Yb,Nd C@S UCNPs and they reported
temperature-sensing capability of the IR-806 dye-sensitized C@S UCNPs [23]. In contrast, Kong’s
group showed that IR-806 dye-conjugated NaYF4:Yb,Er@NaYbF4:Nd(20%) C@S UCNPs have potential
for an anti-counterfeiting application [24]. In 2017, Lin’s group exhibited that mesoporous silica
coated IR-808-sensitized green-emitting UCNPs and applied the UCNPs as agents for photodynamic
therapy [25]. As described above, NIR dye-sensitization is beneficial to the enhancement of the
luminescence from UCNPs. However, previous studies on dye-sensitized UCNPs were based on
NaYF4-based blue- and green-emitting UCNPs, and non-NaYF4-based dye-sensitized UCNPs have
not yet been studied [20–25]. In addition, to the best of our knowledge, no study has been reported on
dye-sensitized red-emitting UCNPs. These results encouraged us to investigate non-NaYF4-based
dye-sensitized UCNPs and red-emitting dye-sensitized UCNPs.

In this study, we synthesized Li(Gd,Y)F4-based blue- and green-emitting C@S UCNPs and
NaGdF4-based red-emitting C@S UCNPs. Subsequently, the IR-808 dye was conjugated to the
synthesized C@S UCNPs to implement bright blue, green, and red UCL since bright UCL from UCNPs
under 800 nm excitation will be more beneficial for bio-imaging applications due to the minimized
heating effect on the cells and tissues [11]. The UCL properties of the IR-808 dye-sensitized C@S
UCNPs were investigated and their UCL intensities were significantly enhanced compared with the
C@S counterparts.

2. Materials and Methods

For the syntheses of core and C@S UCNPs, GdCl3·6H2O (99%), YCl3·6H2O (99.99%), YbCl3·6H2O
(99.9%), TmCl3·6H2O (99.99%), ErCl3·6H2O (99.99%), HoCl3·6H2O (99.9%), CeCl3·7H2O (99.999%),
NdCl3·6H2O (99.9%), LiOH·H2O (99.995%), NaOH (99.99%), NH4F (≥99.99%), 1-octadecene (ODE,
90% technical grade), and oleic acid (OA, 90% technical grade) were purchased from Sigma-Aldrich
(St.Louis, MO, USA). Sodium oleate was purchased from TCI (Tokyo, Japan). For the synthesis of the
IR-808 dye, IR-783 dye (90%) and 4-mercaptobenzoic acid (99%) were obtained from Sigma-Aldrich
(St.Louis, MO, USA).

First, the IR-808 dye was synthesized using IR-783 dye and 4-mercaptobenzoic acid, as reported
by Parasad’s group [22].

The blue-emitting Li(Gd,Y)F4:Yb,Tm core UCNPs were synthesized using rare-earth oleate
(RE-oleate) precursors that were prepared by adapting a previously reported method presented
by Hyeon’s group [26]. To synthesize RE-oleate precursors, GdCl3·6H2O (0.25 mmol), YCl3·6H2O
(0.49 mmol), YbCl3·6H2O (0.25 mmol), TmCl3·6H2O (0.01 mmol), and sodium oleate (3.1 mmol) were
dissolved into deionized water (DIW, 3 mL), ethanol (3.5 mL), and hexane (7 mL), and the solution was
reacted at 70 ◦C for 4 h. The RE-oleate precursors were mixed with OA (10.5 mL) and ODE (10.5 mL),
and the temperature of the mixture was increased to 150 ◦C for 40 min. The reaction solution was
cooled down to 50 ◦C and then 10 mL of the methanol (MeOH) solution, which contained LiOH·H2O
(2.5 mmol) and NH4F (4 mmol), were injected into the reaction solution. After the MeOH was removed,
the reaction solution was reacted at 320 ◦C for 90 min under argon (Ar) atmosphere. The synthesized
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core UCNPs were dispersed in 10 mL of non-polar solvents such as chloroform and hexane after
washing with ethanol.

To synthesize Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb C@S UCNPs, the RECl3·6H2O (RE = Y (0.45 mmol),
Nd (0.5 mmol), Yb (0.05 mmol)) precursors were mixed with OA (10.5 mL) and ODE (10.5 mL),
and the mixture was reacted at 150 ◦C for 40 min. The mixed solution was cooled to 60 ◦C and
the Li(Gd,Y)F4:Yb,Tm core UCNP solution (10 mL) was added to the mixed solution. Subsequently,
the LiOH·H2O (2.5 mmol) and NH4F (4 mmol) dissolved MeOH solution (10 mL) was added followed
by heat treatment at 320 ◦C for 60 min under Ar atmosphere. The C@S UCNPs were dispersed in
10 mL of chloroform after washing with MeOH, ethanol, and hexane.

To synthesize Li(Gd,Y)F4:Yb,Er core UCNPs, RE-oleate precursors were prepared using
GdCl3·6H2O (0.25 mmol), YCl3·6H2O (0.55 mmol), YbCl3·6H2O (0.18 mmol), ErCl3·6H2O (0.02 mmol),
and sodium oleate (3.1 mmol). The synthetic process was the same as that for the synthesis of the
blue-emitting core UCNPs.

The RECl3·6H2O (RE = Y (0.55 mmol), Nd (0.4 mmol), and Yb (0.05 mmol)) precursors were
used to synthesize the Li(Gd,Y)F4:Yb,Er@LiYF4:Nd,Yb C@S UCNPs. Other synthetic procedures were
identical to those for the Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb C@S UCNPs.

The red-emitting NaGdF4:Yb,Ho,Ce core UCNPs were synthesized by slightly modifying the
method that was described in our previous paper [1]. The GdCl3·6H2O (0.5 mmol), YbCl3·6H2O
(0.18 mmol), HoCl3·6H2O (0.02 mmol), CeCl3·7H2O (0.3 mmol), and sodium oleate (3.1 mmol) were
mixed with DIW (3 mL), ethanol (3.5 mL), and hexane (7 mL), and the mixture was reacted at 70 ◦C for
4 h to prepare RE-oleate precursors. The RE-oleate, OA (6 mL), and ODE (15 mL) were mixed and the
mixture was reacted at 150 ◦C for 40 min. The 10 mL of MeOH that contained NaOH (2.5 mmol) and
NH4F (4 mmol) was added to the reaction solution. The reaction solution was heat-treated at 300 ◦C
for 90 min under Ar atmosphere. The synthesized core UCNPs were washed with ethanol and hexane
and then dispersed in 10 mL of hexane.

To synthesize NaGdF4:Yb,Ho,Ce@NaYF4:Nd,Yb C@S UCNPs, the mixed solution of RE-oleate
(RE = Y (0.45 mmol), Nd (0.5 mmol), Yb (0.05 mmol)), OA (6 mL), and ODE (15 mL) was heat-treated
at 150 ◦C. After cooling the mixed solution, the core solution was added to the reaction flask and the
MeOH solution containing NaOH (2.5 mmol) and NH4F (4 mmol) was injected into the mixed solution.
The mixed solution was reacted at 300 ◦C for 110 minutes under Ar atmosphere. The synthesized C@S
UCNPs were washed and dispersed in 10 mL of hexane.

To obtain dye-sensitized C@S UCNPs, the surface modification of C@S UCNPs was performed by
slightly modifying the method reported by Murray’s group [27]. After adding 1 mL of hexane to 1 mL
C@S solution, 2 mL of acetonitrile and NOBF4 were added, followed by shaking. Then 4 mL of toluene
were added to the mixed solution to precipitate the BF4

−-modified C@S UCNPs and the precipitates
were separated by centrifugation. Finally, BF4

−-modified C@S UCNPs were dispersed in 20 mL of
dimethylformamide (DMF).

The BF4
−-modified C@S UCNPs and various concentrations of IR-808 dyes were mixed and

reacted for 2 h under Ar atmosphere. After the reaction was completed, the dye-sensitized C@S UCNPs
were dispersed in DMF.

The absorption spectra of the IR-808 dye, core UCNPs, C@S UCNPs, and dye-sensitized C@S
UCNPs were obtained using a PerkinElmer (Waltham, MA, USA) Lambda 25 UV/vis spectrophotometer
(scan speed = 480 nm min−1). The photoluminescence (PL) spectra were recorded by a PL/PLE500
device (PSI Trading Co., Ltd., Gyeonggi-do, Korea) with an 800 nm NIR light-emitting continuous-wave
(CW) laser (CNI Co., Changchun, China). The transmission electron microscopy (TEM) images of
core and C@S UCNPs were obtained using a Tecnai F20 G2 transmission electron microscope (FEI Co.,
Hillsboro, OR, USA) at 200 kV. A Bruker (Billerica, MA, USA) D8 ADVANCE diffractometer using Cu
Kα radiation was used for the X-ray diffraction (XRD) characterization.
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3. Results and Discussion

3.1. Characterization of the IR-808 Dye

The lanthanide-doped UCNPs emit visible light through the energy transfer upconversion (ETU)
process [28]. The UCNPs consist of sensitizer ions that absorb external energy and activator ions
that emit visible light through the energy transfer from the sensitizers (Figure 1a) [29]. In contrast,
dye-sensitized UCNPs emit visible light through the energy-cascaded upconversion (ECU) process [22].
The ECU process was carried out by dyes and three types of lanthanide ions (sensitizer, accumulator,
and activator) in the core and C@S UCNPs, and the ECU process for dye-sensitized UCNPs is shown
in Figure 1b. The dye conjugated to the surface of the UCNPs efficiently absorbs external energy and
transfers the absorbed energy to the sensitizers of the UCNPs. Then, the energy is transferred to the
accumulators in the core and shell, and finally to the activators in the core followed by UCL from the
activators [22,30,31].

Figure 1. Schematic illustration showing the upconversion luminescence (UCL) through (a) the energy
transfer upconversion (ETU) process via energy migration and (b) the energy-cascaded upconversion
(ECU) process via organic dye sensitizer.

In this study, we synthesized the IR-808 dye by adapting the method reported by Prasad’s group
to enhance UCL from the C@S UCNPs [22]. The synthetic method of IR-808 dye is described in
Supplementary Materials and schematic illustration for the synthesis of the IR-808 dye is shown
in Scheme S1 in Supplementary Materials. The synthesized IR-808 dye was confirmed by nuclear
magnetic resonance (NMR) spectroscopy (Figure S1, Supplementary Materials). Figure 2 exhibits the
absorption and PL spectra of the IR-808 dye. It was confirmed that the IR-808 dye showed maximum
absorbance at 808 nm and a wide absorption band ranging from 650 nm to 850 nm, and it showed
a broad emission band at around an 800 nm–950 nm range under 800 nm NIR light. Specifically,
the emission spectrum of the IR-808 dye is well matched with the absorption wavelengths (745, 800,
and 860 nm) of Nd3+ ions [11]. Therefore, in order to efficiently transfer the energy absorbed by the
dye to the UCNPs, we synthesized C@S UCNPs where Nd3+ ions were doped into the shell as the
sensitizers and Yb3+ ions were doped into the core and shell as the accumulators for the energy transfer
to the activators in the core.



Materials 2020, 13, 5338 5 of 11

Figure 2. (a) Absorption and (b) photoluminescence (PL) spectra of IR-808 dyes under 800 nm excitation.

3.2. Characterization of Blue-, Green-, and Red-Emitting UCNPs

Figure 3 shows the TEM images of blue-emitting Li(Gd,Y)F4:Yb,Tm, green-emitting
Li(Gd,Y)F4:Yb,Er, and red-emitting NaGdF4:Yb,Ho,Ce core UCNPs. In the TEM images, a diamond-like
shape is observed (Figure 3a,b). However, polyhedral morphologies were observed in the scanning
electron microscopy (SEM) images, as shown in Figure S2. In our previous study, the Li(Gd,Y)F4 host
crystal has a tetragonal structure and it exhibits a tetragonal bipyramidal morphology to minimize
surface energy by exposing the {101} planes [32]. As shown in high-resolution TEM images, the {101}
planes of the Li(Gd,Y)F4:Yb,Tm and Li(Gd,Y)F4:Yb,Er UCNPs were exposed to the surface (Figure S3).
Thus, the TEM images combined with the SEM images indicate that the blue- and green-emitting core
UCNPs showed tetragonal bipyramidal morphologies. The sizes of blue- and green-emitting core
UCNPs were measured to be 18.9 nm ± 1.0 nm × 20.7 nm ± 1.3 nm (average short edge ± standard
deviation × average long edge ± standard deviation) and 21.1 nm ± 1.1 nm × 21.8 nm ± 1.4 nm,
respectively. The Nd3+ ion-doped shells were grown on the cores to enhance the UCL by reducing
the surface defect sites and efficiently transferring the external energy from the IR-808 dye to the
cores [22]. Figure 3d,e shows TEM images of blue-emitting Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb C@S
UCNPs and green-emitting Li(Gd,Y)F4:Yb,Er@LiYF4:Nd,Yb C@S UCNPs. The sizes of blue- and
green-emitting C@S UCNPs were measured to be 29.8 nm ± 1.3 nm × 29.9 nm ± 1.4 nm and
34.0 nm ± 1.6 nm × 34.0 nm ± 1.3 nm, respectively. For both C@S UCNPs, the shell thicknesses were
5.0 nm and 6.3 nm, respectively. In contrast, red-emitting core UCNPs exhibited a spherical shape
with a diameter of 12.6 nm ± 1.2 nm, and the red-emitting C@S UCNPs also showed a spherical shape
with larger size (15.7 ± 1.2 nm), as displayed in the TEM images of Figure 3c,f. Consequently, the TEM
analysis showed that the synthesized core and C@S UCNPs were monodispersed.

The XRD patterns of the blue-, green-, and red-emitting C@S UCNPs are shown in Figure S3.
From the XRD results, it was confirmed that the blue- and green-emitting C@S UCNPs have a single
tetragonal phase and the red-emitting C@S UCNPs have a single hexagonal phase. It is noted that no
impurity phases were formed during the syntheses of the C@S UCNPs.

Figure 4 shows the absorption spectra of the synthesized core and C@S UCNPs. As shown in
Figure 4, the blue- and green-emitting UCNPs with a tetragonal bipyramidal morphology showed
similar absorption properties to the red-emitting UCNPs with a spherical shape. In the blue-, green-,
and red-emitting cores, there were no absorption peaks in the 800 nm region. In contrast, for C@S
UCNPs, the absorption peaks were observed in the region of 700 nm to 850 nm due to 4I9/2 →

4F7/2,
4I9/2 →

4F5/2, and 4I9/2 →
4F3/2 transitions of Nd3+ ions [11,33]. As mentioned above, due to these

absorption peaks of Nd3+ ions, external energy absorbed by IR-808 dyes can be effectively transferred
to the C@S UCNPs [22].
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Figure 3. Transmission electron microscopy (TEM) images of (a) Li(Gd,Y)F4:Yb,Tm core upconversion
nanophosphors (UCNPs), (b) Li(Gd,Y)F4:Yb,Er core UCNPs, (c) NaGdF4:Yb,Ho,Ce core UCNPs
(d) Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb C@S UCNPs, (e) Li(Gd,Y)F4:Yb,Er@LiYF4:Nd,Yb C@S UCNPs,
and (f) NaGdF4:Yb,Ho,Ce@NaGdF4:Nd,Yb C@S UCNPs.

Figure 4. Absorption spectra of (a) Li(Gd,Y)F4:Yb,Tm core UCNPs (blue dotted line),
Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb C@S UCNPs (blue solid line), (b) Li(Gd,Y)F4:Yb,Er core UCNPs (green
dotted line), Li(Gd,Y)F4:Yb,Er@LiYF4:Nd,Yb C@S UCNPs (green solid line), and (c) NaGdF4:Yb,Ho,Ce
core UCNPs (red dotted line), NaGdF4:Yb,Ho,Ce@NaGdF4:Nd,Yb C@S UCNPs (red solid line).

3.3. IR-808 Dye-Sensitized C@S UCNPs

The as-synthesized C@S UCNPs were coated with OA ligand, and surface modification of UCNPs
was required for conjugation with the IR-808 dye. In this study, OA-capped C@S UCNPs (OA-C@S
UCNPs) were modified with BF4

− and the surface of the BF4
−-modified C@S UCNPs (BF4

−-C@S
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UCNPs) was investigated by Fourier-transform infrared (FT-IR) spectroscopy. Figure S5 shows the FT-IR
spectra of the OA-C@S UCNPs and BF4

−-C@S UCNPs. The OA-C@S UCNPs showed symmetric and
asymmetric C-H stretching vibration peaks at 2852 cm−1 and 2922 cm−1, respectively [34]. In contrast,
the peak due to BF4

− newly appeared at 1097 cm−1 for the BF4
−-C@S UCNPs, and a peak was also newly

observed at 1660 cm−1 due to the C=O stretching vibration of DMF molecules [34,35]. These results
show that surface modification with BF4

− was successful [34]. When the BF4
−-C@S UCNPs were

conjugated with the IR-808 dye, BF4
− existing on the surface of UCNPs was exchanged with the

carboxyl group of the IR-808 dye, giving rise to IR-808 dye-sensitized UCNPs [35]. The FT-IR spectra
of the IR-808 dye and the IR-808 dye-sensitized UCNPs are also shown in Figure S6. The IR-808 dye
showed C=C skeleton vibration of benzene peak at 1538 cm−1, C-H bending vibration peak at 1395 cm−1,
and C-N stretching vibration peak at 1252 cm−1 [36,37]. Additionally, the IR-808 dye-sensitized UCNPs
exhibited FT-IR peaks at 1542 cm−1, 1399 cm−1, and 1256 cm−1, respectively. These results indicate that
the IR-808 dye was successfully conjugated with the C@S UCNPs.

Figure 5 shows the absorption and PL spectra of the IR-808 dye-sensitized blue-emitting C@S
UCNPs. It was confirmed that the absorbance of the IR-808 dye-sensitized C@S UCNPs increased as
the concentration of the IR-808 dye conjugated to the C@S UCNPs increased (Figure 5a). Figure 5b
shows the absorbance of the IR-808 dye-sensitized C@S UCNPs at 808 nm with varying concentrations
of the IR-808 dye, confirming that the absorbance was linearly increased with the concentration of the
IR-808 dye. As shown in Figure 5c, sharp emission peaks were observed due to the 1I6→

3F4, 1D2→
3F4, 1G4 →

3H6, and 1G4 →
3F4 transitions of Tm3+ ions under 800 nm excitation [38]. To optimize

UCL intensity, the concentration of the IR-808 dyes was varied and the strongest PL intensity was
observed at a concentration of 2.5 µg mL−1. The PL intensity of the IR-808 dye-sensitized C@S UCNPs
was enhanced by 87-fold compared with OA-C@S UCNPs.

Figure 5. (a) Absorption spectra of IR-808 dye-sensitized Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb C@S UCNPs.
(b) Absorbance at 808 nm as a function of IR-808 concentrations. (c) PL spectra of IR-808 dye-sensitized
Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb C@S UCNPs under 800 nm NIR excitation. (d) Maximum PL
intensity of IR-808 dye-sensitized Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb C@S UCNPs as a function of IR-808
dye concentration.
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The absorption and PL spectra of the IR-808 dye-sensitized green- and red-emitting C@S UCNPs
are exhibited in Figure 6. The higher the concentration of the IR-808 dye in the dye-sensitized
UCNPs, the higher the absorbance of the IR-808 dye-sensitized C@S UCNPs (Figure 6a). The IR-808
dye-sensitized green-emitting C@S UCNPs showed sharp peaks peaking at 408, 521, 550, and 666 nm
due to 2H9/2 →

4I15/2, 2H11/2 →
4I15/2, 4S3/2 →

4I15/2, and 4F9/2 →
4I15/2 electronic transitions of Er3+

ions under 800 nm excitation (Figure 6b) [39]. When the 6.25 µg mL−1 dye was conjugated to
the green-emitting C@S UCNPs, the green UCL was enhanced by 10.8-fold compared with the
green-emitting OA-C@S UCNPs without dye conjugation. As shown in Figure 6c, absorbance of the
IR-808 dye-sensitized C@S UCNPs was increased with increasing the concentration of the IR-808 dyes.
Figure 6d shows Ho3+ characteristic peaks due to the electronic transitions from 5S2/5F4 and 5F5 levels
to the 5I8 level under 800 nm excitation [1]. When the 10.0 µg mL−1 IR-808 dye was conjugated to the
red-emitting C@S UCNPs, the red UCL was increased by 110-fold compared with the red-emitting
OA-C@S UCNPs without dye conjugation.

Figure 6. (a) Absorption and (b) PL spectra of IR-808 dye-sensitized Li(Gd,Y)F4:Yb,Er@LiYF4:Nd,Yb
C@S UCNPs. (c) Absorption and (d) PL spectra of IR-808 sensitized NaGdF4:Yb,Ho,Ce@NaGdF4:Nd,Yb
C@S UCNPs under 800 nm NIR light.

4. Conclusions

We synthesized LiREF4
−based blue- and green-emitting C@S UCNPs, and NaGdF4

−based
red-emitting C@S UCNPs, where Nd3+ ions were doped in the shell. After surface modification of the
C@S UCNPs with BF4

−, the C@S UCNPs were successfully conjugated with IR-808 dyes and they were
confirmed by FT-IR analysis. The IR-808 dye-sensitized blue-emitting Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb
C@S UCNPs showed 87-fold UCL enhancement and the IR-808 dye-sensitized green-emitting
Li(Gd,Y)F4:Yb,Tm@LiYF4:Nd,Yb C@S UCNPs showed 10.8-fold UCL enhancement compared to
the blue- and green-emitting C@S counterparts. For the first time in this study, it was shown
that the UCL intensities of non-NaYF4-based UCNPs can be significantly enhanced and the IR-808
dye-sensitized C@S UCNPs showed bright blue and green light under 800 nm excitation. In addition,
IR-808 dye-sensitized red-emitting NaGdF4:Yb,Ho,Ce@NaYF4:Nd,Yb C@S UCNPs showed strong
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red UCL under 800 nm excitation and they exhibited 110-fold UCL enhancement compared with
NaGdF4:Yb,Ho,Ce@NaYF4:Nd,Yb C@S UCNPs. This means that red UCL can also be significantly
enhanced by IR-808 dye conjugation like the blue and green UCL. Since strong UCL from the IR-808
dye-sensitized C@S UCNPs under 800 nm NIR light excitation can minimize the heating effect on
cells and tissues [11], they are beneficial for the application to various fields such as bio-imaging and
therapy, among others.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/23/5338/s1,
The synthesis method of IR-808 dye is described. Scheme S1: Schematic illustration showing the synthesis of the
IR-808 dye; Figure S1: NMR spectrum of the IR-808 dye; Figure S2: SEM images of the blue-, and green-emitting
core and C@S UCNPs; Figure S3: High resolution TEM images of the blue- and green-emitting core UCNPs;
Figure S4: XRD patterns of the blue-, green-, and red-emitting C@S UCNPs; Figure S5: FT-IR spectra of the
OA-C@S UCNPs and BF4

−-C@S UCNPs; Figure S6: FT-IR spectra of the IR-808 dye-conjugated C@S UCNPs and
IR-808 dye.
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