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nt of single-shot turbo
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Abstract
We have developed a deep learning-based approach to improve image quality of single-shot turbo spin-echo (SSTSE) images of
female pelvis. We aimed to compare the deep learning-based single-shot turbo spin-echo (DL-SSTSE) images of female pelvis with
turbo spin-echo (TSE) and conventional SSTSE images in terms of image quality.
One hundred five and 21 subjects were used as training and test sets, respectively. We performed 6-fold cross validation. In the

training process, low-quality images were generated from TSE images as input. TSE images were used as ground truth images. In the
test process, the trained convolutional neural network was applied to SSTSE images. The output images were denoted as DL-
SSTSE images. Apart from DL-SSTSE images, classical filtering methods were adopted to SSTSE images. Generated images were
denoted as F-SSTSE images. Contrast ratio (CR) of gluteal fat and myometrium and signal-to-noise ratio (SNR) of gluteal fat were
measured for all images. Two radiologists graded these images using a 5-point scale and evaluated the image quality with regard to
overall image quality, contrast, noise, motion artifact, boundary sharpness of layers in the uterus, and the conspicuity of the ovaries.
CRs, SNRs, and image quality scores were compared using the Steel-Dwass multiple comparison tests.
CRs and SNRs were significantly higher in DL-SSTSE, F-SSTSE, and TSE images than in SSTSE images. Scores with regard to

overall image quality, contrast, noise, and boundary sharpness of layers in the uterus were significantly higher on DL-SSTSE and TSE
images than on SSTSE images. There were no significant differences in the CRs, SNRs, and respective scores between DL-SSTSE
and TSE images. The score with regard to motion artifacts was significantly higher on DL-SSTSE, F-SSTSE, and SSTSE images than
on TSE images. The score with regard to the conspicuity of ovaries was significantly higher on DL-SSTSE images than on F-SSTSE,
SSTSE, and TSE images (P< .001).
DL-SSTSE images showed higher image quality as compared with SSTSE images. In comparison with conventional TSE images,

DL-SSTSE images had acceptable image quality while keeping the advantage of the motion artifact-robustness and acquisition time
efficiency in SSTSE imaging.

Abbreviations: CNN = convolutional neural network, CR = contrast ratio, CT = computed tomography, DL-SSTSE = deep
learning-based single-shot turbo spin-echo, MR = magnetic resonance, MRI = magnetic resonance imaging, ROI = region of
interest, SD = standard deviation, SI = signal intensity, SNR = signal-to-noise ratio, SSTSE = single-shot turbo spin-echo, TSE =
turbo spin-echo.
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Table 1

Clinical characteristics for patient groups.

Characteristics Patients (n=126)

Age (y)
∗

50.9±15.4
Disease
Ovarian tumor 42
Leiomyoma 39
Leiomyosarcoma 1
Endometrial cancer 8
Endometriosis 7
Cervical intraepithelial neoplasia 5
Endometrial polyp 4
Cervical cancer 6
Adenomyosis 2
Ectopic pregnancy 2
Gestational trophoblastic disease 2
Endometrial hyperplasia 2
Uterine prolapse 1
Vulvar tumor 1
Inguinal tumor 1
Ovarian hemorrhage 1
Precocious puberty 1
Placental Remnant 1

∗
Data are represented as means± standard deviation.
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1. Introduction

Magnetic resonance imaging (MRI) is an established noninvasive
method of diagnostic imaging. Compared with computed
tomography (CT), MRI provides superior soft tissue contrast
and is free of ionizing radiation. In gynecological MRI, turbo
spin-echo (TSE) imaging has been mainly used for pelvic MRI
protocols.[1–5] However, TSE requires a long imaging time. Along
with the TSE imaging, single-shot TSE (SSTSE) imaging has been
developed to reduce acquisition time and motion artifacts.[6]

SSTSE images have a relatively poor signal-to-noise ratio (SNR)
and blurring compared with TSE images, because all of the signal
data in k-space is obtained after a single radiofrequency pulse and
the echo train length is extended.[7] SSTSE imaging techniques are
routinely used in clinical MRI of the abdomen.[7,8] Because a
trade-off exists between spatial resolution and SNR in MRI, long
acquisition time is required for magnetic resonance (MR) images
with high spatial resolution and SNR. To solve this issue, the
obtainment of MR images keeping the advantages of TSE in
image quality and of SSTSE in time efficiency has been
investigated for years.
Recently, convolutional neural networks (CNN) have been

widely applied for image segmentation, classification, recogni-
tion, and image super-resolution.[9–14] Noise reduction techni-
ques using CNN have also been proposed in the field of medical
imaging.[15] Several studies have shown that deep learning-based
super-resolution or denoise approaches were successfully applied
to low-quality MR images to shorten imaging time.[16,17]

However, few studies have shown the impact of the deep
learning-based approaches that improve the image quality of
SSTSE image. High-quality SSTSE images have the potential to be
a good substitute to TSE images. In addition, although several
deep learning-based approaches have already been proposed for
brain MR images and the preliminary results were encourag-
ing,[13] applying the approaches to pelvic or abdominal MR
images is still challenging due to the respiratory or peristalsis
motion.
In the present study, we have developed a CNN-based

approach to improve image quality of SSTSE images of the
female pelvis obtained in a shorter imaging time. Thus, we aimed
to compare deep learning-based single-shot turbo spin-echo (DL-
SSTSE) images of the female pelvis with conventional TSE images
and SSTSE images in terms of image quality including contrast,
noise, motion artifact, and the conspicuity of the uterus and
ovary.
2. Materials and methods

2.1. Patients

This retrospective study was approved by the institutional review
board and the need to obtain informed consent was waived. A
total of 182 women with suspected uterus or ovarian diseases
who underwent MRI of pelvis between April 2018 and March
2019 were included in this study. If patients underwent MRI
several times during the period, only the images obtained in the
first time were used. Patients with no T2-weighted SSTSE sagittal
images (n=53), or TSE sagittal images (n=3) acquired were
excluded. Among the remaining 126 patients (mean age 50.9±
15.4 years), 105 subjects were used as a training set, and 21
subjects were randomly used as a test set. We performed 6-fold
cross-validation to confirm the performance consistency. Clinical
characteristics of the patients are described in Table 1.
2

2.2. MRI protocol

A 1.5-T MRI system (Prodiva 1.5T; Philips Healthcare, Best, the
Netherlands) with dS-Torso Cardiac coil and dS-NVS Spine coil
were used. After acquisition of the scout images, 2-dimensional
T2-weighted SSTSE sagittal images were acquired as the detailed
scout images, and 2-dimensional T2-weighted TSE sagittal
images were acquired. The acquisition parameters for SSTSE
images were as follows: TR, 2000 ms; TE, 100 ms; FOV, 250�
320�250�320mm; acquisition matrix, 320�160; reconstruc-
tion matrix, 512�512; acceleration factor for parallel imaging,
2.0; slices, 28–38; slice thickness/gap, 4.0/0.8mm; fold-over
direction, AP; echo-train length, 57; bandwidth, 277.0–289.4Hz/
pixel; and imaging time, 56 s�1minutes 16 seconds. Half-Fourier
imaging technique was used. The acquisition parameters for TSE
images were as follows: TR, 3809�5166 ms; TE, 100 ms; FOV,
250�320�250�320mm; acquisition matrix, 320�320; recon-
struction matrix, 512�512; acceleration factor for parallel
imaging, 2.0; slices, 28�38; slice thickness/gap, 4.0/0.8mm;
echo-train length, 20; bandwidth, 273.2Hz/pixel; and imaging
time, 3minutes 11 s�4min 18 seconds. MultiVane technique,
which has been developed as periodically rotated overlapping
parallel lines with enhanced reconstruction technique, was used
for robust motion correction.[18]

2.3. Data preparation

TSE images were used as ground truth images. As input, low-
quality images generated from TSE, instead of SSTSE images,
were used in the dataset. Although TSE images were obtained
with amotion artifact suppression technique, the images included
peristalsis artifacts.[19] Misregistration is always randomly
caused by peristalsis between SSTSE and TSE images even if
registration techniques are applied.[20,21] Hence, it is difficult to
optimize the training dataset of SSTSE and TSE images and
accuracy cannot be gained. Instead, input images were generated
from TSE images to simulate SSTSE images by contrast-
adjustment, downsampling, adding noise, and blurring images



Misaka et al. Medicine (2020) 99:47 www.md-journal.com
with image processing software (ImageJ version 1.52a; National
Institutes of Health, Bethesda, MD) as performed in several
studies.[13,22]

In the contrast-adjustment process, the intensity of each pixel
on the TSE image was transformed corresponding to the
following equation:

Snew ¼ g � Sold � 0:5 � Smaxð Þ þ 0:5 � Smax

where Snew is the post-transformed intensity of a pixel, g is a
slope which controls linear-transformation of a pixel value, Sold is
the pretransformed intensity of a pixel, and Smax is the maximum
intensity of all pixels. Specifically, 0.85 for g was applied to
equalize the image contrasts of postprocessed images to those of
SSTSE images. Then, images were downsampled to half
resolution in the phase encode direction by the nearest neighbor
method, and a Gaussian noise with a standard deviation of 100
was added as an image noise. Finally, a Gaussian filter with a
kernel of a standard deviation of 1 voxel was applied for image
blurring.
2.4. Convolutional neural network algorithm and training
process

ThenetworkalgorithmbasedonU-Net is shown inFigure1.U-Net
architecture has been successfully applied for various biomedical
imaging applications including synthetic image generation.[23,24] It
includes a contraction part (left side) and an expansion part (right
side). The contractionpart is composedof4 sequential stacks. Each
stack includes 2 convolutional layers with a size of 3�3, where a
batch normalization (BN) layer and a parametric rectified linear
unit (PReLU) layer were followed by each convolutional layer. In
addition, a 2�2 max pooling layer with stride 2 was followed for
downsampling. The number of feature channels is doubled after
each downsampling step. The expansion part is composed of a
deconvolutional layer with a size of 2�2 and stride 2 for up-
sampling, which halves the number of feature maps, a concatena-
tion layer with the corresponding cropped feature maps from the
contraction part, and 2 convolutional layers with a size of 3�3,
where a BN layer and a PReLU layer were followed by each
convolutional layer. At the final layer a convolutional layer with a
size of 3�3 is used to convolute 64 feature maps to 1 feature map.
To optimize the parameters of the network, we usedmean squared
error as the loss function to minimize the loss value between the
generated high-quality image and the ground truth TSE image.
Adamwith a=0.001, b1=0.9, b2=0.999 was used as optimizer.
Total epochs, batch size, and computation time were 100, 2, and
about 6hours, respectively. All the CNN algorithms were
implemented with the deep learning platform (Neural Network
Console; Sony Network Communications, Tokyo, Japan) and
NVIDIA Tesla V100 GPU.

2.5. Test process

The trained CNN model was applied to the dataset of input
SSTSE images. The output images generated by the trained CNN
model were denoted as DL-SSTSE images.
2.6. Image enhancement by filtering algorithms

Apart from the CNN algorithm, classical filtering methods were
adopted to SSTSE images to enhance the image quality. For
3

smoothing and sharpening, the median filter of radius 2.0 pixel
and unsharp masking of radius 1.5 pixel were adopted to the
images. Generated images were denoted as F-SSTSE images. For
contrast-adjustment, the intensity of each pixel on the image was
transformed corresponding to the equation described as section
2.3. Specifically, 1.18 for g was applied to equalize the image
contrasts of postprocessed images to those of TSE images.
2.7. Image analysis
2.7.1. Quantitative analysis. The contrast ratio (CR) and SNR
were measured to assess the qualities of SSTSE, DL-SSTSE, F-
SSTSE, and TSE images. CRs of gluteal fat andmyometriumwere
measured using the following equation:

CR ¼ SIgluteal f at � SImyometrium
� �

SIgluteal f at þ SImyometrium
� �

�����

�����

where SIglutealfat is the mean signal intensity (SI) of the region of
interest (ROI) in gluteal fat (mean area 2.17cm2±1.47, range
0.44–6.30cm2) and SImyometrium is the SI of the ROI in the
myometrium (mean area 0.54cm2±0.20, range 0.20–1.03cm2).
When placing the ROIs, care was taken to avoid areas of possible
pathological findings.
The usual SNR measurements could not be performed because

the parallel imaging technique was used.[25] Thus, estimated
SNRs of gluteal fat were measured using the following equation:

SNR ¼ SIgluteal f at
SDgluteal f at

where SIglutealfat is the mean SI of ROI in gluteal fat and
SDglutealfat is the standard deviation (SD) of the SI in the same
ROI.

2.7.2. Qualitative analysis. Two radiologists (OY andNO, with
28 years and 12 years of experience in genitourinary MRI,
respectively) reviewed T2-weighted SSTSE, DL-SSTSE, F-SSTSE,
and TSE images in a randomorder. BecauseMultiVane technique
was used in TSE imaging, wrap-around artifacts occurred and the
FOV of TSE images became round shaped.[18] Therefore, parts of
320�320 pixel size were extracted from the center of all images
before reviewing.
First, the radiologists independently graded images using a 5-

point scale to assess image quality based on 6 separate categories:
overall image quality, contrast, noise, motion artifacts, boundary
sharpness of the zonal layers in the uterine corpus, and conspicuity
of ovaries and follicles. Overall image quality, contrast, and noise
were rated as follows: 1 = unacceptable, 2 = poor, 3 = mild, 4 =
good, and 5 = excellent. Motion artifact was rated as follows: 1 =
marked, 2 = moderate, 3 = mild, 4 = minimal, and 5 = absent.
Boundary sharpness of the zonal layers in the uterine corpus and
conspicuity of ovaries and follicles were rated as follows: 1 =
unable to see, 2 = blurry but visualized, 3 = acceptable, 4 = good,
and 5 = excellent. After the independent evaluation, discrepant
scores were reconciled by consensus and scores were determined.
In the evaluation of ovaries and follicles, 7 patients were excluded
because of unclear detection in any sagittal images.

2.8. Statistical analysis

The interobserver agreement for independent image quality
scores was evaluated with weighted k statistics.[26] A weighted

http://www.md-journal.com


Figure 1. Architecture of the U-Net-based CNN scheme. In the contraction part, the low-quality images generated from TSE images were used as input images.
Each blue box includes a convolutional layer with a size of 3�3, a BN layer, and a PReLU layer. Each purple box represents a max pooling layer for downsampling.
Each white box represents a concatenate layer. Each green box represents a deconvolution layer. A yellow box represents a final convolutional layer. The TSE
images were used as ground truth images. The image size and the number of feature channels from each convolutional layer are listed near each blue box. In the test
process, the trained CNNmodel was applied to the datasets of SSTSE images, which were used as input images. The output images were denoted as DL-SSTSE
images. BN=batch normalization layer, CNN=convolutional neural network, Conv=convolutional layer, DL-SSTSE=deep learning-based single-shot turbo spin-
echo, PReLU=parametric rectified linear unit, SSTSE=single-shot turbo spin-echo, TSE= turbo spin-echo.

Misaka et al. Medicine (2020) 99:47 Medicine
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Figure 2. CRs of gluteal fat and myometrium. The median CRs for SSTSE, DL-SSTSE, F-SSTSE, and TSE images were 0.30 (0.21–0.39), 0.39 (0.31–0.47), 0.39
(0.29–0.48), and 0.39 (0.29–0.48), respectively. CRs of gluteal fat and myometrium were significantly higher in DL-SSTSE (P< .001), F-SSTSE (P< .001), and TSE
images (P< .001) than in SSTSE images. CR=contrast ratio, DL-SSTSE=deep learning-based single-shot turbo spin-echo, F-SSTSE=filtering method-based
single-shot turbo spin-echo, SSTSE=single-shot turbo spin-echo, TSE= turbo spin-echo.

Misaka et al. Medicine (2020) 99:47 www.md-journal.com
kappa value was considered to indicate as follows: poor
agreement; 0.01 to 0.20, slight; 0.21 to 0.40, fair; 0.41 to
0.60, moderate; 0.61 to 0.80, good; and 0.81 to 1.00, excellent.
CRs, SNRs, and image quality scores were compared using the
Steel-Dwass multiple comparison tests,[27] because the samples
did not have equal variances by Bartlett test. Statistical analysis
was performed with statistical software (R version 3.3.2; R
Foundation for Statistical Computing, Vienna, Austria). A
P value< .05 was considered statistically significant.
3. Results

3.1. Quantitative analysis

Median CRs of gluteal fat and myometrium in SSTSE, DL-
SSTSE, F-SSTSE, and TSE images are shown in Figure 2. CRs
were significantly higher in DL-SSTSE (0.39 vs 0.30;
P< .001), F-SSTSE (0.39 vs 0.30; P< .001), and TSE images
(0.39 vs 0.30; P< .001) than in SSTSE images. There were no
5

significant differences in the CRs between DL-SSTSE and
TSE images (P= .98). There were also no significant differ-
ences in the CRs between F-SSTSE and TSE images
(P= .99).
Median SNRs of gluteal fat in SSTSE, DL-SSTSE, F-SSTSE,

and TSE images are shown in Figure 3. SNRs were significantly
higher in DL-SSTSE (31.91 vs 22.54; P< .001), F-SSTSE (29.32
vs 22.54; P< .001), and TSE images (29.04 vs 22.54; P< .001)
than in SSTSE images. There were no significant differences in the
SNRs between DL-SSTSE and TSE images (P= .11). There were
also no significant differences in the SNRs between F-SSTSE and
TSE images (P= .99).

3.2. Qualitative analysis

The representative DL-SSTSE images, along with the ground
truth TSE, F-SSTSE, and SSTSE images are shown in Figure 4.
Our proposed CNN algorithm improved the image quality of
uterus and ovary in SSTSE images.

http://www.md-journal.com


Figure 3. SNRs of gluteal fat. The median SNRs for SSTSE, DL-SSTSE, F-SSTSE, and TSE images were 22.54 (18.93–26.12), 31.91 (24.49–38.19), 29.32
(22.89–33.67), and 29.04 (21.03–36.61), respectively. SNRs of gluteal fat were significantly higher in DL-SSTSE (P< .001), F-SSTSE (P< .001), and TSE images
(P< .001) than in SSTSE images. DL-SSTSE=deep learning-based single-shot turbo spin-echo, F-SSTSE=filtering method-based single-shot turbo spin-echo,
SNR=signal-to-noise ratio, SSTSE=single-shot turbo spin-echo, TSE= turbo spin-echo.

Misaka et al. Medicine (2020) 99:47 Medicine
The image quality scores for SSTSE, DL-SSTSE, F-SSTSE, and
TSE images are shown in Table 2. The interobserver agreement
between the 2 reviewers for evaluating the image quality score
was excellent (K= .94). Scores with regard to contrast and noise
were significantly higher onDL-SSTSE, F-SSTSE, and TSE images
than on SSTSE images. There were no significant differences
between DL-SSTSE, F-SSTSE, and TSE images. Scores with
regard to overall image quality and boundary sharpness of the
zonal layers in the uterine corpus were significantly higher on DL-
SSTSE and TSE images than on SSTSE and F-SSTSE images.
There were no significant differences betweenDL-SSTSE and TSE
images. The score with regard to motion artifact was significantly
higher on DL-SSTSE, F-SSTSE, and SSTSE images than on TSE
images. There were no significant differences between DL-SSTSE,
F-SSTSE, and SSTSE images. The score with regard to the
conspicuity of ovaries and follicles was significantly higher on
DL-SSTSE images than on SSTSE, F-SSTSE, and TSE images.
There were no significant differences between SSTSE, F-SSTSE,
and TSE images.
4. Discussion

In the present study, we showed that DL-SSTSE images
outperformed the SSTSE images for CR, SNR, and image
6

qualities except for motion artifact. Moreover, DL-SSTSE images
were comparable to TSE images for CR, SNR, and image quality
with regard to contrast, noise, and boundary sharpness of the 3
zonal layers in the uterine corpus. In addition, DL-SSTSE images
had significantly higher image qualities with regard to motion
artifacts and the conspicuity of the ovary than TSE images.
Contrasts of DL-SSTSE images were significantly higher than

those of SSTSE images, while no significant differences from
those of TSE images. In our acquisition protocols, echo-train
length of SSTSE imaging was 57, while that of TSE imaging was
20. CNN can improve image contrast regardless of the
acquisition parameters if appropriate dataset and algorithms
are designed. SNRs of DL-SSTSE images were higher than those
of both SSTSE and TSE images. In clinical situations, TSE
imaging is routinely performed to ensure adequate image quality
because SSTSE imaging results in a poor SNR. The CNN is an
effective denoise approach without producing image blurring, as
Park et al[28] reported.
The spatial resolution in MRI is mainly influenced by matrix

size, field-of-view, and slice thickness. Although increasing the
matrix size improves the spatial resolution, it results in a longer
imaging time or lower SNR. In our acquisition protocols, the
matrix number of phase encoding steps in SSTSE images was half
of that in TSE images. In addition, SSTSE images are blurred



Figure 4. Representative T2-weighted MR images andmagnified images of uterus and ovary. The image quality of contrast, noise, and sharpness of uterus on DL-
SSTSE images (B) were improved compared with the SSTSE images (A), and were comparable to those of TSE images (D). However, motion artifact was
sometimes greater on TSE images (H) compared with the DL-SSTSE images (F) or SSTSE images (E). The conspicuity of the ovaries on DL-SSTSE images was
improved compared with the SSTSE images. On the other hand, image qualities of F-SSTSE images (C and G) were not improved compared with SSTSE images
because classical filtering methods cannot improve the spatial resolution and image noise at the same time. Dl-SSTSE=deep learning-based single-shot turbo
spin-echo, F-SSTSE=filtering method-based single-shot turbo spin-echo, SSTSE=single-shot turbo spin-echo, TSE= turbo spin-echo.
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compared with TSE images, theoretically because of the features
of single-shot imaging.[7] The echo train length of 57 in SSTSE
imaging was longer than that in TSE imaging. From our results, it
is evident that DL-SSTSE images had better boundary sharpness
in the uterine corpus and conspicuity of ovaries and follicles than
SSTSE images, thus the CNN can CNN can improve the spatial
resolution and produce less-blurred images. On the other hand,
classical filtering methods cannot improve the spatial resolution
and image noise at the same time.
T2-weighted TSE imaging has been acquired in most pelvic

MR imaging protocols. However, it requires long imaging times
and causes motion artifacts. Recently, compressed sensing (CS)
approach has been developed andwidely used in clinical situation
for acceleration of MR acquisition speed.[29] CS exploits image
7

sparsity to reconstruct high-quality images from the under-
sampled k-space data, reducing the imaging time ofMRI by up to
50%, depending on the sequence.[30,31] CS is a promising
technique for accelerating the acquisition speed of MRI.
However, it does not suppress motion artifacts. In our study,
default acquisition times were approximately 1min for T2-
weighted SSTSE imaging and approximately 4min for T2-
weighted TSE imaging. In addition, grading scores with regard to
motion artifacts of DL-SSTSE images were significantly higher
than those of TSE. Motion artifacts degrade the image quality of
the uterus and ovaries and can potentially impair the radiologist’s
ability to make an accurate diagnosis. CNN-based DL-SSTSE
images can keep the advantage of the motion artifact robustness
and the acquisition speed acceleration of SSTSE images.

http://www.md-journal.com


Table 2

Image quality scores for SSTSE, DL-SSTSE, F-SSTSE, and TSE images.

P values

SSTSE
images

DL-SSTSE
images

F-SSTSE
images

TSE
images

SSTSE vs
DL-SSTSE

SSTSE vs
F-SSTSE

DL-SSTSE
vs F-SSTSE

DL-SSTSE
vs TSE

TSE vs
SSTSE

TSE vs
F-SSTSE

Over all image quality 4 (3–4) 4 (4–5) 4 (3–4) 4 (4–5) < 0.001 0.57 <0.001 0.98 < 0.001 < 0.001
Contrast 3 (3–4) 4 (4–5) 4 (4–5) 4 (4–5) < 0.001 < 0.001 0.97 0.64 < 0.001 0.88
Noise 4 (3–4) 5 (4–5) 5 (4–5) 5 (4–5) < 0.001 < 0.001 0.99 0.83 < 0.001 0.93
Motion artifact 5 (4–5) 5 (5–5) 5 (5–5) 4 (3–4) 0.64 0.97 0.87 < 0.001 < 0.001 < 0.001
Boundary sharpness of the

zonal layers in the uterus
4 (3–4) 4 (4–5) 4 (3–4) 4 (3–5) < 0.001 0.99 < 0.001 0.99 < 0.001 < 0.001

Conspicuity of ovaries
and follicles

4 (4–4) 5 (4–5) 4 (3.25–4) 4 (3–4) < 0.001 0.99 < 0.001 < 0.001 0.99 0.99

DL-SSTSE=deep learning-based single-shot turbo spin-echo, F-SSTSE= filtering method-based single-shot turbo spin-echo, SSTSE= single-shot turbo spin-echo, TSE= turbo spin-echo.

Misaka et al. Medicine (2020) 99:47 Medicine
Our study had several limitations. First, in the process of input
image generation, a Gaussian noise was added to the images. A
noise in MRI has been traditionally modeled by a Rician
distribution with constant noise power at each voxel,[32] while
noise reduction, coil uniformity correction, or parallel imaging
techniques dramatically change spatial noise characteristics into
more complex patterns in modern MRI systems.[33,34] If the
complex noise distribution in MRI can be simulated more
precisely, a further improvement of the image quality could be
achieved. Second, the proposed CNN emphasized image
artifacts, such as Gibbs ringing artifacts; nevertheless, they did
not influence the grading scores. Third, we did not evaluate the
image quality of pelvic benign or malignant tumors. Further
study is necessary to investigate whether DL-SSTSE images can
serve as substitutes for TSE images to diagnose female pelvic
diseases. Fourth, we did not compare the performance of the
proposed network algorithm with other networks. Further
investigation should be performed to optimize the network
algorithm for improving the SSTSE images.
In conclusion, DL-SSTSE images of the female pelvis showed

higher image quality as compared with SSTSE images. In
comparison with conventional TSE images, DL-SSTSE images
had acceptable image quality while keeping the advantage of the
motion artifacts-robustness and acquisition time efficiency of
SSTSE imaging. Thus, it has the potential to be a good substitute
to TSE images for evaluation of the female pelvis.
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