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INTRODUCTION
The advent of artificial intelligence (AI) heralds a new era in 
digital data analysis and empowers us to interpret complex 
systems through unprecedented modeling capabilities. 
This power of AI has led to an explosion of applications 
across multiple disciplines including computer vision, and 
more recently, health care. Clinical care stands to benefit 
tremendously from AI to expose meaningful relationships 
in complex data sets obtained from clinical imaging to 
molecular medicine. Although AI still is a nascent field in 
many health- care domains, initial applications and proof- 
of- concept studies have shown promising and impactful 
results in diagnosing different disease conditions using 
only raw data sources like diagnostic imaging.1,2 Thus, 
the immense analytic capacity of AI technology based on 
machine learning and deep learning will power human 
decision- making and complement human cognitive capa-
bilities. Beyond equipping physicians with new abilities, 
data- driven modeling, as opposed to just model- based 
methods, is serving as a robust paradigm that can further 
improve the current cutting- edge algorithmic approaches 
in image formation, reconstruction, and post- processing.

The functional lung imaging community is recognizing the 
transformative power of AI. The data- driven approaches 
are well- positioned to invigorate established techniques 
in this field, improving robustness and often surpassing 
existing capabilities. Current functional lung imaging 

modalities utilize the underlying physics of the image 
properties related to different disease conditions of the 
lung.3 The amount of data elements generated in functional 
imaging acquisitions, such as multiple MRI snapshots 
during free- breathing acquisitions or different CT energies, 
is amenable to applying data- driven approaches to discover 
novel relationships across different imaging phases, which 
otherwise would be difficult to identify. Various functional 
imaging modalities rely on advanced acquisitions and 
post- processing approaches, and hence AI is attractive as a 
primary modeling strategy.

Although AI applications in diagnostic imaging have 
increased rapidly in the last few years,4,5 its clinical appli-
cation to functional lung imaging is currently more of 
an evolving opportunity than a tested reality. Farhat et 
al6 recently reviewed the application of deep learning in 
pulmonary medicine imaging and noticed that the use of 
AI in lung imaging is mostly circumscribed to chest CT 
and X- rays (CXR). In this review, we take a comprehen-
sive look at the growing interest in applying AI technology 
specifically to pulmonary functional imaging and assess 
the underlying concepts of the proposed methodologies 
that utilize machine- and deep learning for state- of- the- art 
image reconstructions, functional assessment, and func-
tional imaging synthesis. We evaluate the opportunities AI 
presents and weigh in on the challenges ahead for success-
fully implementing AI in pulmonary functional imaging.
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ABSTRACT

Artificial intelligence (AI) is transforming the way we perform advanced imaging. From high- resolution image recon-
struction to predicting functional response from clinically acquired data, AI is promising to revolutionize clinical evalua-
tion of lung performance, pushing the boundary in pulmonary functional imaging for patients suffering from respiratory 
conditions. In this review, we overview the current developments and expound on some of the encouraging new fron-
tiers. We focus on the recent advances in machine learning and deep learning that enable reconstructing images, 
quantitating, and predicting functional responses of the lung. Finally, we shed light on the potential opportunities and 
challenges ahead in adopting AI for functional lung imaging in clinical settings.
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DEEP LEARNING IN MEDICAL IMAGING
The emergence of AI as a key component in medical imaging 
techniques is largely propelled by vast improvements in machine 
learning, specifically, deep learning. Deep learning performs a 
wide variety of challenging tasks, including classification, regres-
sion, clustering, image reconstruction artifact reduction, lesion 
detection, segmentation, and registration.7 Deep learning is 
an extension of artificial neural networks8 as a core building 
block. Deep learning gained importance in computer vision 
when neural networks outperformed other methods on several 
visual recognition tasks. Deep learning in medical imaging is 
primarily based on the convolutional neural network (CNN) 
paradigm. LeCun9 introduced the CNNs to extend the use of 
neural networks from 1D signals to multi  dimensional signals 
like 2D or 3D volumes and provide a powerful way to learn 
representations of images and solve recognition tasks. CNNs are 
constructed with units of a compact kernel of neurons that slides 
across an image to produce an output image map. Neurons act 
like logistic regressors that generate a response at each image 
location as a weighted sum of the image intensities. The kernels 
define the weight of each location, and these neural kernels are 
assembled in multiple channels to create a CNN convolutional 

layer. Several such layers that function differently but comple-
mentary make up the CNN (Figure  1A). Information flows in 
a forward fashion, and deeper and deeper layers aggregate it in 
a non- linear manner. The success of CNNs in medical imaging 
inspired the development of other deep learning paradigms to 
exploit the various aspects of the information flowing through 
the network. A few examples of such advanced network methods 
are recurrent neural networks (RNN), autoencoders (AE), and its 
variations like U- Nets, generative adversarial networks (GANs), 
and more recently, transformers, among others.12–14 Figure  1B 
illustrates the architecture of a U- Net used in medical appli-
cations to generate an output image from an input image after 
aggregating information at different scales. For more informa-
tion, we refer the readers to the recent reviews of deep learning 
in radiology.5,10,12,15

Machine learning approaches can be classified into four major 
categories depending on the nature of the problem being solved 
and the data elements used as part of the training, viz. supervised 
learning, unsupervised learning, semi- supervised learning, and 
reinforcement learning. A model maps a set of inputs to given 
outputs in supervised learning and requires annotated data 

Figure 1. Schematic of a CNN architecture. (A) Traditional CNN architecture is used for image classification or regression. An input 
image is decomposed into multiple globally aggregated features by a final- stage fully connected neural network. Convolutional 
layers are the main component in CNNs. Additional layers include data pooling to downsample the image domain, drop- out 
for model simplification, and batch normalization. (B) U- Net architecture is a type of fully convolutional network that is widely 
employed in medical imaging applications. U- Net contains two convolutional steps: an encoder and a decoder. The encoder 
reduces the input data to a latent space, and the decoder uses this information to recreate a new image. Adapted from Chartrand 
et al and Zha et al10,11 with permission. CNN, convolutional neural network.
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sets. Unsupervised learning aims at finding structure in a data 
set, as it is common in clustering problems. Semi- supervised 
learning has emerged as an exciting approach that combines 
supervised and unsupervised techniques to take advantage of 
non- annotated datasets that can improve supervised learning 
by matching specific characteristics of the non- annotated data 
set. An example of semi- supervised learning is image- to- image 
translation using GANs.16 Finally, reinforcement learning is 
based on agents that learn from their environments through 
trial and error while optimizing some objective functions. An 
example of reinforming learning in medical imaging is landmark 
detection methods.17

Finally, machine learning approaches define the model param-
eters using training data to solve an optimization problem. The 
proper definition of the training data set in terms of character-
istics, sample size, and image conditions are key to converge to 
a solution that can be generalized to other data sets beyond the 
training examples. This implies that machine learning needs a 
thorough validation and testing of the models using data points 
that have been employed in training. Different techniques known 
as cross- validation are used to check the stability of the model 
when the training data change. It is essential to understand the 
conditions under which the model was derived, and the modelers 
need to follow good practices and careful documentation of the 
training process.18

AI IN FUNCTIONAL IMAGE RECONSTRUCTION
Magnetic resonance imaging (MRI)
MRI has been a primary modality in functional lung imaging 
because of its safety characteristics and the exceptional ability 
to discover functional properties.19 The early challenges due 
to a lack of protons and signal inhomogeneities in the lungs 
have been overcome, and now MRI can be used for static and 
dynamic lung imaging.20 The arrival of ultrashort TE (UTE) 
MRI with sophisticated clinical hardware has advanced lung 
imaging, both at the structural and functional levels.21 From 
oxygen- enhanced and hyperpolarized gases MRI for ventilation 
imaging21 to Fourier Decomposition proton MRI for ventila-
tion/perfusion (V/Q) imaging and dynamic contrast enhance-
ment (DCE) MRI for microvascular perfusion,19 MRI has 
become the modality of choice to examine the complex venti-
lation and perfusion functions in different pathological condi-
tions.22 Essential to MRI pulse sequence design is the need for 
short echo times and the balance between acquisition time and 
signal- to- noise ratio (SNR) that can be achieved with parallel 
imaging.23 Many of the computational approaches in MRI appli-
cations have been focused on improving optimal phase encoding 
from an under sampled version of the k- space that could reduce 
the acquisition time while keeping SNR levels compatible with 
image quality.24 Compressed sensing techniques were developed 
two decades ago for fast MRI reconstruction, and using diffusion 
MRI with hyperpolarized 129Xe.25,26 In the past few years, CNNs 
and Recurrent NNs have taken a prominent role in improving 
static and dynamic MRI reconstruction to learning the spatio-
temporal dependencies in heavily under  sampled k- space 
data.27–31 Duan et al32 showed improved ventilation imaging 
using a coarse- to- fine neural network from under  sampled 

k- space.32 Reconstruction can be achieved with higher SNR 
values than compressed sensing reconstruction, paving the way 
for real- time reconstruction of contrast- enhanced MRI of the 
lung. Unlike compressed sensing, CNN reconstruction models 
rely on incorporating prior information learned as part of the 
training process to solve the inverse reconstruction problem.33 
However, the reliance on data to define a model implies that 
rigorous validation is needed.34

Another area where deep learning can impact is the inherent 
need to perform motion correction in dynamic MRI acqui-
sitions. For example, Fourier Decomposition MRI for V/Q 
Imaging relies on registration techniques as a critical step in their 
reconstruction paradigm. Likewise, different approaches have 
been proposed based on traditional functional optimization that 
shows stable quality results.35 Deep learning registration offers 
an alternative with low computational cost during the inference 
stage once the registration model is trained.36,37 Deep learning 
in MRI also has been attempted to estimate quantitative tissue 
parameters using quantitative susceptibility mapping (QMS) and 
MRI fingerprinting to achieve more standardized biomarkers.38 
Although these techniques are yet to be applied in both preclin-
ical and clinical MRI lung imaging, deep learning could catalyze 
the translation of these advanced quantitative tools.

Computed tomography (CT)
Volumetric CT (VCT) has high- density contrast between air 
and tissue and is a mainstay of clinical chest radiology. The 
introduction of helical multislice CT scanning facilitated spatio-
temporal 4DCT as a tool in radiation oncology for measuring 
and managing overall respiratory motion.39 Patient safety is 
increased because only low dose radiation is required when 
combined with advanced iterative reconstruction techniques, 
and hence functional CT imaging (both 4D and dual- energy) 
is preferred for broader clinical use. Like MRI reconstruction, 
new AI methods are pushing ultra- low- dose CT image recon-
struction to another level. Major manufacturers are intro-
ducing new deep learning schemes that show higher SNR 
and contrast and improved object detectability than standard 
statistical or model- based iterative techniques.40–42 New tech-
niques under development and current iterative reconstruction 
approaches capable of denoising CNNs promise to improve the 
image SNR further.43 In addition to supporting low- dose image 
reconstruction, deep neural networks have also been employed 
to reduce breathing artifacts and enhance image quality.44 All 
these advances will make temporal ultra- low CT a safer and 
more versatile functional modality in clinical applications of 
CT.

Cone- beam CT (CBCT) system is becoming a key device in the 
interventional suite due to portability and high reconstruction 
quality for volumetric images. In addition, deep learning is cata-
lyzing dynamic applications with real- time reconstruction from 
sparse projection data permitting real- time ventilation imaging 
in image- guided radiotherapy.45,46 The combination of these 
improvements can open the door for these preclinical CBCT 
applications to broader adoption as a lung functional imaging 
modality.47
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Dual- energy CT scanning (DECT) with contrast agents (iodine 
or Xenon) has also enabled the assessment of regional ventila-
tion and perfusion by taking advantage of the difference in linear 
attenuation coefficient at different X- ray energies.48–52 CNNs are 
being applied to improve DECT imaging fundamentals related 
to material decomposition,53,54 simplify dual- energy acquisitions 
based on single- energy material decomposition55 and combine 
virtual single- energy structural imaging from dual- energy acqui-
sitions. The translation of these techniques can expand the role 
of DECT in ventilation and perfusion imaging as dual- energy is 
more readily available.

Positron emission tomography (PET- CT) and single- photon 
emission computed tomography (SPECT) have also been 
employed to perform V/Q imaging to improve planar lung scin-
tigraphy56 and assess pulmonary inflammation.57 Deep learning 
solutions are being developed to enhance PET reconstruction 
and attenuation correction58,59 ; however, up to date, no valida-
tion studies have been performed to show the impact of AI- en-
hanced molecular imaging in the lung. Thus, this area remains an 
exciting opportunity for AI in the years to come.

AI IN FUNCTIONAL QUANTIFICATION
Automated lung segmentation in functional 
modalities
For a functional imaging modality, it is important to define 
the structural components of the lung, such as lung field, lobar 
compartments, fissures, and the bronchovascular tree, to locate 
and quantitate image- based data. Deep learning is significantly 
evolving and transforming the post- acquisition upstream 
operations necessary to resolve the lung’s structural compo-
nents to interpret and quantify regional functional markers. 
Deep learning is indeed replacing the rule- based approaches 
to segment the lung60 and the lobes with more precise and reli-
able mapping methods based on CNNs that have shown more 
consistent results across modalities.6 In particular, the use of 
U- nets, a specialized neural network architecture for semantic 
segmentation, has provided compelling results in multiple 
medical and biomedical imaging segmentation tasks.61,62 These 
new approaches to image segmentation are superior in part 
due to their enhanced ability to encode shape priors of the 
segmented organ based on the provided training data without 
explicitly modeling the shape. One example of the application 
of U- Nets to functional modalities is the use of a 2D U- Net to 
perform volumetric lung segmentation from UTE proton MRI 
in a multiplane fashion.11 Despite reduced contrast around the 
lung boundaries, the lung volume estimates in a set of asthmatic 
and cystic fibrotic patients closely matched the reference values 
(Figure 2). One caveat for the application of deep learning is the 
limited availability of training data. Recently, Guo and colleagues 
showed increased robustness in UTE MRI lung segmentation by 
including an adaptive k- mean after the initial U- net segmenta-
tion.63 Robust lung segmentation in MRI is essential for quan-
titative analysis of functional parameters and its use in clinical 
studies. Similarly, a multi resolution U- Net architecture has been 
proposed for robust lobar segmentation in CT images to enable 
regional quantification of dynamic CT series.64,65

Deformable image registration (DIR)
Ventilation imaging. DIR is one of the most employed methods 
to assess ventilation defects from temporal imaging modalities 
like 4DCT, CBCT, and MRI. DIR- enabled CT- based ventilation 
assessment has been successfully used in radiation oncology to 
avoid damage from radiation therapy as well as performing dose–
response assessment.39 Recently, MRI- based mechanical assess-
ment of the lung via elastic registration has also been used to 
assess SSc- related fibrosis.66 Ventilation assessment using tissue 
expansion metrics based on the deformation fields generated by 
DIR or the differences in tissue density between the coregistered 
image pairs have shown reasonable correlation with the regional 
assessment of ventilation using Xenon CT48,67 and Xenon- MRI.68 
However, variability between registration approaches has led to 
a poor correlation between DIR- based ventilation metrics and 
reference modalities at the voxel level.69

Traditional DIR approaches describe the mapping of two 
images via a deformable field by finding the elastic transforma-
tion parameters that minimize the difference between images 
acquired at different moments during the respiratory cycle. 
Deformable registration in the lung has been challenging by the 
complexities of describing the transformation in a parametric 
way when dealing with large displacements commonly found 
in registration between images acquired between TLC and FRC 
while preserving known invariants like lung mass.70 Neverthe-
less, traditional methods have partially addressed lung registra-
tion with reasonable accuracy performance, albeit with complex 
methodologies that lack robustness and require long computa-
tion times due to the numerical minimization needed for each 
registration instance.71

Deep learning- based deformation image registration (DLDIR) 
has emerged in the last 5 years as a new paradigm for regis-
tration. One of the main advantages of DLDIR approaches is 
the explicit or implicit definition of the deformation field via a 
CNN that can better capture the complexities of the deforma-
tion in a particular problem with relatively low computational 
needs during the inference step. DLDIR can be classified into 
supervised and unsupervised registration methods. Supervised 
approaches that regress the displacement vector field between 
two images using a CNN model were initially employed in 
DLDIR72,73R These methods were trained with previously 
aligned images using either a reference method72 or synthetic 
deformations.73,74 Although these approaches improve the regis-
tration computing times from minutes to just a few seconds, 
their accuracy is defined by the characteristics of the reference 
approach used for learning. The reported registration errors on 
reference data sets are on par with their traditional techniques 
that have been extensively used in ventilation studies. Unsuper-
vised registration approaches have been explored to overcome 
the limitation of using an explicit reference deformation. Among 
them, unsupervised DLDIR has captured the attention in the last 
few years because it needs only limited training data.75 Unsu-
pervised techniques use a mismatch metric between the moving 
image and the reference image within the training data, as occurs 
in a traditional registration framework. A CNN model encodes 
the deformation parameters, and the optimization is done over 
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the parameters of the CNNs rather than the deformation param-
eters. Once the training is completed, the CNN is employed to 
generate new deformation parameters from unseen data sets. De 
Vos and colleagues37 pioneered this framework in lung regis-
tration using the multiscale ConvNet architecture (Figure 3). A 
similar approach has been shown to be feasible to register CT to 
CBCT and CBCT to CBCT76 and one- shot methods have been 
tailored to track periodic breathing motion patterns.77 Finally, 
Fu et al77 proposed a LungRegtNet for 4DCT registration that 
employs vascular landmarks to achieve superior performance 
compared to current methods based on unsupervised registra-
tion in the DIRLAb data set.78

The new breed of lung DLDIR approaches can lead to higher 
accuracy and more robust registration results that could improve 
the assessment of regional ventilation at the voxel level; however, 
extensive validation studies in larger prospective samples should 
be conducted to confirm this possibility.69,79 Inaccurate regis-
trations can result in lung tissue being mapped to blood vessel 
voxels which will cause artifacts in the CT- ventilation image in 
both the Jacobian and HU formulations. Without any doubt, 

the most exciting characteristic of DLDIR is the need for low 
computation to resolve a deformation field once the method has 
been trained. This opens the opportunity for bringing DIR- based 
ventilation metrics closer to the patient point- of- care when 
applied to lower- cost setups like 4D CBCT. These exciting tech-
niques are potential modalities for ventilation assessment during 
treatment in the near future.39

Multiparametric assessment. Registration is also a fundamental 
processing component of multiparametric structural and func-
tional imaging analyses to correlate structural changes with 
functional defects in lung pathophysiology.80–82 MacNeil et al83 
used volume- matched CT and hyperpolarized helium- 3 (3He) 
MRI using static and diffusion- weighted imaging to define a 
multiparametric response map (mPRM). Structural changes 
measured on CT were coupled with regional MRI- based venti-
lation and microstructure based on the apparent diffusion coef-
ficient (ADC) as shown in Figure  4. mPRM metrics were able 
to reveal emphysema and small airways disease not otherwise 
identified with CT or MRI, reflecting the power of multimodal 
approaches in disease characterization. Registration approaches 

Figure 2. Segmentation of the lung field on oxygen- enhanced UTE MRI images using a multiplane (axial and coronal and final 
consensus) U- Net approach in a 37- year- old female with cystic fibrosis. The delineation of the lung boundaries can be achieved 
despite the reduced contrast. Adapted from Zha et al11 with permission. UTE, ultrashort TE.
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that include deep learning schemes will likely translate these 
upcoming multiparametric approaches to clinical applications 
beyond correlative studies.

Functional prediction
Deep learning approaches have been also postulated to predict 
the functional parameters from structural modalities. Westcott 
and colleagues showed how textural- based features extracted 
from a volume of interest on CT scans can predict regional venti-
latory effects in subjects with COPD.84 The method was trained 

with ventilation defect labels obtained from 1H and 3He MRI 
using a k- mean approach. Different classifiers were compared, 
and the most relevant features were selected in a cross- validation 
experimental setup. The AUC of the best model was 82%, 
with high specificity (91%) and moderate sensitivity (49%). 
Ventilation- defect percentage (VPD) predicted by the model 
and the one computed using the reference MRI modality show 
a strong correlation (90%); an encouraging sign of the ability of 
these approaches to offer patient- specific information on func-
tional impairment conditions. However, it is hard to ascertain 

Figure 3. An example of Unsupervised Deep Learning Deformable Image Registration from an expiratory (moving) to an inspira-
tory (fixed) CT scan. The CNN models the deformation field depicted as a warped grid. The Jacobian map estimates the volume 
change and can be used to compute ventilation maps. Registration inference can be performed in a few seconds in comparison to 
classical techniques enabling real- time deployment. Adapted from Vos BD de et al37 with permission. CNN, convolutional neural 
network.
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how stable the features proposed by this study could be gener-
alized to a larger COPD population with milder disease condi-
tions because of the limited sample size used for training. Larger 
sample size and reproducibility studies are needed to define the 
generalization power of the proposed features.

CNNs have also been used to extract features from CT images 
that can define spirometric status in smokers with and without 

COPD. Gonzalez et al85 used a three- layer feed- forward CNN 
to predict COPD functional status based on spirometry. The 
correlation between FEV1 measurements and deep learning 
CT- based measurements was 73%. Tang and colleagues used a 
more complex network—a residual Network with 152 layers—to 
diagnose COPD from CT volumetric imaging.86 The AUC in the 
testing cohort for the best model was 86%. This result was consis-
tent with the performance reported by Gonzalez and colleagues. 

Figure 4. Multiparametric imaging mapping from 3He MRI and CT in COPD. Functional and structural images (top) are aligned 
to produce a multiparametric Response Map (bottom). DL Registration techniques can enable accurate and real- time response 
mapping assessment. Adapted from MacNeil et al83 with permission. COPD, chronic obstructive pulmonary disease.
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These results suggest that different architectures can extract 
complementary feature information from CT imaging to predict 
an outcome.

In sum, the best network architecture design in terms of combi-
nations of neural layers must strike a trade- off between model 
complexity and the ability to generalize to different populations 
and imaging characteristics. Meta- learning techniques are being 
actively researched and developed to improve upon the predic-
tion of single learning techniques in multiple learning episodes 
that integrates different approaches.87

AI IN FUNCTIONAL ASSESSMENT
Function assessment is one of the most exciting emerging appli-
cations of AI where a direct functional response is synthesized to 
mimic a target functional modality, e.g. dual energy CT pulmo-
nary perfusion, from source modalities that require simpler or 
a more direct imaging reconstruction setup. These techniques 
aim to resolve intrinsic relations across functional modalities or 
even the resolution of functional information from structural 
modalities like CT. These approaches are referred to as image- 
to- image translation within the AI community. They are based 
on an array of supervised and semi- supervised techniques that 
range from fully CNNs like convolutional generators based on 
autoencoders and U- nets61 to Generative Adversarial Networks 
(GAN)13 that combine a generator and a discriminator network. 
Image- to- image translation techniques were borne off in the 
context of computer graphics applications88 and one promi-
nent application is artificial style representation from natural 
images using paired (conditional) or unpaired (cycle) GANs.16,89 
In paired approaches, the training is performed in a data set 
containing paired instances of the target and source modality, 
while unpaired approaches can use instances from the source 
and the target modalities that are not matched or even belong to 
the same population of subjects.

Supervised functional synthesis
One of the first demonstrations of image translation approaches 
in functional lung images has been synthesizing ventilation 
imaging from 4DCT without explicit use of DIR. Unfortunately, 
4DCT- derived ventilation images are sensitive to the choice of 
DIR algorithm and its accuracy.90 Direct approaches can over-
come this limitation by directly learning tissue expansion char-
acteristics from multiple snapshots across a breathing cycle. 
Zhong et al91 proposed a fully convolutional model composed 
of seven layers without any downsampling step to preserve the 
image resolution. Despite reasonable results, fully convolutional 
networks are limited to local relations between the inspiratory 
and expiratory images around a voxel that could lead to inconsis-
tent results if the mismatch between inspiratory and expiratory 
images is significant.

To overcome some of the limitations of fully convolutional 
approaches, encoder–decoder convolutional like the U- net 
architecture have been extensively applied in image- to- image 
reconstruction tasks. The U- Net architecture includes multiple 
convolutional steps followed by a data down- sampling step in the 
encoder phase and up- sampling layers in the decoder phase. Also, 
information from the encoding phase at a given level is trans-
ferred to the decoder phase, similar to the fully convolutional 
approach. These architectures have shown promising results in 
synthesizing different functional ventilation images.92,93 Capaldi 
et al93 demonstrated the use of U- nets to estimate hyperpo-
larized noble gas MRI ventilation maps from free- breathing 
proton (1H) MRI after breathing phase sorting and interpola-
tion (Figure  5). Training, validation, and testing were done in 
a set of 114 subjects with different pulmonary conditions, i.e. 
asthma, COPD, bronchiectasis, and NSCLC, and healthy volun-
teers. The deep learning- based VDP estimation showed good 
agreement with reference values based on hyperpolarized 3He 
MRI. In a similar fashion to Zhong et al.,89 Gerard et al92 used 
a multi  resolution U- net to provide a direct estimation of the 

Figure 5. Deep learning ventilation MRI for the synthesis of 3He MRI ventilation imaging from free- breathing proton (1H) MRI. (A) 
Illustration of the MRI pipeline to register and sort out free- breathing MRI images before consumption by the image- to- image 
U- Net network. The training was performed to predict ventilation maps from 3He MRI. (B) Comparison between the reference 
ventilation maps and DL ventilation MRI synthetic imaging for subjects with different types of obstructive airway diseases. Agree-
ment in ventilation defect percentage between modalities was high with good correspondence. Adapted from Capaldi et al93 with 
permission.
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ventilation response based on the deformation Jacobian without 
a DIR (Figure  6A). Unlike prior approaches, this network was 
trained in an extensive database of inspiratory and expiratory CT 
scans from the COPDGene cohort and showed high voxel- wide 
correlations with ventilation images based on a classical mass- 
preserving DIR approach.

Like ventilation imaging, recent studies have also shown the 
use of CNN approaches to estimate lung perfusion from single 
energy CT scans. Ren et al94 employed an attention U- net archi-
tecture to synthesize albumin SPECT/CT perfusion mapping 
from non- contrast CT scans to enable functional lung avoid-
ance in radiotherapy planning.94 Their proposed neural network 
is superior to the traditional U- Net architecture and is able to 
identify features from the CT domain that are compatible with 
perfusion defects with moderate correlation. Despite the limited 
size of the training (31 subjects) and testing data (11 subjects), 
these results illustrate the ability of deep learning approaches 
to estimate both ventilation and perfusion functional imaging 
from routine non- contrast CT scans under a common imaging 
platform.

Adversarial functional imaging
Semi- supervised approaches based on GANs are also under 
development as an improved alternative in image translation 
that aims at increasing the stability of the results of multi layered 
neural networks.15 For example, Nardelli et al95 illustrated the 
use of a modified conditional CycleGAN to synthesize dual- 
energy- derived iodine perfusion maps from single energy 
contrast CT scans (Figure  6B). The cycleGAN leverages both 
CT imaging and structural vascular information in a setup with 

three encoding CNNs and three discriminators to generate the 
functional output with moderate local correlations (0.52 and 
0.66 in the core and peel lung regions, respectively). Although 
unpaired GAN approaches are more complex and more chal-
lenging to train due to the need to find an equilibrium point 
in a min- max optimization problem, they seem relevant to 
approximate the statistical characteristics of the image that is 
being estimated. Unpaired GAN approaches can be employed 
with larger databases of unpaired datasets to predict the target 
functional modality without the need for scanning the same 
subject with both modalities as required by plain convolutional 
approaches.93,94 Thus, the application of GANs presents a greater 
opportunity in the context of functional imaging. GAN- based 
learning can also be applied in various domains related to image 
reconstruction and preprocessing stages like super- resolution 
and multimodal registration and modality synthesis for multi-
parametric analysis.

Opportunities and challenges
AI applications in medical imaging have exploded over the past 
5 years, driven by multiple factors. First, the maturity of the deep 
learning approaches exploiting non- linear relations in the data 
has been instrumental. Second, advances in optimization and 
regularization techniques have made it tractable to fit models 
with a large number of parameters to a limited set of training 
data points. Third, the availability of methods in well- maintained 
open- source libraries has empowered a broad community with 
AI techniques, including non- experts in the field with limited 
skills. Finally, specialized computing architectures based on 
Graphics Processing Units (GPUs) have delivered the necessary 

Figure 6. Illustration of image- to- image translation techniques for synthetic ventilation and perfusion assessment based on single 
energy CT. (A) Direct Jacobian ventilation map estimation using a multi resolution deep learning approach without deformation 
image registration from inspiratory and expiratory CT scans. (B) Estimation of dual- energy perfusion maps from single energy CT 
angiograms to assess perfusion defects using a functional consistency CycleGAN.
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computing power to train advanced models within a reasonable 
amount of time.

While AI is still an emerging discipline in functional lung 
imaging, there are clear and tangible opportunities worth 
mentioning:

(1) Multifunctional assessment: AI has the potential to unleash 
the power of multiple functional assessments under a single 
imaging platform. Currently, ventilation and perfusion 
imaging require the use of different imaging contrast 
agents in CT. One potential integrated solution could be 
the emerging combination of 4D CBCT and simulated 
dual- energy imaging for functional imaging. The benefits 
of synthetic multifunctional assessment include reduced 
radiological tests that require hard- to- obtain radioactive 
contrast agents, reduced radiation exposure, and improved 
care delivery as imaging synthesis is performed without the 
patient as part of the radiological and clinical evaluation. 
However, realizing these opportunities will require an 
extensive validation process to define the interval confidence 
in which the synthetic images are consistent with the 
underlying functional ground truth. The outcome of the 
validation studies will also determine the potential of AI- 
enabled synthetic imaging for clinical adoption and whether 
it could eventually be circumscribed to narrower clinical 
scenarios where an initial triage based on a sub  optimal 
approach might be useful.

(2) Clinical translation to low footprint radiological setups: 
current functional imaging relies on advanced modalities 
that require specialized equipment like hyperpolarizers. 
The potential use of AI- driven image- to- image translation 
could bring the benefit of functional information to standard 
radiological imaging modalities that are available in primary 
and secondary care facilities.

(3) Novel biomarkers: functional modalities provide 
voluminous multiparametric data that need to be 
laboriously synthesized into specific markers of disease. AI 
provides an alternative computational approach to define 
novel biomarkers of the disease. Supervised CNNs can be 
used to extract relevant image features that are associated 
with a specific outcome. Unsupervised autoencoder 
techniques can also be applied for dimensionality reduction 
to define novel biomarkers from multiparametric imaging 
sources.

(4) Unraveling lung structure and function: the relationship 
between structure and function of the lung has been well- 
described, but we are still limited in linking the structural 
changes to the functional impairment and achieving a 
better characterization of the disease. Studies that combine 
structural and functional modalities83,96 can take advantage 
of AI as an exploratory tool to gain further insight into the 
structure–function relationship.

Despite the exciting and compelling preliminary evidence prom-
ising a more significant and elaborate role for AI in pulmonary 
functional imaging, several challenges remain that need to be 
carefully evaluated and resolved before realizing AI as a reliable 
component of clinical functional lung imaging:

(1) Validation: data- driven approaches require rigorous 
validation studies to gauge the generality and robustness of 
the methods. Until now, most of the studies that apply AI to 
functional lung imaging were performed with small datasets. 
Although they provide early evidence of what AI can do, 
they lack the rigor needed to qualify as bonafide approaches. 
Large databases on diverse populations will be required to 
train and validate the techniques before translating them 
into clinical use.

(2) Model transparency: one of the major criticisms of deep 
learning is a lack of transparency and interpretability. In 
other words, users (clinicians and researchers) should be 
able to understand the “reasoning” of the AI model; why it 
renders one verdict and not the other. Model developers and 
data scientists must make didactic efforts to teach the users 
how the models operate and decide outcomes. Transparency 
is crucial to defining a modality’s operational realm and 
proactively restricting deviations from the model that can 
affect image quality and diagnostic interpretability.

(3) Model robustness: one collateral effect of the lack of model 
transparency is model instability to adversarial attacks 
(negligible input variations resulting in significant changes 
of the model output) and intrinsic model biases. Adversarial 
attack prevention is an oft- discussed topic in AI and they 
pose a substantial barrier to the use of AI for image synthesis 
in critical applications like diagnostic imaging.97 Careful 
model design and training considerations must be taken to 
avoid adversarial attacks overall if models are trained with 
off- the- shelve components.98 In a similar fashion, biases and 
disparity in functional expression may be translated into AI 
systems trained with imaging data in which those underlying 
biases exist.99 Understanding the specific performance 
characteristics of each model is crucial to move beyond the 
preclinical scenario and successfully introduce it into clinical 
practice.

(4) Unlocking data silos: the unresolved complexities of 
functional imaging imply that the number of training 
cases is limited compared to training scenarios available 
for modalities like CT and CXR. Training sample size is 
a key factor in deep learning that depends on the specific 
characteristics of the problem begin addressed and the model 
that is used. Unlocking the available data silos is paramount 
for implementing new data- driven advances in functional 
lung imaging. Open data repositories and challenges like 
VAMPIRE79 are crucial for developing machine learning- 
centric approaches that improve functional lung imaging 
quality and performance reasonably and reproducibly. Issues 
about data integrity and privacy could be overcome with 
federated solutions that enable de- centralized AI modeling 
to exploit pan- institutional datasets.100,101

CONCLUSION
AI continues to evolve rapidly and push the limits in many 
spheres, and its interest in medicine is growing exponentially 
in recent years, especially in the functional imaging domain. 
Public and private entities recognize this as a thrust area, and 
their initiatives have begun to catalyze this field.100 The pulmo-
nary functional imaging community can benefit from this 
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frenetic activity in data science as novel approaches using rich 
data sets are proposed to redefine disease conditions. Machine 
learning models that link imaging, functional, biomarkers, and 
multi omics data can advance our understanding of the complex 
and intimate connection between structure and function.102 
AI can also play a transformative role in adopting functional 
imaging approaches to clinical settings that are now restricted 
to preclinical scenarios due to their complexity. The use of func-
tional modalities in diseases like chronic obstructive pulmonary 
disease (COPD), asthma, Interstital Lung Disease (ILD), or Cystic 
Fibrosis (CF) can bring a new dimensionality to define relevant 
markers of disease heterogeneity and progression.82,103,104 At the 
same time, the application of AI is not free of limitations and 
perils stemming from the experimental nature of current tech-
niques. The reliance on vast amounts of data exemplars rather 
than well- understood “fixed” models could act as a double- edged 
sword if AI is applied without careful methodological consid-
eration. This issue is even more relevant in functional imaging 
scenarios where functional metrics describe subtle pathophys-
iological processes that need to be well- understood by the AI 

developers. Therefore, a multidisciplinary approach is essential 
to introduce AI in functional pulmonary imaging. Successful 
incorporation of AI in functional imaging holds promise to 
transform the field, delivering significant benefits in the coming 
years.
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