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Abstract: Surfactants are molecules that lower surface or interfacial tension, and thus they are
broadly used as detergents, wetting agents, emulsifiers, foaming agents, or dispersants. How-
ever, for modern applications, substances that can perform more than one function are desired.
In this study we evaluated antioxidant properties of two homological series of N-oxide surfac-
tants: monocephalic 3-(alkanoylamino)propyldimethylamine-N-oxides and dicephalic N,N-bis[3,3′-
(dimethylamino)propyl]alkylamide di-N-oxides. Their antiradical properties were tested against
stable radicals using electron paramagnetic resonance (EPR) and UV-vis spectroscopy. The exper-
imental investigation was supported by theoretical density functional theory (DFT) and ab initio
modeling of the X–H bonds dissociation enthalpies, ionization potentials, and Gibbs free energies for
radical scavenging reactions. The evaluation was supplemented with a study of biological activity.
We found that the mono- and di-N-oxides are capable of scavenging reactive radicals; however, the
dicephalic surfactants are more efficient than their linear analogues.

Keywords: surfactants; antiradical properties; radical scavenging; antioxidant; EPR spectroscopy;
UV-vis spectroscopy; DFT; DLPNO-CCSD(T)

1. Introduction

All living organisms are continuously exposed to a variety of harmful factors such
as UV irradiation or environmental pollutants [1,2]. As an effect of these factors, the
concentration of reactive radicals arises. To regain stability, the reactive radicals tend to
undergo reduction, causing oxidative damage to biomolecules in the surroundings. An-
tioxidants prevent this process in biological systems and enable living cells to repair and
renew. Providing natural antioxidants, e.g., from the group of curcuminoids or polyphe-
nols, additionally with other antioxidant compounds, can significantly support patients
during therapy in the case of various diseases, such as neurodegenerative or cancerous dis-
eases [3–6]. The search for effective antioxidants has become one of the priorities of research
in many scientific centers in the world because the efficacy of antioxidant compounds varies
with structural factors and action mechanisms [7–9].

The external application of antioxidants plays an important role in pharmaceutical
and cosmetic formulations. Modern cosmetic and pharmaceutical formulations are based
on carriers of active substances in which the main role is played by compounds lowering
the surface tension at the interface between two phases. Surfactants are amphipathic
compounds with hydrophilic and hydrophobic fragments [10]. They are used as emulsi-
fying substances in the production of creams and lotions. They also have foaming and
wetting properties, which is why they are widely used in the production of detergents
such as dishwashing liquid, soaps, or washing powders. Surfactants also increase the
solubility of poorly soluble compounds and increase the penetration of active compounds,
e.g., contained in skin cosmetics [11,12]. New applications of surfactants also include their
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use in carriers, e.g., in the form of nanoemulsions [13]. This approach allows not only for
the delivery of active substances deep into a specific target site to increase the solubility of
hydrophobic compounds but also for protecting them against the often harmful influence
of external factors [14].

For modern applications, substances that can perform more than one function are
desired. Hence, surfactants, which will not only reduce surface tension but will also
have other properties, e.g., anti-microbial, antioxidant, or other, are sought. Non-ionic
N-oxide surfactants exhibit very low toxicity and are biodegradable [15]. For these rea-
sons, they are used in pharmaceuticals, cosmetics, and food products. In addition to
their aggregation and emulsifying features that we reported previously [16], they also
have antimicrobial and immunomodulatory properties [15], and they have been demon-
strated to enhance antioxidant properties of (+)-usnic acid-loaded liposomes [15]. However,
the antioxidant properties of N-oxide surfactants remain unexamined, and thus we at-
tempted to characterize the antiradical properties of synthesized single head-single tail
3-(alkanoylamino)propyldimethylamine-N-oxides (CnPDA) and two head-single tail N,N-
bis[3,3′-(dimethylamino)propyl]alkylamide di-N-oxides (Cn(DAPANO)2) (structures are
shown in Table 1).

Table 1. Selected properties of the examined surfactants: critical micelle concentrations (CMC), hydrodynamic radius (RH),
the degree of hydrophobicity from the COSMO-RS calculations [defined as the logarithm of the octanol-water partition
coefficient (logP)].

Abbreviations R CMC [M]
RH [nm]

logP Lipinski Rule
DLS DFT b
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C10(DAPANO)2 C9H19 3.0·10−2 a 1.75 a 1.79 0.44 Yes 
C12(DAPANO)2 C11H23 5.5·10−3 a 2.04 a 2.02 1.27 Yes 
C14(DAPANO)2 C13H27 8.0·10−4 a 2.28 a 2.32 1.97 Yes 

C16(DAPANO)2 C15H31 1.5·10−4 a 2.38 a 2.46 2.76 Yes 

 

C10PDA C9H19 7.5·10−3 1.67 1.75 3.45 Yes 
C12PDA C11H23 7.0·10−4 1.96 2.00 4.74 Yes 
C14PDA C13H27 8.0·10−5 2.19 2.11 6.05 Yes 

C16PDA C15H31 8.5·10−6 2.27 2.51 7.32 Yes 

a Data from ref. [17]. b Assumed as the distance between the carbon atom of the terminal methyl group and the farthest 
nitrogen atom of the N-oxide group. 

To accomplish this aim, the radical scavenging activity of the N-oxides was evalu-
ated using electron paramagnetic resonance (EPR) spectroscopy against two stable radi-
cals: galvinoxyl (GO•) and 1,1-diphenyl-2-picrylhydrazyl (DPPH•). In the next step, the 
kinetics of the radical scavenging was monitored by UV-vis absorption spectroscopy. 
The EPR and UV-vis experiments were supplemented with the theoretical calculations at 
the density functional theory (DFT) and domain based local pair natural orbital coupled-
cluster singles and doubles with perturbative inclusion of triples [DLPNO-CCSD(T)] 
theory levels. The biological examination of the N-oxide surfactants’ cytotoxicity and an-
tioxidant properties on cell cultures of normal human cells was performed. The use of 
keratinocytes and fibroblasts allowed for the determination of surfactant interactions 
with skin and mucosa cells. 

2. Results and Discussion 

C10(DAPANO)2 C9H19 3.0·10−2 a 1.75 a 1.79 0.44 Yes
C12(DAPANO)2 C11H23 5.5·10−3 a 2.04 a 2.02 1.27 Yes
C14(DAPANO)2 C13H27 8.0·10−4 a 2.28 a 2.32 1.97 Yes

C16(DAPANO)2 C15H31 1.5·10−4 a 2.38 a 2.46 2.7 Yes
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To accomplish this aim, the radical scavenging activity of the N-oxides was evaluated
using electron paramagnetic resonance (EPR) spectroscopy against two stable radicals:
galvinoxyl (GO•) and 1,1-diphenyl-2-picrylhydrazyl (DPPH•). In the next step, the kinetics
of the radical scavenging was monitored by UV-vis absorption spectroscopy. The EPR and
UV-vis experiments were supplemented with the theoretical calculations at the density
functional theory (DFT) and domain based local pair natural orbital coupled-cluster singles
and doubles with perturbative inclusion of triples [DLPNO-CCSD(T)] theory levels. The bi-
ological examination of the N-oxide surfactants’ cytotoxicity and antioxidant properties on
cell cultures of normal human cells was performed. The use of keratinocytes and fibroblasts
allowed for the determination of surfactant interactions with skin and mucosa cells.

2. Results and Discussion

The studied bifunctional N,N-bis[3,3′-(dimethylamino)propyl]alkylamide di-N-oxide
surfactants [Cn(DAPANO)2; n = 10, 12, 14, 16], whose structure and properties are summarized
in Table 1, were prepared in a straightforward procedure from readily available, inexpen-
sive bio-reagents under mild conditions [18]. Other synthesized surfactants—CnPDA—were
prepared using a procedure adapted from Piasecki et al. [19]. Hence, the synthetic pro-
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cedure applied to obtain Cn(DAPANO)2 and CnPDA regards an important principle of
green chemistry.

Previously, we showed that the studied N-oxide surfactants have a profound tendency
to form micelles in water, and according to our potentiometric titrations, they can be
considered as nonionic at a pH close to 7, which is a physiological condition [17]. As
shown by DFT calculations, such nonionic Cn(DAPANO)2 and CnPDA surfactants feature
locally negative and positive charge zones in the N-oxide heads and on the carbonyl
group (Figure 1). The positive and negative charge is strongly localized on nitrogen and
oxygen atoms, respectively. As discussed by Durán-Álvarez et al. [20], such a strong
charge localization reflects a hard electrostatic nature of atoms being the charge carriers
in Cn(DAPANO)2 and CnPDA. There is, however, an important difference in charge
distribution between Cn(DAPANO)2 and CnPDA. As exemplified by C10(DAPANO)2,
for the di-N-oxide surfactants, the negative charge diffuses onto the first five carbon atoms
of the hydrophobic tail. This negative charge diffusion is not observed for the mono-
N-oxides, and thus they should have increased lipophilicity in comparison with their
dicephalic counterparts. The COSMO-RS calculated partition coefficients P in a biphasic
system of n-octanol and water (given in Table 1 as logP) amply corroborate this conclusion
as the logP values for the homologs of the Cn(DAPANO)2 series are significantly smaller
than for CnPDA.
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2.1. Radical Scavenging by EPR

A reliable approach to evaluate radical scavenging activity (or antiradical properties)
is using a stable radical, whose concentration gradually decreases because of the reduction
by an antiradical compound. This approach is based on the logical assumption that if a
compound can react with the stable radical, it is certainly capable of reacting with much
more aggressive radicals, such as •OH. The amount of stable radical reduced/remaining in
the sample depends on the power (kind) of the antiradical compound (antioxidant) [7,21].

To test the scavenging activity of Cn(DAPANO)2 and CnPDA, we used galvinoxyl
(GO•) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radicals. Their structures, along with
singly occupied molecular orbitals (SOMOs), are shown in Figure 2. The SOMOs show
that the unpaired electron in DPPH• and GO• is highly delocalized and this delocalization
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increases the stability of these two radicals. The electronic structures of GO• and DPPH•
were previously discussed in detail [8,9,22–24].
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We began with an attempt to determine if the N-oxide surfactants can participate
in the radical scavenging process when micelles are well-formed. Thus, the reaction
mixtures containing a surfactant at C/CMC = 100, which is a typical concentration found in
formulations, and GO• or DPPH• at 2 mM were prepared along with the control samples
and monitored over time (solutions of DPPH• and GO• without surfactants).

As the antiradical activity of the N-oxide surfactants could have been low, the decay of
GO• and DPPH• in the presence of the di- and mono-N-oxide surfactants was monitored
with electron paramagnetic resonance (EPR) spectroscopy, which is an extremely sensitive
technique for the radical systems [25–27]. DPPH• and GO• have well-defined EPR spectra,
and a clear decrease in their intensity was observed for the N-oxide surfactants as exempli-
fied by C12(DAPANO)2 in Figure 3. An intensity decline was not observed for the control
samples. Hence, the EPR experiments revealed the antiradical activity of Cn(DAPANO)2
and CnPDA surfactants.

The scavenging capacity of the surfactants was judged quantitatively by measuring
the percentage of remaining GO• and DPPH• after a fixed reaction time. The relative
concentration of GO• and DPPH• was calculated from Equation (1):

remaining radical(%) =
It

I0
× 100% (1)

where I0 and It correspond to the EPR signal integral intensity of a radical in the absence
and presence of the N-oxide surfactants after a fixed time, respectively.

These results are given as plots in Figure 3. The concentration of DPPH• and GO•
underwent a decrease for both homologous series, but the reduction of radicals was less
efficient with the increasing length of the surfactant alkyl chain. What stands out in Figure 3
is that the dicephalic surfactants scavenged DPPH• and GO• significantly faster than their
linear counterparts. This is evident in the case of C12(DAPANO)2 and C12PDA. After
60 min of reaction, the former reduced the number of GO• by 88% and DPPH• by 86%,
while the latter by 59% and 24%, respectively. From Figure 3, we can see that both di- and
mono-N-oxides scavenge DPPH• more actively, and therefore DPPH• was used in our
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further studies as it seems to better mimic more reactive radicals such as •OH. Moreover,
DPPH• is reliably used in similar studies [8,21,28].
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Figure 3. The scavenging activity of Cn(DAPANO)2 and CnPDA monitored with EPR spectroscopy: changes in the
GO• absorption due to its reaction with C12(DAPANO)2 (A); changes in the GO• concentration due to its reaction
with Cn(DAPANO)2 and CnPDA [(B) and (C), respectively]; changes in the DPPH• absorption due to its reaction with
C12(DAPANO)2 (D); changes in the DPPH• concentration due to its reaction with Cn(DAPANO)2 and CnPDA [(E) and
(F), respectively].

2.2. Radical Scavenging by UV-Vis

The EPR studies for C/CMC = 100 imply that the rate of radical scavenging is higher
for Cn(DAPANO)2 than for their linear analogues. To verify this, the reaction of DPPH•
with each di-N-oxide surfactant was monitored using pseudo-first-order kinetics. In this
part of our work, we used UV-vis absorption spectroscopy since such experiments are
quicker to set up in comparison with EPR, which requires careful tuning of the spectrometer
after the sample is placed in the resonator, and thus the beginning of the reaction is difficult
to monitor with EPR.

In contrast to EPR spectroscopy, however, in which only signals due to DPPH• and
GO• were observed, to evaluate antiradical activity by UV-vis measurements meaningfully,
the used stable radical is required to have absorption maxima outside the surfactant’s
absorption range. As demonstrated by Figure 4, this is the case of the DPPH• selected to
investigate the antiradical properties of the Cn(DAPANO)2 and CnPDA surfactants series.
To fully understand the absorption of DPPH• and the surfactants in the UV-vis range, the
time-dependent density-functional theory (TD-DFT) calculations were carried out. Their
results are summarized in Figures 4 and 5. The use of the B3LYP functional led to a highly
satisfactory agreement between the theoretical and experimental spectra, and henceforth
the results of the TD-DFT B3LYP/def2-TZVP calculations are given in the text and Figure 5.
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As exemplified by C10(DAPANO)2 and C10PDA, the di- and mono-N-oxide surfactants
show strong absorption at the range of 190–420 nm with a maximum at approximately
205 nm (Figure 4). As illustrated by the natural transition orbitals (NTOs) [29] from TD-DFT
computations, the heads of the surfactants play the role of chromophores. The observed
absorption results from the excitation of the oxygen p-type lone pairs to the π* and σ*
orbitals (Figure 5).

The presence of a delocalized electron in DPPH• gives rise to the deep violet color. The
decrease in the DPPH• absorption at 517 nm is associated with the undergoing scavenging
of this radical by an antioxidant. As Figure 4 demonstrates, this absorption maximum
is clearly outside the Cn(DAPANO)2 and CnPDA absorption range, and thus it can be
used to evaluate radical scavenging properties of the N-oxide surfactants. The energy of
the electronic transition responsible for this absorption band was underestimated by the
time-dependent B3LYP computations by less than 0.1 eV (expt: 2.40 eV; cald: 2.31 eV),
which is a highly satisfactory agreement [30,31]. The analysis of NTOs reveals that two
individual pairs of molecular orbitals contribute strongly to this excitation. The first pair
with the contribution of 38.1% is the transition of an electron from a π-type doubly occupied
molecular orbital to the SOMO, and the second pair defines the dominant transition from
the SOMO to a π-type unoccupied orbital (contribution of 58.7%).

Although not well resolved in the experimental spectrum, another absorption band
is present for DPPH• at approximately 463 nm and dominated by the promotion of the
β-type electron to the SOMO. From about 400 nm towards shorter wavelengths, the excited
states are increasingly numerous, and a detailed characterization of these among those
which have more significant intensity is given in Figure 5.

After confirming that the absorption maximum at 517 nm of DPPH• is outside the
surfactant’s absorption range, the rate of the DPPH•-scavenging reaction of the N-oxides
was measured by monitoring the decrease in absorbance of this maximum. To ensure
that the decay of DPPH• obeyed pseudo-first-order kinetics, the concentration of surfac-
tants was at least a 54-fold excess of the DPPH• concentration. As explained in SI, the
calculated pseudo-first-order rate constants, kobs, increased linearly with the concentration
of Cn(DAPANO)2 and CnPDA (shown in SI). The second-order rate constants k2 for the
reaction between the N-oxides and DPPH• were determined from the slopes of the linear
plots of kobs vs. the concentration of the surfactants and are given in Figure 6.
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C16(DAPANO)2, respectively. The observed difference between the values of k2 strongly
suggests that the chemical structure of Cn(DAPANO)2 and CnPDA has an important
effect on radical scavenging. This was explored using computational techniques and is
discussed below.

The changes in the values of k2 demonstrate a faster reduction of DPPH• by the di-N-
oxide surfactants, and this finding stays in line with our EPR measurements (Figure 3). In
contrast to the EPR findings, however, the determined values of k2 show that the ability of
the N-oxide surfactants to scavenge radicals increases with the length of the aliphatic chain.
In the EPR tests of antiradical activity, the C/CMC = 100 conditions were applied. This
allowed us to test this property at concentration characteristic of cosmetic formulations and
for the surfactant systems with the same state of the formation of the micelles. However,
there are drawbacks associated with the use of C/CMC = 100: the molar concentrations
of the surfactants are higher for the surfactants with a larger CMC, that is, the ones with
shorter alkyl chains. In the EPR measurements, we thus observed that the increased
concentrations prevailed upon the greater antiradical activity of the surfactants with a
lengthening hydrocarbon chain. The mentioned drawback of the EPR tests was overcoming
the kinetic UV-vis experiments conducted under the pseudo-first-order condition.

2.3. Theoretical Calculations

To obtain a deeper insight into the antiradical properties, the thermodynamics of
these processes for C10(DAPANO)2 and C10PDA was evaluated using the DFT approach
(B3LYP, B2PLYP, and M06-2X) and the ab initio coupled cluster-type method [DLPNO-
CCSD(T)]). The DLPNO-CCSD(T) method has been reported to reproduce results of the
“golden standard” canonical CCSD(T) while remaining computationally feasible for real
chemical systems [32–37]. Moreover, the excellent performance of the DLPNO-CCSD(T)
method has been confirmed for the determination of the energetics of the hydrogen atom
transfer reaction [38].

Two different mechanisms were considered. One of them, shown in Equation (2),
assumes that a radical (R•) removes a hydrogen atom from the surfactant (surf−H) that
itself transforms into a radical (H atom transfer, HAT):

R• + surf−H→ R−H + surf• (2)

The one-electron transfer (Equation (3)) was the second mechanism under theoretical
investigation. In this mechanism the surfactant was assumed to contribute an electron to a
radical, becoming itself a radical cation in the process:

R• + surf−H→ R− + surf−H•+ (3)

The two mechanisms were previously considered in the context of the antiradical
activity of phenolic compounds and radical activity of insecticides in the soil environ-
ment [32,39–44].

In the hydrogen atom transfer, the X−H bond dissociation enthalpy (BDE) should be
considered a crucial parameter [32,39,40,43], as the more weakly bonded H atoms would
be more active in the scavenging reaction given in equation 2. BDE was calculated at 298 K
as the enthalpy difference for the reaction [40,41,43,45]:

surf−H→ surf• + •H (4)

Before proceeding with a detailed analysis, it is reasonable to compare the performance
of the computational models. Table S1 in Supplementary Materials shows that all the
employed methods gave a consistent outcome. The maximum difference between the
values of BDE calculated with various methods was found to be 4%, and thus the conclusion
is expected to be method-independent. In the further discussion of BDE, the values from
the DLPNO-CCSD(T) calculations are used. For the sake of discussion clarity, all atoms
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forming bonds with hydrogen were labeled as shown in Figure 7, which also shows the
values of BDE for these bonds predicted at the DLPNO-CCSD(T) theory level.
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The highest value of BDE (105.6 kcal/mol) was found for the N−H bond in the
C10PDA molecule, and thus this hydrogen atom should be the least active in the HAT
mechanism. For this mono-N-oxide surfactant, the BDE values predicted for the hydrogen
atoms bonded to the carbon atoms are in the range of 90.0–102.3 kcal/mol. The values
from the upper limit of this range were predicted for the terminal carbon atom of the
hydrophobic tail (C13), and carbon atoms bonded to the nitrogen atoms of the N-oxide
moieties (C1 and C1’). The lowest BDE was found for the C4−H and C5−H bonds, that
is 94.1 and 94.0 kcal/mol, respectively, showing that these hydrogen atoms should be the
most active in the H-abstraction mechanism in the case of the mono-N-oxide surfactants.

C10(DAPANO)2 differs in structure from and C10PDA by an additional 3,3′- (dimethy-
lamino)propyl substituent at the nitrogen atom of the amide group. Based on our EPR
and UV-vis measurements, this structural alteration is expected to bring about dissimilar
reactivity and it manifests in the values of BDE. As shown in Figure 7, the values of BDE
calculated for the terminal carbon atom of the hydrophobic tail (C13) and carbon atoms
bonded to the nitrogen atoms of the N-oxide group (C1a, C1a’, C1b and C1b’) very closely
resemble their C10PDA counterparts. These values for the C4a−H and C4b−H bond are
93.9 and 92.5 kcal/mol, respectively, and do not differ from the C4−H bond dissociation
enthalpy for C10PDA. However, the homolytic breaking of C5−H in C10(DAPANO)2 re-
quires only 89.3 kcal/mol. This is significantly less than the energy necessary to enforce this
process for the C5−H bond in the C10PDA molecule (94.0 kcal/mol) and correlates with
the higher rates of reactions between the di-N-oxide surfactants and DPPH•. Moreover,
according to our DLPNO-CCSD(T) calculations, the analogical process for O−H in phenol
requires 87.8 kcal/mol, which is comparable to the BDE for C5−H in C10(DAPANO)2.

To compare the capacity of the mono- and di-N-oxide surfactants to donate an electron
to a radical (one-electron transfer), ionization potentials (IP) were computed for C10PDA
and C10(DAPANO)2 as the enthalpy difference between the surfactants and their radical
cations (surf−H•+). This approach has been proven successful in the case of phenolic
compounds and carbamates [40,41,43,44]. All the calculated values of IP are listed in
Table S2 in Supplementary Materials. It is important to note that the ones obtained at the
DLPNO-CCSD(T) theory level for C10PDA and C10(DAPANO)2 are up to 6 kcal/mol higher
in comparison with the results of DFT methods. Considering that the DFT performance
in the IP calculations can be unsatisfactory [46,47], the values obtained with the ab initio
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DLPNO-CCSD(T) method should be considered more accurate. They show that the IP
of C10(DAPANO)2 is only about 1.1 kcal/mol lower than that of C10PDA (147.8 and
148.9 kcal/mol, respectively).

Computational techniques were also used to compare the energetic effect of the two
mechanisms. The Gibbs free energies (∆G) were calculated for the reactions given in
Equation (2) (H atom abstraction) and Equation (3) (one-electron transfer) at 298 K. Two
different radical substrates were considered, DPPH• and •OH. The results are summarized
in Table S3 in Supplementary Materials.

Regardless of the radical substrate and the used method in the one-electron transfer,
the ∆G values are positive. The DLPNO-CCSD(T) method shows that ∆G for the one-
electron transfer between the two surfactants and the two radicals is moderately high. To
illustrate, for C10(DAPANO)2, ∆G is 45.6 and 46.6 kcal/mol for the electron transfer to
•OH and DPPH•, respectively. For C10PDA these values become slightly higher, that is,
47.7 and 48.7 kcal/mol, respectively.

In contrast to one-electron transfer, the ∆G values predicted for H atom abstraction
are noticeably less positive for DPPH• and clearly negative for •OH. For example, the ∆G
predicted for C10(DAPANO)2 at the DLPNO-CCSD(T) level is −29.2 and 11.8 kcal/mol
for •OH and DPPH•, respectively, and for C10PDA, −19.9 and 21.1 kcal/mol, respectively.
Although in the case of DPPH the reaction is not spontaneous, it was proven by the
UV−vis spectroscopy experiments that the input of energy at 298 K suffices to sustain
the radical scavenging process. It is also notable that the predicted ∆G values for the H
atom abstraction closely correlate with different activity of the N-oxide surfactants. In
comparison with C10PDA, the ∆G values predicted for more reactive C10(DAPANO)2 are
noticeably less positive for DPPH• and more negative for •OH. All in all, our calculations
distinctively suggest that for the N-oxide surfactants, the occurrence of the H atom transfer
is thermodynamically more probable.

2.4. Biological Activity

In this part of our work, a human normal cell model was used. Keratinocytes and
fibroblasts were selected for experiments because they allow for the determination of
surfactant interactions with skin and mucosa cells. HaCaT and HGFs cells are thus an
interesting model to predict surfactant toxicity after superficial skin or mucosal application.
IC50 is presented in Table 2, calculated after 24 and 48 h incubation. Cell viability percentage
is plotted as a function of surfactant concentration (semi-log plot) (Figures 8 and 9). In
all cases, decreased cell proliferation was observed with the longer incubation time with
surfactants. Less cytotoxicity occurred in PDA surfactants. In human keratinocytes, IC50 for
24 h resulted in concentrations higher than 0.03 g/L, and for 48 h, 50% of the cytotoxic effect
was observed for 0.0415 g/L (C10-PDA). The proliferation studies proved the decreased
toxicity for C10(DAPANO)2 in the case of normal keratinocytes (IC5024 h = 0.098 g/L
and IC5048 h = 0.097 g/L). In the case of human fibroblasts, a low cytotoxicity level was
observed by the selected surfactants: C14(DAPANO)2 (IC5024 h = 0.0685 g/L), C10PDA
(IC5024 h = 0.0779 g/L and IC5048 h = 0.0387 g/L), and C14PDA (IC5024 h = 0.0699 g/L).
Table 2 shows the viability of both cell lines evaluated for CMC after 24 and 48 h. We
can found that our experiments showed in most cases cytotoxicity near the CMC or
below what refers to the good ability of micelle formation. Our study indicates that the
CnPDA surfactants are safe in CMC concentration in bath-treated cell lines. However,
Cn(DAPANO)2 type surfactants induce less cytotoxicity below CMC, which can suggest
a better potential for application in emulsion form. Other studies are mainly focused on
anticancer activity and cytostatic delivery in the tumor cells; however, some authors have
applied cytotoxicity studies. They have indicated that there is no connection between CMC
and cytotoxicity in the case of surfactants tested by the authors [48]. It seems that a low
CMC with a high IC50 value will be optimal for micelle solubilization and surfactant safety
in biological systems. Kyadarkunte et al. evaluated the effects of the fatty acid chain length
of acylglutamate (amino acid-based surfactant) on HaCaT cells. The authors observed low
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cytotoxicity and that the shorter the fatty acid chain length of the acylglutamate surfactants,
the less the cytotoxic effect was induced on the HaCaT cell line [49]. In our study, we can
indicate the dependence on the carbon numbers. Our intention was the overall objective of
developing a biologically safe system mainly for normal but also pathological cells. The
dicephalic surfactants presented here are intended to also be safe for skin and mucosa cells
and natural microbial flora. Most of the available data are mainly involved in drug delivery
in tumor cells with nanocarrier-based surfactants [50].

Table 2. Evaluation IC50 for normal human keratinocytes (HaCaT) and primary fibroblasts (HGFs) and the percentage of
viability concentration after 24 and 48 h incubation with surfactants.

Surfactant
IC50 [g/L] Viability [%]

HaCaT HGFs 24 h 48 h
24 h 48 h 24 h 48 h HGF’s HaCaT HGF’s HaCaT

C10(DAPANO)2 0.098 0.097 0.0345 0.0019 16.2 8.1 9.7 18.2
C12(DAPANO)2 0.095 0.094 0.0279 0.0012 17.1 9.2 10.8 16.4
C14(DAPANO)2 0.032 0.017 0.0685 0.00089 17.7 11.3 11.5 4.5
C16(DAPANO)2 0.029 0.0182 0.0143 0.00076 27.8 14.7 12.3 3.9

C10PDA 0.0438 0.0415 0.0779 0.0387 98.6 34.7 20.2 84.8
C12PDA 0.0310 0.0188 0.0519 0.0498 55.5 89.4 44.8 115.8
C14PDA 0.0481 0.0099 0.0699 0.0016 103.7 81.1 78.2 119.4
C16PDA 0.0481 0.0098 0.0441 0.0019 96.9 139.5 81.7 123.1
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Figure 8. Evaluation of primary fibroblasts (HGFs) viability after 24 (A,B) and 48 h incubation (C,D)
with Cn(DAPANO)2 and CnPDA surfactants in the range 50–2000 µg/mL.
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Figure 9. Evaluation of human keratinocytes viability after 24 (A,B) and 48 h incubation (C,D) with
Cn(DAPANO)2 and CnPDA surfactants in the range 50–2000 µg/mL.

The ROS evaluation results are presented in Figure 10. As we can observe, the DHTTP
solution provoked a high and significant increase of radicals in normal keratinocytes
and fibroblasts. After surfactant addition in CMC concentration, we could observe a
decrease in the radical level. However, the effect is synergistically caused by natural
blanking fluorescence signals and by the antioxidative properties of applied surfactants.
The most significant decrease of fluorescence level was induced by C14PDA (linear analog
of C14(DAPANO)2); then, a similar decrease was observed in the case of C16PDA and
C10(DAPANO)2 in both treated cell lines. Surfactants C14(DAPANO)2 and C16(DAPANO)2
also induced a not significant decrease in radical level. Some authors indicate a strong
peroxidative effect of surfactants [51], which can be excluded for applications in carriers for
drug delivery. Some reports have demonstrated that low concentrations of cationic surfac-
tants can induce apoptosis in different mammalian cell types [52,53]. Antiradical properties
can be the most significant feature in surfactant selection in future biological applications.
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3. Conclusions

In this investigation, the aim was to assess the antiradical activity of monocephalic
3-alkanoylamino)propyldimethylamine-N-oxides (CnPDA) and dicephalic N,N-bis[3,3′-
(dimethylamino)propyl]alkylamide di-N-oxides [Cn(DAPANO)2]. This was tested against
two stable radicals, namely DPPH• and GO•, using electron paramagnetic resonance (EPR)
and UV-vis spectroscopy. We showed that both CnPDA and Cn(DAPANO)2 surfactants
scavenge radicals and thus can protect biological systems as well as cosmetic and pharma-
ceutical formulations. The determination of the second-order rate constants k2 revealed
that the two head-single tail Cn(DAPANO)2 surfactants neutralize radicals faster than their
linear counterparts. We also found that the ability of the N-oxide surfactants to scavenge
radicals increases with the length of the aliphatic chain. The computational findings re-
ported here shed light on the mechanism of antiradical action. By the inspection of the
predicted bond dissociation enthalpies, ionization potentials, and Gibbs free energies, we
identified hydrogen atom transfer (HAT) as the most probable mechanism. In in vitro stud-
ies, longer incubation time with surfactants leads to decreased cell proliferation. CnPDA
surfactants occurred as less cytotoxic against tested cell lines. In most cases, cytotoxicity
was near the CMC or below. In ROS evaluation, after adding the surfactants in CMC
concentration, the level of radicals decreased. The best results were obtained after using
C14PDA and similar in the case of C16PDA and C10(DAPANO)2 in both treated cell lines.
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All in all, this study provides strong empirical confirmation that the N-oxide surfac-
tants have antiradical activity. In combination with their antimicrobial and immunomodu-
latory properties and a broad range of profound aggregation behavior, this makes them a
multipurpose tool for biomedical uses.

4. Materials and Methods
4.1. Materials

Cn(DAPANO)2 were synthesized as described in the patent [18]. Elemental analyses
(Vario EL III CHNS analyzer) and 1H NMR spectrum (CDCl3, 500 MHz) were carried out
for Cn(DAPANO)2 series and are presented as follows:

C10(DAPANO)2 M 373.65: Anal. Calc. (%) for C20H43N3O3, C, 64.28; H, 11.60; N
11.25. Found: C, 64.26; H, 11.55; N 11.25; 1H NMR (CDCl3, 500 MHz): 0.82 (t, 3H,
3JHH = 6.6 Hz, CH3(CH2)6CH2CH2CON-); 1.22 (m, 12H, CH3(CH2)6CH2CH2CON-); 1.57
(k, 2H CH3(CH2)6CH2CH2CON-); 1.60–1.68 (k, 4H-N[(CH2CH2CH2N(CH3)2)2]); 2.18–2.20
(s, 12H, -N[(CH2CH2CH2N(CH3)2)2]); 2.21 (t, 2H, -CH3(CH2)6CH2CH2CON-); 2.24–2.28 (t,
4H, -N[(CH2CH2CH2N(CH3)2)2]); 3.22–3.30 (t, 4H -N[(CH2CH2CH2N(CH3)2)2]);

C12(DAPANO)2 M 401.19: Anal. Calc. (%) for C22H47N3O3, C, 65.86; H, 11.81; N 10.47.
Found: C, 65.78; H, 11.85; N 10.45; 1H NMR (CDCl3, 500 MHz): 0.86 (t, 3H, 3JHH = 6.6 Hz,
CH3(CH2)8CH2CH2CON-); 1.25 (m, 16H, CH3(CH2)8CH2CH2CON-); 1.62–1.71 (k, 4H,
-N[(CH2CH2CH2N(CH3)2)2]); 1.64 (k, 2H, CH3(CH2)8CH2CH2CON-); 2.17–2.21 (s, 12H,
-N[(CH2CH2CH2N(CH3)2)2]); 2.25 (t, 2H, CH3(CH2)8CH2CH2CON-); 2.25–2.30 (t, 4H,
-N[(CH2CH2CH2N(CH3)2)2]); 3.27–3.33 (t, 4H, -N[(CH2CH2CH2N(CH3)2)2]);

C14(DAPANO)2 M 429.21: Anal. Calc. (%) for C24H51N3O3, C, 67.16; H, 11.98;
N 9.79. Found: C, 67.13; H, 11.86; N 9.75; 1H NMR (CDCl3, 500 MHz): 0.85 (t, 3H,
3JHH = 6.6 Hz, CH3(CH2)10CH2CH2CON-); 1.24 (m, 20H, CH3(CH2)10CH2CH2CON-);
1.62 (k, 2H, CH3(CH2)10CH2CH2CON-); 1.62–1.70 (k, 4H, -N[(CH2CH2CH2N(CH3)2)2]);
2.18–2.21 (s, 12H, -N[(CH2CH2CH2N(CH3)2)2]); 2.24 (t, 2H, CH3(CH2)10CH2CH2CON-);
2.24–2.30 (t, 4H, -N[(CH2CH2CH2N(CH3)2)2]); 3.28–3.33 (t, 4H, -N[(CH2CH2CH2N(CH3)2)2]);

C16(DAPANO)2 M 457.23: Anal. Calc. (%) for C26H55N3O3, C, 68.26; H, 12.12;
N 9.19. Found: C, 68.20; H, 12.06; N 9.05; 1H NMR (CDCl3, 500 MHz): 0.86 (t, 3H,
3JHH = 6.6 Hz, CH3(CH2)12CH2CH2CON-); 1.25 (m, 24H, CH3(CH2)12CH2CH2CON-);
1.59 (k, 2H, CH3(CH2)12CH2CH2CON-); 1.64–1.71 (k, 4H -N[(CH2CH2CH2N(CH3)2)2]);
2.17–2.20 (s, 12H, -N[(CH2CH2CH2N(CH3)2)2]); 2.21–2.30 (t, 4H-N[(CH2CH2CH2N(CH3)2)2]);
2.25 (t, 2H, CH3(CH2)12CH2CH2CON-), 3.27–3.32 (t, 4H-N[(CH2CH2CH2N(CH3)2)2]);

CnPDA were synthesized as described in [19]. Elemental analyses (Vario EL III CHNS
analyzer) and 1H NMR spectrum (CDCl3, 500 MHz) were carried out for CnPDA series
and are presented as follows:

C10PDA M 272.15: Anal. Calc. (%) for C15H32N2O2, C, 66.13; H, 11.84; N, 10.28;
CH3(CH2)6CH2CH2- 0.84 (t, 3H, 3JHH = 6.51 Hz), CH3(CH2)6CH2CH2- 1.22 (m, 12H),
CH3(CH2)6CH2CH2- 1.58 (m, 2H),CH3(CH2)6CH2CH2- 2.16 (m, 2H), -CONH 8.54 (bd,
1H), -CONHCH2CH2 CH2N 3.95 (t, 2H), -CONHCH2CH2 CH2N 2.27 (t, 2H), -CONHCH2
CH2CH2 N 3.39 (m, 2H), -N(CH3)2 3.54 (s, 6H);

C12PDA M 300.48: Anal. Calc. (%) for C17H36N2O2, C, 67.95; H, 12.08; N, 9.32;
CH3(CH2)8CH2CH2- 0.85 (t, 3H, 3JHH = 6.51 Hz), CH3(CH2)8CH2CH2- 1.24 (m, 16H),
CH3(CH2)8 CH2CH2- 1.50 (m, 2H), CH3(CH2)8CH2CH2- 2.18 (m, 2H),-CONH 8.52 (bd,
1H), -CONHCH2CH2 CH2N 3.75 (t, 2H), -CONHCH2CH2 CH2N 2.27 (t, 2H), -CONHCH2
CH2CH2 N 3.45 (m, 2H), -N(CH3)2 3.52 (s, 6H);

C14PDA M 328.53: Anal. Calc. (%) for C19H40N2O2, C, 69.46; H, 12.27; N, 8.53;
CH3(CH2)10CH2CH2- 0.84 (t, 3H, 3JHH = 6.52 Hz), CH3(CH2)10CH2CH2- 1.34 (m, 20H),
CH3(CH2)10 CH2CH2- 1.57 (m, 2H), CH3(CH2)10CH2CH2- 2.15 (m, 2H), -CONH 8.43 (bd,
1H), -CONHCH2CH2 CH2N 3.74 (t, 2H), -CONHCH2CH2 CH2N 2.31 (t, 2H), -CONHCH2
CH2CH2 N 3.49 (m, 2H), -N(CH3)2 3.32 (s, 6H);

C16PDA M 356.19: Anal. Calc. (%) for C21H44N2O2, C, 70.73; H, 12.44; N, 7.86;
CH3(CH2)12CH2CH2- 0.86 (t, 3H, 3JHH = 6.51 Hz), CH3(CH2)12CH2CH2- 1,31 (m, 24H),
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CH3(CH2)12 CH2CH2- 1.58 (m, 2H), CH3(CH2)12CH2CH2- 2.22 (m, 2H),-CONH 8.50 (bd,
1H), -CONHCH2CH2 CH2N 3.92 (t, 2H), -CONHCH2CH2 CH2N 2.41 (t, 2H), -CONHCH2
CH2CH2 N 3.41 (m, 2H), -N(CH3)2 3.54 (s, 6H).

Organic solvents used in the synthesis of surfactants were reagent grade and were used
without further purification. Water used in experiments was doubly distilled and purified
using a Millipore Milli-Q purification system (Bedford, MA, USA). Ethanol for spectro-
scopic experiments was purchased from J.T. Baker (99.5%); 2,2-diphenyl-1-picrylhydrazyl
(DPPH•) and galvinoxyl (GO•) radicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

4.2. Tension Measurements

Equilibrium surface tension measurements for CnPDA were performed using a Krüss
K12 microprocessor tensiometer (Krüss, Hamburg, Germany) equipped with a du Nouy
Pt−Ir ring (resolution ± 0.01 mN/m). The surface tension was obtained as the arithmetic
means of the values received from two independent runs; the data were reproducible
within ±0.2 mN m−1. Sets of experiments were taken at intervals until no significant
change in the surface tension occurred. All of the surface tension measurements were
performed at 295 ± 0.1 K. The absence of a minimum in the isotherm curves near CMC
was evidence of the purity of the studied surfactants.

4.3. Dynamic Light Scattering (DLS)

The hydrodynamic diameter for CnPDA was determined by the DLS method. The
measurements were performed using a Nano Series Zetasizer from Malvern Instruments
(UK) with a detection angle of 173◦, equipped with a He−Ne laser (632.8 nm) and an ALV
5000 multibit multitau autocorrelator. Before the measurements, the samples were filtered
through a filter (with a pore size of 0.2 µm) directly into the optical cell to remove any
impurities. All of the DLS measurements were performed at 298 ± 0.1 K and at a surfactant
concentration a hundred times higher than the critical micelle concentration (CMC). Each
value was obtained as the average of three runs with at least 10 measurements. The DTS
software (Nano) was used to evaluate the data.

4.4. Electron Paramagnetic Resonance (EPR) Spectroscopy

The antiradical properties were studied by EPR using a Bruker ELEXYS E500 spec-
trometer equipped with an NMR gaussmeter and frequency counter. A microwave power
of 10 mW, a modulation frequency of 100 kHz, a modulation amplitude of 1 G, a time
constant of 82 ms, and a conversion time of 164 ms were adopted. The antiradical properties
were evaluated against two model radicals: 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and
galvinoxyl (GO•). The measurements were done at 298 K in ethanol solutions contain-
ing DPPH• (C = 2.0 mM) or GO• (2.0 mM) and CnPDA (C = 100 CMC) or Cn(DAPANO)2
(C = 100 CMC). The reference samples contained only the model radicals. The samples were
sealed in capillary tubes and placed inside a standard EPR quartz tube for measurements.

4.5. UV−Vis Measurements

The measurements were done under deaerated conditions at 298 K in ethanol solutions
(2 mL in a 10 mm quartz cuvette) containing DPPH• (C = 2.2 × 10−4 M) and a surfactant
at each of five different concentrations, namely C1 = 0.12 M, C2 = 0.09 M, C3 = 0.06 M,
C4 = 0.03 M, and C5 = 0.012 M. UV−vis spectral changes associated with the undergoing
reaction were monitored at 516 nm, using a Varian Cary 50Conc UV−visible Spectropho-
tometer. The following equations of the calibration curve were used to calculate DPPH•

concentrations in the reaction system: Abs = 4.0189 × C[mM] + 0.00813 (R2 = 0.9998). The
rate of DPPH• scavenging reaction was determined using pseudo-first-order kinetics [54,55]
(the concentration of CnPDA or Cn(DAPANO)2 was maintained at more than 54-fold excess
of the radical concentration); further details are given as Supporting Information.
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4.6. Theoretical Calculations

Unless otherwise noted, the theoretical calculations were conducted with the ORCA
4.1/4.2 suite of programs [56,57] and are summarized in Table S4. The geometry optimiza-
tions were carried out at the DFT level using the gradient-corrected BP86 functional [58,59],
which provides accurate molecular structures [60,61]. Each of the stationary points was
fully characterized as a true minimum through a vibrational analysis. On these molecular
structures, single-point calculations were carried out at the DFT level with the hybrid
B3LYP [62–64] and M06-2X [65] and double hybrid B2PLYP [66] approximations as well
as at the ab initio level with the DLPNO-CCSD(T) method, which was designed to make
the coupled-cluster (CC) theory broadly applicable [67–69]. The open-shell DLPNO-CCSD
calculations were carried out using the reference determinants build from quasi-restricted
orbitals (QROs) from the unrestricted Hartree–Fock (UHF) calculations [70]. QROs should
closely resemble the restricted open-shell Hartree–Fock (ROHF) orbitals [71]. The per-
turbative triples correction was computed using the iterative approach to the triples
amplitudes [72]. The validity of the DLPNO-CCSD(T) results was assessed using the
T1 diagnostic parameter. The observed values of T1 were always noticeably lower than
0.02. The bond dissociation enthalpies (BDE), ionization potentials (IP), and Gibbs free
energies (∆G) were calculated at 298 K with all these theoretical methods but using the
zero point, thermal (vibrational, rotational, and translational) and entropy corrections
computed at the BP86 level. In all these calculations the conductor-like polarizable con-
tinuum model (CPCM) [73] was used to cover the solvent effects (for DLPNO-CCSD(T)
only in the reference determinants). In the DFT calculations, the resolution of the identity
approximation [74–76] was used, and the dispersion correction was added; double-hybrid
functionals already account for parts of the dispersion interaction; hence, for B2PLYP, the
parameter S6 = 0.64 was used [77,78]. In all the DFT calculations, the def2-TZVP basis
set was employed with an appropriate auxiliary basis set (def2/J) [79–81]. The DLPNO-
CCSD(T) calculations were conducted in concert with the cc-pVTZ basis set combined with
an appropriate auxiliary basis set for correlation calculations (cc-pVTZ/C) [82,83].

The time-dependent DFT (TD-DFT) computations were carried out with the functional
B3LYP and B2PLYP along with the def2-TZVP basis set. To analyze these results, the natural
transition orbitals (NTOs) were used [29].

The values of LogP were predicted at the DFT level using the Amsterdam Density
Functional (ADF) program [84] using the COSMO-RS module [85]. These calculations were
carried out at the BP86/TZP theory level.

4.7. Antioxidative Properties—ROS Evaluation

Antioxidative properties of the tested surfactant were evaluated. To induce ROS
production, a DPPH solution was prepared (C = 2.55× 10−3 mol/dm3). Normal fibroblasts
and keratinocytes were seeded on flat bottom 96-well tissue culture plates at a density of
104 cells/well and allowed to grow in a CO2 incubator at 37◦C overnight. Then, culture
medium was removed and 200 µL of DPPH solution in DMEM was added to the plate and
left for 1 h in a CO2 incubator at 37 ◦C. After incubation, DPPH solution was removed and
ROS production was determined using DCF assay (Life Technologies, Warsaw, Poland). The
DCF assay was conducted with 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate 2′,7′-
dichlorofluorescein (carboxy-H2DCFDA). After deacetylation of H2DCFDA to H2DCF or
carboxy-H2DCFDA to carboxy-H2DCF, cellular ROS oxidize H2DCF and carboxy-H2DCF
to 2′,7′-dichlorofluorescein (DCF) and 2′,7′-carboxydichlorofluorescein (carboxy-DCF),
respectively. The carboxy-H2DCFDA was dissolved in sterile DMSO to generate a stock
solution of 50 µg/mL. For experiments, the stock solution of carboxy-H2DCFDA was
brought to room temperature in the dark and then diluted in a cell culture medium without
FBS. After washout of the incubation medium from cells with PBS, the reagent was added
to cell culture to a final concentration of 10 µM and for 30 min was incubated at 37 ◦C in
darkness. After incubation, excitation wavelength of 495 nm and emission wavelength
of 530 nm were used by a multiwell scanning spectrophotometer (EnSpire Perkin Elmer,
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Krakow, Poland). In the next stage, surfactant solutions in CMC concentrations were
added into cells after 1 h incubation with DHTTP solution. Cells were incubated, and
ROS were detected 30 min by a multiwell scanning spectrophotometer (EnSpire Perkin
Elmer, Poland).

4.8. Cell Culture

HaCaT (immortalized human keratinocytes from histologically normal skin) cell line
was obtained from the CLS Cell Lines Service GmbH (Eppelheim, Germany). HGFs (human
gingival fibroblasts) derive from primary cell culture. The cells were isolated according to
the procedure described by Saczko et al. [86] and patented by Saczko et al. [87]. Cells were
grown in plastic cell culture flasks in Dulbecco’s Modified Eagle’s Medium, supplemented
with fetal bovine serum (FBS, Lonza, Morrisville, NC, USA), with 100 IU/mL penicillin,
50 mg streptomycin, and 125 µg amphotericin B (Sigma). The cells were maintained in
a humidified atmosphere at 37 ◦C and 5% CO2. The cells were regularly maintained by
systematic passaging. For experimental purposes, the cells were removed by trypsinization
(0.25% Trypsin-EDTA, Sigma).

4.9. MTT Cell Viability Assay

MTT (Sigma) test was used to determine the viability of HaCaT and HGFs cells. The
MTT assay was used to test mitochondrial metabolic functioning. Cells were seeded on
flat bottom 96-well tissue culture plates at a density of 104 cells/well and allowed to grow
in a CO2 incubator at 37 ◦C overnight. In the case of these studies, the culture medium
was removed, surfactant solutions were added, and the cells were exposed for 24 and
48 h to compounds at doses ranging from 50 to 2000 µg/mL. After incubation, MTT assay
was applied according to the manufacturer protocol. The absorbance was measured at
570 nm using a multiwell plate reader (EnSpire Multimode Reader, Perkin Elmer). Each
experiment was performed in a few independent repetitions. Mean values and standard
deviations of all results were calculated. The final results were expressed as the percentage
of mitochondrial function relative to untreated control cells.

4.10. Statistical Analysis

Unless otherwise indicated, all the data are mean values ± SD calculated from at least
three independent experiments. The Student’s t test was used to check the significant level
between independent variables. The level of significance was set to p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22158040/s1.
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13. Lewińska, A.; Domżał-Kędzia, M.; Jaromin, A.; Łukaszewicz, M. Nanoemulsion stabilized by safe surfactin from Bacillus subtilis

as a multifunctional, custom-designed smart delivery system. Pharmaceutics 2020, 12, 953. [CrossRef]
14. Lohith Kumar, D.H.; Sarkar, P. Encapsulation of bioactive compounds using nanoemulsions. Environ. Chem. Lett. 2018, 16, 59–70.

[CrossRef]
15. Battista, S.; Campitelli, P.; Galantini, L.; Köber, M.; Vargas-Nadal, G.; Ventosa, N.; Giansanti, L. Use of N-oxide and cationic

surfactants to enhance antioxidant properties of (+)-usnic acid loaded liposomes. Colloids Surf. A Physicochem. Eng. Asp. 2020,
585, 124154. [CrossRef]
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