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Abstract: Chronic venous disease (CVD) is a vascular disease of lower limbs with high prevalence
worldwide. Pathologic features include varicose veins, venous valves dysfunction and skin ulceration
resulting from dysfunction of cell proliferation, apoptosis and angiogenesis. These processes are partly
regulated by microRNA (miRNA)-dependent modulation of gene expression, pointing to miRNA as a
potentially important target in diagnosis and therapy of CVD progression. The aim of the study was
to analyze alterations of miRNA and gene expression in CVD, as well as to identify miRNA-mediated
changes in gene expression and their potential link to CVD development. Using next generation
sequencing, miRNA and gene expression profiles in peripheral blood mononuclear cells of subjects
with CVD in relation to healthy controls were studied. Thirty-one miRNAs and 62 genes were
recognized as potential biomarkers of CVD using DESeq2, Uninformative Variable Elimination by
Partial Least Squares (UVE-PLS) and ROC (Receiver Operating Characteristics) methods. Regulatory
interactions between potential biomarker miRNAs and genes were projected. Functional analysis of
microRNA-regulated genes revealed terms closely related to cardiovascular diseases and risk factors.
The study shed new light on miRNA-dependent regulatory mechanisms involved in the pathology of
CVD. MicroRNAs and genes proposed as CVD biomarkers may be used to develop new diagnostic
and therapeutic methods.
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generation sequencing; biomarker

J. Clin. Med. 2020, 9, 1251; doi:10.3390/jcm9051251 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0002-8683-545X
https://orcid.org/0000-0002-3710-0860
https://orcid.org/0000-0002-9541-6353
http://www.mdpi.com/2077-0383/9/5/1251?type=check_update&version=1
http://dx.doi.org/10.3390/jcm9051251
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2020, 9, 1251 2 of 23

1. Introduction

Chronic Venous Disease (CVD) is a common vascular disease of the lower limbs. Estimates of
the worldwide prevalence of symptomatic CVD range as high as 60% [1,2]. The common risk factors
include age, obesity, smoking, low physical activity, periods of prolonged standing or sitting and
positive family history [2]. CVD is defined as a syndrome of chronic morphological and functional
abnormalities of the venous system, manifested either by symptoms (including tingling, aching,
burning, pain, muscle cramps, swelling, sensations of throbbing or heaviness, itching, restless legs,
leg tiredness and fatigue) or clinical signs prompting the need for investigation and medical care [3].
The disease encompasses a wide spectrum of clinical presentations such as telangiectasia, varicose veins,
leg edema, skin changes and ulcers, as included in the Clinical, Etiology, Anatomic, Pathophysiology
(CEAP) classification [4–6]. Chronic Venous Insufficiency (CVI) is a term reserved for advanced CVD,
which is applied to functional abnormalities of the venous system producing edema, skin changes, or
venous ulcers (C3–C6 in CEAP classification) [3].

CVD is caused by hemodynamic disturbances in veins of lower limbs, presenting as venous
occlusion, venous valve incompetency and calf muscle pump dysfunction, which lead to venous
hypertension and reflux [5,7–9]. In the majority of cases, the great and small saphenous veins are
involved [8]. The skin manifestations, such as edema, dermatitis, lipodermatosclerosis and ulceration,
are the consequence of chronic volume overload and hypertension in subcutaneous veins, as well as
inflammatory processes within skin tissues [10,11]. Imbalance between metalloproteinases and their
inhibitors as well as accumulation of leukocytes in the tissues surrounding the venous vessels of the
lower limbs under high pressure conditions is considered to be the basis for chronic inflammation and
pathological changes in the skin tissue of patients with chronic venous insufficiency [7,12,13].

A significant decrease in life quality, caused by pain, reduced mobility and leg ulcerations, affects
patients with CVD [14,15].

The most recommended diagnostic procedures of CVD include physical examination and duplex
ultrasound scanning, and the most effective treatment options are compression therapy and invasive
interventions, complemented by pharmacotherapy [16,17]. New, more effective diagnostic and
treatment strategies are needed and more profound understanding of pathology, particularly the
interactions between molecular and cellular mechanisms, is essential for development of optimal
treatment approaches.

MicroRNA (miRNA) has been the subject of many studies, greatly expanding the knowledge of
their diversity and functions [18]. MiRNAs are approximately 18–25-nucleotides long, single-stranded
RNAs involved in modulating gene expression pathways [19]. MiRNAs incorporated in protein complex
exhibit gene expression regulating effect by binding to mRNA. The pairing effect of miRNA–mRNA
interactions reduces gene expression predominantly by repression of translation, destabilization and
cleavage of mRNA [20]. MiRNAs exert their effect as a switch and a fine-tuner of gene expression,
providing a pleiotropic effect on protein pool in cells [21]. Alterations in genes involved in miRNA
processing were found in various human cancers [22]. MiRNAs are intensively studied as potential
means of novel diagnostic and treatment approaches [23,24]

A growing amount of evidence suggests a relevant role of miRNA in vascular cell functions,
including cell differentiation, proliferation, migration, and apoptosis [25,26]. MiRNAs are involved
in vascular diseases, exhibiting modulatory function of angiogenesis, endothelial cells dysfunction
and response for ischemic events [27]. Numerous miRNAs are considered as potential markers of
cardiovascular diseases (e.g., coronary artery disease, myocardial infarction, atherosclerosis, venous
thromboembolism), exhibiting promising diagnostic, prognostic and therapeutic value [27–31].

Altered expression patterns of miRNAs and genes were demonstrated in vein specimens derived
from patients with CVI and compared to healthy subjects [32,33]. Dysregulation of miRNA expression,
reported in venous ulcers biopsies, has been associated with inhibition of wound healing [34]. The
proposed role of miRNA in CVI susceptibility has also been reported [35]. Therefore, miRNAs
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could also be involved in the pathogenesis of CVD and may be relevant as potential diagnostic and
therapeutic targets.

In our work, integrated miRNA and gene expression analysis was applied to find potential robust
biomarkers of CVD and to show the impact of miRNA-regulated genes on pathological processes
governing CVD development.

2. Experimental Section

2.1. Study Participants Characteristics

The study was performed in accordance with the Declaration of Helsinki and approved by the
Ethics Committee at Medical University of Lublin (approval No. KE-0254/341/2015). Participants
were recruited between February 2016 and May 2017. All subjects gave their informed consent for
inclusion before they participated in the study. The CVD group consisted of 34 patients diagnosed
and hospitalized only due to CVD, without any other diagnosed vascular diseases or comorbidities,
in the Independent Public Clinical Hospital No. 1 in Lublin, Poland. The control group comprised
of 19 healthy volunteers without any visible CVD characteristics and lack of comorbidities during
examination. Detailed characteristics of included participants are presented in Table 1.

Table 1. Characteristics of 34 patients with chronic venous disease (CVD) and 19 non-CVD controls
included in the study.

Characteristic CVD Population
(n = 34)

Control Population
(n = 19) P

Age 44.12 ± 10.07 1 36.58 ± 9.97 1
8.387 × 10−3

27–78 2 24–55 2

Body Mass Index 23.85 ± 2.35 1 23.12 ± 3.93 1
0.117

20.13–28.76 2 19.33–32.6 2

Smoking: Current 5 (14.7%) 0 (0%)
1.296 × 10−4

Smoking: Former 13 (38%) 0 (0%)

Smoking: Never 16 (47%) 19 (100%)

Sex: Male 17 (50%) 9 (47%)
1

Sex: Female 17 (50%) 10 (53%)

Signs and symptoms

Pain 7 (20.6%) NA

Ankle-brachial index
0.96 ± 0.048 1

NA
0.71–0.99 2

Extended anatomical classification

Great saphenous vein (above knee) 23 (67.7%) NA

Great saphenous vein (below knee) 7 (20.6%) NA

Small saphenous vein 3 (8.8%) NA

Great and small saphenous vein 1 (2.9%) NA

Medication

Micronized diosmin 19 (55.9%) NA

Preparation with vitaminum C,
hesperidin and Ruscus aculeatus extract 10 (29.4%) NA

Both medications 5 (14.7%) NA
1 mean ± SD, 2 range. Statistical significance (P) of differences between chronic venous disease (CVD) and control
group in age and BMI was calculated using two-sided Mann Whitney U test, and in sex and smoking was calculated
using Fisher exact test. Inapplicable data were addressed to “NA”.
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Inclusion and exclusion criteria were evaluated by a vascular surgeon. Included CVD patients
were examined using tourniquet test, auscultation and duplex ultrasound scanning. Venous reflux
lasting longer than 1 s was classified as pathological. Patients diagnosed with symptoms classified
according to CEAP as varicose veins (C2) of superficial veins (As) with primary etiology (Ep) and reflux
pathophysiology (Pr) were included. The exclusion criteria were previous vascular surgery of lower
limbs, insufficiency of deep veins, acute and chronic inflammation of veins, lower extremities arterial
disease, coronary artery disease, cerebrovascular disease, aneurismal disease, myocardial infarction,
hypertension, stroke, diabetes mellitus type 2, and pregnancy.

Body Mass Index (BMI), pain symptoms, ankle-brachial index, smoking habits and applied
medical treatment were also evaluated (Table 1).

The control group consisted of 19 healthy, nonsmoking volunteers (Table 1). Only subjects without
blood flow disturbances and with normal morphology of veins in lower limbs, confirmed by physical
examination and duplex ultrasound scanning, were included to the study as controls. Any symptoms,
comorbidities and treatment of vascular diseases were indicated in the analysis of medical history of
control subjects.

2.2. Study Material Preparation

Isolation of Peripheral Blood Mononuclear Cells (PBMCs) was performed from whole blood
samples by density gradient centrifugation using Gradisol L reagent (Aqua-Med, Łódź, Poland). Small
RNA fractions were isolated from PBMCs samples of 34 CVD patients and 19 controls using MirVana
microRNA Isolation Kit (Ambion, Austin, TX, USA), according to the manufacturer’s protocol. Total
RNA was isolated from PBMCs of seven randomly selected CVD patients and seven randomly selected
control subjects, using TRI Reagent Solution (Applied Biosystems, Foster, CA, USA) according to the
manufacturer’s protocol. For a more detailed description of study material isolation and assessment
refer to [30].

2.3. Libraries Preparation and Sequencing

Small RNA libraries were prepared from 53 small RNA samples isolated from PBMCs of 34
CVD patients and 19 healthy controls. Technical limitations did not allow to perform transcriptome
sequencing for all subjects included in the study, therefore transcriptome libraries were constructed
from 14 total RNA samples isolated from randomly selected, representative subsets of PBMCs samples
(seven from CVD patients and seven from healthy controls).

Small RNA and transcriptome libraries were prepared using Ion Total RNA-Seq Kit v2, Magnetic
Bead Cleanup Module kit and barcoded with Ion Xpress RNA-Seq Barcode 01-16 Kit (all Life
Technologies, Carlsbad, CA, USA), according to the manufacturer’s protocol “Ion Total RNA-Seq Kit
v2” revision B.0. Libraries were sequenced on Ion 540 Chips (Life Technologies) using Ion S5 XL
System (ThermoFisher Scientific, Waltham, MA, USA). Small RNA and transcriptome raw sequencing
data were aligned to 2792 human miRNAs from miRBase v21 (http://www.mirbase.org) and to 55,765
genes and splicing variants of hg19 human genome, respectively.

Detailed description of libraries preparation and sequencing procedures were included in our
previous study [30].

2.4. Statistical Analysis

The differences between CVD and control groups were evaluated in terms of age and BMI using a
two-sided Mann–Whitney U test (wilcox.test function in R), and in terms of sex and smoking using
Fisher exact test (fisher.test function in R).

Statistical analysis of miRNA and gene expression datasets was performed on biological
replicates using R environment (version 3.5.2, https://www.r-project.org) with proper packages.
Differential expression analysis was carried out using DESeq2 package v1.18.1 (https://bioconductor.
org/packages/release/bioc/html/DESeq2.html) [36]. MiRNAs and genes with p value below 0.05

http://www.mirbase.org
https://www.r-project.org
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
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after Benjamini–Hochberg false discovery rate correction were considered as statistically significant.
Differential potential of miRNAs and genes was further confirmed by Uninformative Variable
Elimination by Partial Least Squares (UVE-PLS) method [37] using the plsVarSel package v0.9.3
(https://cran.r-project.org/web/packages/plsVarSel/index.html) [38].

Venn diagrams, Heatmaps with Euclidean clustering and 3D Principal Component Analysis (PCA)
plots were created using VennDiagram 1.6.20 (https://cran.r-project.org/web/packages/VennDiagram/

index.html) [39], pheatmap 1.0.10 (https://cran.r-project.org/web/packages/pheatmap/index.html) and
scatterplot3d 0.3-41 (https://cran.r-project.org/web/packages/scatterplot3d/index.html) [40] packages,
respectively. Correlation analysis was performed using Spearman rank correlation test implemented
in the Hmisc package 4.4-0 (https://cran.r-project.org/web/packages/Hmisc/index.html).

A Receiver Operating Characteristics (ROC) analysis implemented in pROC package 1.12.1 [41]
(https://cran.r-project.org/web/packages/pROC/index.html) was used to evaluate the predictive value
of selected miRNAs and gene transcripts for CVD classification.

Deconvolution of gene expression was performed by “quanTIseq” [42] and “MCPcounter” [43]
methods implemented to immunedeconv 2.0.0 package (https://rdrr.io/github/grst/
immunedeconv/) [44].

MultiMiR package 1.2.0 (https://bioconductor.org/packages/release/bioc/html/multiMiR.html) [45]
was used to identify validated and predicted interactions between selected miRNAs and genes.
Visualization of the regulatory network with interactions was performed using Cytoscape v3.5.1
software (https://cytoscape.org/) [46].

Functional analysis of networked genes was performed using Database for Annotation,
Visualization and Integrated Discovery (DAVID) 6.8 tool (https://david.ncifcrf.gov/) [47,48]. Default
whole genome of Homo sapiens was applied as a background. All the terms of Kyoto Encyclopedia of
Genes and Genomes (KEGG), Reactome and Genetic Association Database (GAD) databases associated
with analyzed genes were harvested. Enrichment analysis of functional terms was proceeded for Gene
Ontology (GO) terms separately for up- and downregulated genes.

All statistical procedures applied to this study were previously described in detail in [30]. Statistical
analysis and visualizations were performed according to R code available in published reference
manuals of used packages.

The summarized methodology applied in our study is presented on Figure 1.
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3. Results

3.1. Study Population Analysis

Characteristics of 34 patients with CVD and 19 non-CVD controls are presented in Table 1.
A statistically significant difference between these groups was observed in age (p = 8.387 × 10−3) and
smoking history (p = 1.296 × 10−4), which probably results from inclusion of healthy CVD-negative
non-smoking individuals in control group. No statistically significant differences between CVD and
control groups concerning gender and BMI were found (Table 1, Figure S1).

3.2. Primary Results

Detailed description of small RNA samples and small RNA libraries as well as the results of
primary analysis of small RNA libraries sequencing data are presented in Table S1. Detailed description
of transcriptome libraries and results of primary analysis of transcriptome libraries sequencing data are
presented in Table S2. Plots depicting sequencing data quality, including boxplot of Cook’s distances,
MA plot and histogram of p values, regarding small RNA and transcriptome sequencing are presented
in Figure S2 and Figure S3, respectively.

3.3. Differential Expression Analysis of miRNA

The comparison of miRNA expression levels between 34 CVD patients and 19 non-CVD controls
was performed using DESeq2 and UVE-PLS methods and significantly dysregulated miRNAs selected
by both methods were chosen.

DESeq2 analysis revealed 1034 differentially expressed miRNA transcripts in CVD subjects
compared to controls. Ninety-six miRNA transcripts were differentially expressed with statistical
significance p < 0.05 (Table S3). DESeq2 method is characterized by relatively high sensitivity, therefore
a set of 49 differentially expressed miRNA transcripts (for 41 miRNAs) of higher significance (p < 0.01)
was selected to limit the number of potentially false positive results.

In order to optimally filter uninformative miRNAs, the UVE-PLS method was applied to miRNA
expression data of 1034 differentially expressed miRNA transcripts in CVD subjects. UVE-PLS analysis
returned 48 informative miRNA transcripts (Table S4). Figure S4 shows the arrangement of prediction
error and PLS components as well as cross-validated predictions versus measured values.

The set of 49 differentially expressed miRNA transcripts identified by DESeq2 method (with
p < 0.01) and the set of 48 differentially expressed miRNA transcripts identified by UVE-PLS method
were compared on the Venn diagram, revealing 34 miRNA transcripts common for both sets (Figure 2a).
These 34 miRNA transcripts result in 31 miRNAs (22 upregulated and 9 downregulated), which
constitute a proposed panel of potential miRNA biomarkers of CVD (Table 2). Differential expression
of common 34 miRNA transcripts in CVD and control group is visualized on 3D PCA plot and in
heatmap with Euclidean clustering (Figure 2b,c, respectively).
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Figure 2. Results of differential expression analysis of miRNA in group of 34 patients with chronic
venous disease (CVD) vs. 19 healthy controls (Control). (a) Venn diagram presenting comparison
of two sets of miRNA transcripts: the set of 49 miRNA transcripts resulted from DESeq2 analysis
with p < 0.01 and the set of 48 informative miRNA transcripts resulted from Uninformative Variable
Elimination by Partial Least Squares (UVE-PLS) analysis. Thirty-four miRNA transcripts were common
for both sets. 3D Principal Component Analysis (PCA) plot (b) and heatmap with Euclidean clustering
(c) show differential expression of common 34 miRNA transcripts in CVD and control groups.
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Table 2. Set of 34 differentially expressed miRNA transcripts resulted from DESeq2 analysis with
p < 0.01 with statistical significance confirmed by UVE-PLS analysis in 34 patients with chronic venous
disease compared to 19 controls.

No. miRNA Transcript miRNA ID 1 P Fold
Change

PLS
Coefficient ROC-AUC

Upregulated miRNA Transcripts

1. hsa-mir-122_hsa-miR-122-5p hsa-miR-122-5p 1.06 × 10−9 2.2135 4.71 × 10−2 0.930

2. hsa-mir-3591_hsa-miR-3591-3p hsa-miR-3591-3p 1.06 × 10−9 2.2127 4.71 × 10−2 0.930

3. hsa-mir-183_hsa-miR-183-5p hsa-miR-183-5p 2.05 × 10−6 1.9316 3.83 × 10−2 0.855

4. hsa-mir-1277_hsa-miR-1277-3p hsa-miR-1277-3p 2.13 × 10−5 1.7727 4.04 × 10−2 0.850

5. hsa-mir-548d-1_hsa-miR-548d-3p hsa-miR-548d-3p 2.13 × 10−5 1.6170 2.09 × 10−2 0.859

6. hsa-mir-34a_hsa-miR-34a-5p hsa-miR-34a-5p 3.81 × 10−5 1.9308 3.45 × 10−2 0.847

7. hsa-mir-576_hsa-miR-576-3p hsa-miR-576-3p 3.04 × 10−4 2.0430 3.21 × 10−2 0.842

8. hsa-mir-454_hsa-miR-454-3p hsa-miR-454-3p 3.04 × 10−4 1.2133 1.05 × 10−2 0.833

9. hsa-mir-548d-1_hsa-miR-548d-5p hsa-miR-548d-5p 3.44 × 10−4 1.3487 1.47 × 10−2 0.836

10. hsa-mir-186_hsa-miR-186-3p hsa-miR-186-3p 3.61 × 10−4 1.3568 1.65 × 10−2 0.814

11. hsa-mir-548d-2_hsa-miR-548d-5p hsa-miR-548d-5p 3.61 × 10−4 1.3498 1.47 × 10−2 0.811

12. hsa-mir-548aa-1_hsa-miR-548aa hsa-miR-548aa 5.13 × 10−4 1.3248 1.46 × 10−2 0.819

13. hsa-mir-548aa-2_hsa-miR-548aa hsa-miR-548aa 1.02 × 10−3 1.3381 1.46 × 10−2 0.797

14. hsa-mir-33a_hsa-miR-33a-5p hsa-miR-33a-5p 1.02 × 10−3 1.2067 1.13 × 10−2 0.816

15. hsa-mir-590_hsa-miR-590-3p hsa-miR-590-3p 1.02 × 10−3 1.1660 6.74 × 10−3 0.816

16. hsa-mir-548t_hsa-miR-548t-3p hsa-miR-548t-3p 1.81 × 10−3 1.3233 8.10 × 10−3 0.796

17. hsa-mir-1277_hsa-miR-1277-5p hsa-miR-1277-5p 1.84 × 10−3 1.3291 2.13 × 10−2 0.811

18. hsa-let-7b_hsa-let-7b-3p hsa-let-7b-3p 2.06 × 10−3 1.3223 1.09 × 10−2 0.791

19. hsa-mir-96_hsa-miR-96-5p hsa-miR-96-5p 3.73 × 10−3 2.2914 2.64 × 10−2 0.786

20. hsa-mir-548ac_hsa-miR-548ac hsa-miR-548ac 5.53 × 10−3 1.7613 2.87 × 10−2 0.807

21. hsa-mir-19a_hsa-miR-19a-3p hsa-miR-19a-3p 5.82 × 10−3 1.1944 8.38 × 10−3 0.757

22. hsa-mir-206_hsa-miR-206 hsa-miR-206 8.00 × 10−3 2.0356 2.76 × 10−2 0.759

23. hsa-mir-497_hsa-miR-497-3p hsa-miR-497-3p 9.31 × 10−3 1.4368 1.63 × 10−2 0.782

24. hsa-mir-208a_hsa-miR-208a-3p hsa-miR-208a-3p 9.81 × 10−3 3.2080 2.77 × 10−2 0.789

Downregulated miRNA transcripts

25. hsa-mir-92a-1_hsa-miR-92a-3p hsa-miR-92a-3p 7.89 × 10−5 0.8323 −1.40 × 10−2 0.856

26. hsa-mir-874_hsa-miR-874-5p hsa-miR-874-5p 1.29 × 10−4 0.5428 −3.43 × 10−2 0.916

27. hsa-mir-106b_hsa-miR-106b-3p hsa-miR-106b-3p 2.47 × 10−4 0.7964 −1.15 × 10−2 0.902

28. hsa-mir-92a-2_hsa-miR-92a-3p hsa-miR-92a-3p 3.04 × 10−4 0.8414 −1.43 × 10−2 0.842

29. hsa-mir-181a-2_hsa-miR-181a-2-3p hsa-miR-181a-2-3p 1.02 × 10−3 0.6772 −3.24 × 10−2 0.793

30. hsa-mir-128-1_hsa-miR-128-3p hsa-miR-128-3p 2.67 × 10−3 0.8504 −7.84 × 10−3 0.777

31. hsa-mir-769_hsa-miR-769-5p hsa-miR-769-5p 5.53 × 10−3 0.8706 −1.15 × 10−2 0.794

32. hsa-mir-30e_hsa-miR-30e-3p hsa-miR-30e-3p 5.53 × 10−3 0.7400 −1.51 × 10−2 0.805

33. hsa-mir-1250_hsa-miR-1250-5p hsa-miR-1250-5p 8.56 × 10−3 0.6186 −3.32 × 10−2 0.803

34. hsa-mir-25_hsa-miR-25-3p hsa-miR-25-3p 8.94 × 10−3 0.8603 −9.00 × 10−3 0.766
1 According to miRBase 22 (http://www.mirbase.org/). These 34 miRNA transcripts result in 31 miRNAs (miRNA
IDs). P (FDR with Benjamini–Hochberg correction) and fold change values were obtained from DESeq2 analysis.
Partial Least Squares (PLS) coefficients were obtained from Uninformative Variable Elimination by Partial Least
Squares (UVE-PLS) analysis. Areas under Receiver Operating Characteristics (ROC) curves (ROC-AUC) were
received from ROC analysis. MiRNA transcripts were ordered according to increasing p values across groups of
upregulated and downregulated miRNA transcripts.

http://www.mirbase.org/
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ROC analysis revealed that areas under ROC curves for 34 selected miRNA transcripts were
covered in the range 0.930–0.757, indicating a high ability to distinguish patients with CVD from
healthy subjects (Table 2, Table S5 and Figure S5).

Correlation analysis between age and expression data of 34 selected miRNA transcripts was
performed in CVD group in order to evaluate effect of age on these miRNAs (Table S6). Only
hsa-miR-548ac was statistically significantly correlated with age (p = 0.0395) exhibiting weak and
negative correlation (R = −0.35). The lack of statistically significant correlation of remaining 33 miRNA
transcripts suggests their independency from age; however, further studies with larger populations
should be performed to confirm this result.

3.4. Differential Expression Analysis of Genes

From CVD patient and non-CVD control groups, seven patients and seven controls were randomly
selected for gene expression analysis. Similarly to miRNA, DESeq2 and UVE-PLS methods were
applied to perform differential gene expression analysis. Significantly dysregulated genes revealed by
both methods were selected.

DESeq2 analysis disclosed 23,204 differentially expressed genes in CVD subjects, comparing to
controls. In total, 2719 genes presented statistical significance (p < 0.05). The risk of false positive
results was decreased by selection of 183 differentially expressed genes with p < 0.00001 (Table S7).

Application of UVE-PLS analysis to gene expression data of 23,204 differentially expressed genes
in CVD subjects compared to controls disclosed 74 informative genes (Table S8). Plot presenting the
arrangement of prediction error and PLS components as well as plot of cross-validated predictions
versus measured values were shown on Figure S6.

The set of 183 differentially expressed genes identified by DESeq2 method with p < 0.00001 and
the set of 74 informative genes identified by UVE-PLS method were compared on a Venn diagram,
revealing 62 genes common for both sets (Figure 3a). These 62 common genes constitute a proposed
panel of potential biomarkers of CVD (Table 3). Clustering patterns of 62 genes in CVD subjects
and controls was visualized on 3D PCA plot and in heatmap with Euclidean clustering (Figure 3b,c,
respectively).

The ROC analysis showed that areas under ROC curves obtained for 62 selected genes were equal
to 0.98 for RAC1P2 and RP11-318C24.1, and equal to one for the remaining 60 genes, indicating good
precision of CVD classification (Table 3, Table S9, Figure S7).

Correlation analysis between age and expression data of 62 selected genes was performed in CVD
group in order to evaluate effect of age on these genes (Table S10). HSPA8P1 (R = −0.82, p = 0.024),
PTBP1P (R = −0.80, p = 0.031), TSC2 (R = −0.79, p = 0.033) and UBA52P5 (R = −0.77, p = 0.043) were
statistically significantly and negatively correlated with age. Among these four genes, HSPA8P1,
PTBP1P and UBA52P5 were disclosed as downregulated in CVD group, pointing to them as possible
age-associated risk factors of CVD. A lack of statistically significant correlation of remaining 58 genes
suggests their independency from age; however, further studies with larger populations should be
performed to confirm this result.

To estimate the influence of cell subpopulations diversity in the PBMCs samples on results
of gene expression analysis, the deconvolution procedure was carried out using “quanTIseq” and
“MCPcounter” methods implemented in immunedeconv package. Both methods enable to perform
comparisons between samples and “quanTIseq” allows also to make comparisons between cell types.
Application of both methods to the gene expression data showed estimated proportions of 11 cell
subpopulations in studied samples (Figures S8 and S9). Although differences in proportions of
particular cell subpopulations could be observed between samples, our data suggests that there is no
significant impact of cell subpopulations composition in PBMCs samples on the study results.
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Table 3. The set of 62 differentially expressed genes in seven patients with chronic venous disease vs.
seven controls, resulted from DESeq2 analysis (p < 0.00001) with statistical significance confirmed by
Uninformative Variable Elimination by Partial Least Squares (UVE-PLS) analysis.

No. Gene Symbol Gene Name p Value Fold
Change

PLS
Coefficient ROC-AUC

Upregulated Genes

1. TSC2 TSC complex subunit 2 4.87 × 10−17 1.437 8.197 × 10−4 1.000

2. TBC1D22A TBC1 domain family member 22A 4.36 × 10−11 1.431 7.572 × 10−4 1.000

3. PPP6R2 protein phosphatase 6 regulatory
subunit 2 9.52 × 10−9 1.361 6.225 × 10−4 1.000

4. UPF1 UPF1, RNA helicase and ATPase 2.82 × 10−7 1.247 5.077 × 10−4 1.000

5. WNK1 WNK lysine deficient protein kinase 1 4.59 × 10−7 1.258 4.134 × 10−4 1.000

6. CDS2 CDP-diacylglycerol synthase 2 5.31 × 10−7 1.241 4.756 × 10−4 1.000

7. PRRC2B proline rich coiled-coil 2B 1.56 × 10−6 1.273 4.693 × 10−4 1.000

8. HDAC5 histone deacetylase 5 4.89 × 10−6 1.432 5.694 × 10−4 1.000

9. INTS11
(CPSF3L) integrator complex subunit 11 5.95 × 10−6 1.246 4.683 × 10−4 1.000

Downregulated genes

10. AC078899.1 Unmatched 1.18 × 10−13 0.393 −1.586 × 10−3 1.000

11. RP11-16F15.1 Unmatched 1.18 × 10−13 0.327 −2.068 × 10−3 1.000

12. EEF1A1P19 eukaryotic translation elongation factor 1
alpha 1 pseudogene 19 8.40 × 10−13 0.500 −1.305 × 10−3 1.000

13. PFN1P1 profilin 1 pseudogene 1 4.04 × 10−11 0.367 −1.457 × 10−3 1.000

14. RP4-706A16.3 Unmatched 4.36 × 10−11 0.455 −1.394 × 10−3 1.000

15. AC005884.1 Unmatched 4.36 × 10−11 0.401 −1.488 × 10−3 1.000

16. CALM2P2 calmodulin 2 pseudogene 2 4.36 × 10−11 0.386 −1.498 × 10−3 1.000

17. HSPA8P1 heat shock protein family A (Hsp70)
member 8 pseudogene 1 4.36 × 10−11 0.379 −1.575 × 10−3 1.000

18. RP11-490H24.5 Unmatched 4.36 × 10−11 0.312 −1.508 × 10−3 1.000

19. EIF4A1P10 eukaryotic translation initiation factor
4A1 pseudogene 10 4.66 × 10−11 0.461 −1.286 × 10−3 1.000

20. RP11-1033A18.1 Unmatched 7.00 × 10−11 0.381 −1.495 × 10−3 1.000

21. EIF3FP3 eukaryotic translation initiation factor 3
subunit F pseudogene 3 1.35 × 10−10 0.443 −1.423 × 10−3 1.000

22. PDIA3P1
(PDIA3P)

protein disulfide isomerase family A
member 3 pseudogene 1 2.38 × 10−10 0.465 −1.240 × 10−3 1.000

23. HSPA9P1 heat shock protein family A (Hsp70)
member 9 pseudogene 1 2.76 × 10−10 0.420 −1.414 × 10−3 1.000

24. AC007238.1 Unmatched 3.62 × 10−10 0.422 −1.398 × 10−3 1.000

25. HNRNPA1P7 heterogeneous nuclear
ribonucleoprotein A1 pseudogene 7 3.72 × 10−10 0.462 −1.232 × 10−3 1.000

26. RP11-159C21.4 Unmatched 4.81 × 10−10 0.390 −1.552 × 10−3 1.000

27. PABPC3 poly(A) binding protein cytoplasmic 3 1.70 × 10−9 0.414 −1.468 × 10−3 1.000

28. RP11-74E24.2 Unmatched 1.94 × 10−9 0.537 −1.067 × 10−3 1.000

29. EEF1A1P6 eukaryotic translation elongation factor 1
alpha 1 pseudogene 6 1.94 × 10−9 0.441 −1.375 × 10−3 1.000

30. XRCC6P2 X-ray repair cross complementing 6
pseudogene 2 2.89 × 10−9 0.373 −1.535 × 10−3 1.000

31. HNRNPKP2 heterogeneous nuclear
ribonucleoprotein K pseudogene 2 3.13 × 10−9 0.424 −1.163 × 10 ˆ-3 1.000

32. EEF1A1P11 eukaryotic translation elongation factor 1
alpha 1 pseudogene 11 8.40 × 10−9 0.448 −1.369 × 10−3 1.000

33. UBA52P5 ubiquitin A-52 residue ribosomal protein
fusion product 1 pseudogene 5 8.40 × 10−9 0.397 −1.306 × 10−3 1.000

34. RPL9P7 ribosomal protein L9 pseudogene 7 9.10 × 10−9 0.414 −1.417 × 10−3 1.000

35. RPS21P4 ribosomal protein S21 pseudogene 4 1.37 × 10−8 0.376 −1.531 × 10−3 1.000
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Table 3. Cont.

No. Gene Symbol Gene Name p Value Fold
Change

PLS
Coefficient ROC-AUC

36. RP11-334L9.1 Unmatched 1.37 × 10−8 0.333 −1.206 × 10−3 1.000

37. HNRNPKP4 heterogeneous nuclear
ribonucleoprotein K pseudogene 4 1.38 × 10−8 0.462 −1.120 × 10−3 1.000

38. RPL9P9 ribosomal protein L9 pseudogene 9 1.38 × 10−8 0.418 −1.302 × 10−3 1.000

39. AC138123.2 Unmatched 1.38 × 10−8 0.407 −1.422 × 10−3 1.000

40. HNRNPA1P10 heterogeneous nuclear
ribonucleoprotein A1 pseudogene 10 1.39 × 10−8 0.475 −1.227 × 10−3 1.000

41. MORF4L1P1 mortality factor 4 like 1 pseudogene 1 3.98 × 10−8 0.535 −1.045 × 10−3 1.000

42. RP11-676M6.1 Unmatched 8.19 × 10−8 0.498 −1.208 × 10−3 1.000

43, RPL7AP66 ribosomal protein L7a pseudogene 66 9.71 × 10−8 0.485 −1.089 × 10−3 1.000

44. RP11-680H20.1 Unmatched 9.99 × 10−8 0.411 −1.155 × 10−3 1.000

45. CTB-13H5.1 Unmatched 1.41 × 10−7 0.418 −1.175 × 10−3 1.000

46. HNRNPA1P35 heterogeneous nuclear
ribonucleoprotein A1 pseudogene 35 1.49 × 10−7 0.350 −1.223 × 10−3 1.000

47. PTBP1P polypyrimidine tract binding protein 1
pseudogene 1.53 × 10−7 0.443 −1.095 × 10−3 1.000

48. API5P1 apoptosis inhibitor 5 pseudogene 1 1.57 × 10−7 0.347 −1.204 × 10−3 1.000

49. UBE2D3P1 ubiquitin conjugating enzyme E2 D3
pseudogene 1 1.69 × 10−7 0.485 −8.801 × 10−4 1.000

50. AL162151.3 Unmatched 1.94 × 10−7 0.431 −1.258 × 10−3 1.000

51. RPL9P8 ribosomal protein L9 pseudogene 8 2.34 × 10−7 0.446 −1.253 × 10−3 1.000

52. EEF1A1P13 eukaryotic translation elongation factor 1
alpha 1 pseudogene 13 2.51 × 10−7 0.521 −1.211 × 10−3 1.000

53. PABPC1P4 poly(A) binding protein cytoplasmic 1
pseudogene 4 2.60 × 10−7 0.465 −1.031 × 10−3 1.000

54. HNRNPUP1 heterogeneous nuclear
ribonucleoprotein U pseudogene 1 2.73 × 10−7 0.441 −1.106 × 10−3 1.000

55. ARPC3P1 actin related protein 2/3 complex subunit
3 pseudogene 1 3.72 × 10−7 0.331 −1.272 × 10−3 1.000

56. PTP4A2P1 protein tyrosine phosphatase type IVA,
member 2 pseudogene 1 4.59 × 10−7 0.500 −9.014 × 10−4 1.000

57. CTC-451P13.1 Unmatched 4.77 × 10−7 0.513 −9.263 × 10−4 1.000

58. BZW1P2 basic leucine zipper and W2 domains 1
pseudogene 2 7.97 × 10−7 0.445 −9.598 × 10−4 1.000

59. RP11-318C24.1 Unmatched 1.94 × 10−6 0.314 −1.062 × 10−3 0.980

60. OTUD4P1
(HIN1L) OTUD4 pseudogene 1 2.08 × 10−6 0.480 −9.962 × 10−4 1.000

61. EIF3LP2 eukaryotic translation initiation factor 3
subunit L pseudogene 2 2.33 × 10−6 0.457 −9.995 × 10−4 1.000

62. RAC1P2 Rac family small GTPase 1 pseudogene 2 3.29 × 10−6 0.489 −8.192 × 10−4 0.980

P (FDR with Benjamini–Hochberg correction) and fold change values were obtained from DESeq2 analysis. PLS
coefficients were obtained from UVE-PLS analysis. Areas under Receiver Operating Characteristics (ROC) curves
(ROC-AUC) were received from ROC analysis. Genes were ordered according to increasing p values across groups
of upregulated and downregulated genes. Genes without names assigned by HUGO Multi-symbol checker were
termed as “Unmatched”. Synonyms or previous gene symbols were put into brackets.
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Figure 3. Results of differential expression analysis of genes in group of seven patients with chronic
venous disease (CVD) vs. seven healthy controls group (Control). (a) Venn diagram presenting
comparison of two gene sets: the set of 183 genes received from DESeq2 analysis with p < 0.00001 and
the set of 74 informative genes indicated by Uninformative Variable Elimination by Partial Least Squares
(UVE-PLS) analysis. Sixty-two genes were common for both sets of genes. 3D Principal Component
Analysis (PCA) plot (b) and heatmap with Euclidean clustering (c) show differential expression of
common 62 genes in CVD and Control groups.

3.5. In Silico Identification of miRNA:Gene Interactions

Identification of miRNA:gene interactions between 31 selected miRNAs and 62 selected genes
was performed in silico by multiMiR package. Twelve validated (Table S11) and 51 top 10%-predicted
miRNA:gene pairs (Table S12) were returned from analysis. Interactions between miRNAs and their
targets were visualized as a regulatory network containing 22 miRNAs and seven genes (Figure 4).



J. Clin. Med. 2020, 9, 1251 13 of 23

J. Clin. Med. 2020, 9, x FOR PEER REVIEW  14  of  25 

 

Squares  (UVE‐PLS)  analysis.  Sixty‐two  genes were  common  for  both  sets  of  genes.  3D Principal 

Component Analysis  (PCA) plot  (b) and heatmap with Euclidean  clustering  (c)  show differential 

expression of common 62 genes in CVD and Control groups. 

3.5. In Silico Identification of miRNA:Gene Interactions 

Identification of miRNA:gene interactions between 31 selected miRNAs and 62 selected genes 

was performed in silico by multiMiR package. Twelve validated (Table S11) and 51 top 10%‐predicted 

miRNA:gene pairs (Table S12) were returned from analysis. Interactions between miRNAs and their 

targets were visualized as a regulatory network containing 22 miRNAs and seven genes (Figure 4). 

 

Figure 4. Regulatory network of interactions found in silico between miRNAs and genes indicated as 

the most promising biomarkers of chronic venous disease. Upregulated and downregulated nodes 

(miRNAs or genes) were  labeled with  red  and blue  color,  respectively. Validated  and predictive 

interactions were labeled with solid and dashed edges, respectively. 

3.6. Functional Analysis of miRNA Targets 

Functional analysis was performed using DAVID 6.8  tool  for  seven networked  target genes 

(CDS2,  HDAC5,  PPP6R2,  PRRC2B,  TBC1D22A,  WNK1,  and  PABPC3).  Analyzed  genes  were 

associated with cardiovascular diseases and risk factors (TBC1D22A, WNK1), bone mineral density 

(HDAC5),  body  weight  (PABPC3),  glycerophospholipid  metabolism  (CDS2),  Notch  signaling 

(HDAC5), RNA  transport and degradation  (PABPC3). Three genes: CDS2, TBC1D22A, and WNK1 

were connected to tobacco use disorder, which may be caused by the prevalence of smoking in 14.7% 

of CVD population  (control group consists of non‐smoking  individuals, Table 1). GO enrichment 

analysis assigned upregulated genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, and WNK1) to 

developmental processes and downregulated gene PABPC3 to RNA metabolic processes (Table 4). 

  

Figure 4. Regulatory network of interactions found in silico between miRNAs and genes indicated as
the most promising biomarkers of chronic venous disease. Upregulated and downregulated nodes
(miRNAs or genes) were labeled with red and blue color, respectively. Validated and predictive
interactions were labeled with solid and dashed edges, respectively.

3.6. Functional Analysis of miRNA Targets

Functional analysis was performed using DAVID 6.8 tool for seven networked target genes (CDS2,
HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3). Analyzed genes were associated with
cardiovascular diseases and risk factors (TBC1D22A, WNK1), bone mineral density (HDAC5), body
weight (PABPC3), glycerophospholipid metabolism (CDS2), Notch signaling (HDAC5), RNA transport
and degradation (PABPC3). Three genes: CDS2, TBC1D22A, and WNK1 were connected to tobacco use
disorder, which may be caused by the prevalence of smoking in 14.7% of CVD population (control
group consists of non-smoking individuals, Table 1). GO enrichment analysis assigned upregulated
genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, and WNK1) to developmental processes and
downregulated gene PABPC3 to RNA metabolic processes (Table 4).

Table 4. Results of functional analysis of seven genes selected in silico as targets of miRNA identified
as signatures of chronic venous disease.

Functional Analysis of Upregulated Genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1)

KEGG, Reactome, GAD and GAD Class

CDS2

KEGG: Glycerophospholipid metabolism, Phosphatidylinositol signaling system,
Metabolic pathways
Reactome: Synthesis of PG (Phosphatidylglycerol)
GAD: Type 2 Diabetes|edema|rosiglitazone, Tobacco Use Disorder
GAD Class: pharmacogenomic, chemdependency

HDAC5

KEGG: Alcoholism, Viral carcinogenesis,
Reactome: NOTCH1 Intracellular Domain Regulates Transcription, Constitutive Signaling
by NOTCH1 PEST Domain Mutants, Constitutive Signaling by NOTCH1 HD + PEST
Domain Mutants
GAD: antidepressant response, Bone Density, Bone mineral density (hip), Bone mineral
density (spine), bronchodilator response, Fractures, Bone, Type 2 Diabetes| edema |
rosiglitazone
GAD Class: immune, metabolic, pharmacogenomic
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Table 4. Cont.

Functional Analysis of Upregulated Genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1)

PPP6R2 No information

PRRC2B No information

TBC1D22A

GAD: Albumins, Arteries, Attention Deficit Disorder with Hyperactivity, Blood Pressure,
Body Mass Index, Body Weight, Breath Tests, Cardiomegaly, Cholesterol, Erythrocyte
Count, Fibrinogen, Heart Failure, Heart Rate, Leukocyte Count, longevity, Metabolism,
Myocardial Infarction, Parkinson Disease, Resistin, Stroke, Thyrotropin, Tobacco Use
Disorder, Waist Circumference, Waist-Hip Ratio
GAD Class: aging, cardiovascular, chemdependency, hematological, immune, metabolic,
neurological, other, psych

WNK1
Reactome: Stimuli-sensing channels
GAD: Apoplexy|Brain Ischemia|Stroke, blood pressure, arterial, Chronic renal
failure|Kidney Failure, Chronic, Essential Hypertension, Hereditary Sensory and
Autonomic Neuropathies, HIV Infections|[X]Human immunodeficiency virus disease,
hypertension, null, Tobacco Use Disorder, Type 2 Diabetes| edema | rosiglitazone
GAD Class: cardiovascular, chemdependency, infection, neurological, pharmacogenomic,
renal, unknown

Gene Ontology terms associated with EASE score <0.1

GO Biological Process cellular developmental process, positive regulation of molecular function

GO Molecular Function enzyme binding

Functional analysis of downregulated gene (PABPC3)

KEGG, Reactome, GAD and GAD Class

PABPC3
KEGG: RNA transport, mRNA surveillance pathway, RNA degradation
GAD: Body Mass Index, Body Weight, Body Weight Changes, Glomerular Filtration Rate
GAD Class: metabolic, renal

Gene Ontology terms associated with PABPC3

GO Biological Process

nucleobase-containing compound metabolic process, cellular aromatic compound
metabolic process, nitrogen compound metabolic process, metabolic process, cellular
process, RNA metabolic process, mRNA metabolic process, cellular nitrogen compound
metabolic process, macromolecule metabolic process, cellular metabolic process, primary
metabolic process, cellular macromolecule metabolic process, heterocycle metabolic
process, organic substance metabolic process, nucleic acid metabolic process, organic cyclic
compound metabolic process

GO Molecular Function
nucleotide binding, nucleic acid binding, RNA binding, single-stranded RNA binding,
binding, poly(A) binding, small molecule binding, poly-purine tract binding, organic cyclic
compound binding, nucleoside phosphate binding, heterocyclic compound binding

GO Cellular
Component

extracellular region, intracellular, cell, cytoplasm, vesicle, membrane-bounded vesicle,
organelle, membrane-bounded organelle, extracellular organelle, extracellular region part,
intracellular part, cell part, extracellular exosome, extracellular vesicle

Analysis was carried out with DAVID 6.8 website tool and all associated functional terms of Kyoto Encyclopedia of
Genes and Genomes (KEGG), Reactome, Genetic Association Database (GAD), Genetic Association Database Class
(GAD Class) categories are presented. Gene Ontology (GO) terms associated with upregulated genes with EASE
score (p) < 0.1 are presented. For downregulated gene, all associated GO terms were presented.

4. Discussion

High prevalence, multifactorial character and diverse symptomatology of CVD make this disease
one of the major health problems worldwide [49]. There is a lack of sensitive and specific biomarkers
for early detection of CVD and for monitoring disease progression. Altered expression of miRNA and
its effects on regulation of gene expression make it a promising candidate for novel diagnostic and
treatment approaches.

In the presented study, we conducted integrated, comparative analysis of miRNA and gene
expression in PBMCs of patients with CVD and healthy controls. We applied Next Generation
Sequencing and various statistical and bioinformatic tools to analyze expression profiles of CVD
patients vs. controls and to search for genetic signatures of CVD (Figure 1). Most promisingly,
31 miRNAs (Table 2) and 62 genes (Table 3), which potentially may serve as biomarkers for CVD,
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were selected. The discriminative character of proposed biomarkers was reinforced by decreasing the
p value of statistical significance in DESeq2 analysis (p < 0.01 for miRNAs and p < 0.00001 for genes,
refer to Tables 2 and 3, respectively) and elimination of uninformative variables using the UVE-PLS
method. In ROC analysis, we confirmed very solid diagnostic value of proposed biomarkers (Tables 2
and 3, Tables S5 and S9, Figures S5 and S7). This multi-step procedure with strict criteria was applied
to obtain scientifically valid results and to eliminate RT-qPCR validation.

The presented miRNA and gene signatures of CVD expand the diagnostic perspective; however,
the study population is relatively minor, especially in case of transcriptomic analysis and evaluation
with larger cohorts is required to confirm diagnostic utility and discriminative ability of proposed
CVD biomarkers.

Integration of miRNA and gene expression analysis in this study allowed us to determine the
framework of miRNA regulatory network in CVD, introducing experimentally validated and predictive
interactions between significantly differentially expressed miRNA and genes found in patients with
CVD (Figure 4). The findings of this study expand our understanding of miRNA functions and provide
more insights into a complex network of post-transcriptional control in CVD.

To date, the topic of miRNA and gene expression analysis in venous disorders has not been
sufficiently studied [33,34]. Cui et al. used microarray and RT-PCR to research upregulation of miR-34a,
miR-202 and downregulation of miR-155 in vein biopsies from patients with CVI [33]. Our study
confirmed that upregulated expression of miR-34a is indicative for chronic venous disorder.

Significantly higher expression of miR-16, miR-20a, miR-21, miR-106a, miR-203 and miR-130a was
reported in skin biopsies from venous ulcers, comparing to normal skin specimens. Overexpression of
these miRNAs was associated with inhibition of wound healing through targeting mRNA for EGR3,
Vcl and LepR. Administration of miR-21 mimics in rat acute wound healing models leads to increase
in infiltration of immune cells and reduction of epithelialization [34]. In our study, we demonstrated
statistically significant upregulation of miR-21 (Table S3) in CVD subjects with varicose veins, which
can be classified as an early stage of the disease. Therefore, enhanced signaling of miR-21 appears to
be a factor involved in CVD progression both in early and advanced stages of disease development.

In other studies, miR-34a and miR-21 were significantly upregulated in plasma and in
atherosclerotic plaques of patients with CAD (Coronary Artery Disease) [50,51], suggesting that
overexpression of miR-34a and miR-21 also found in our study to is common for both arterial and
venous pathology. Diagnostic and prognostic potential of increased level of miR-21 was also reported
as oncomiR in many types of cancer, including Hodgkin lymphoma [52], head and neck squamous
cell carcinoma [53] and lung cancer [54,55], while miR-34a acts as tumor suppressor and undergo
epigenetic silencing in carcinogenesis [56].

Some studies indicated altered expression of genes in veins obtained from patients with CVD
and venous ulcers [57–60] but none of the genes indicated in abovementioned research were found in
our study. These differences could be related to the biological material type, inclusion criteria and
methodological approach.

Presented miRNA regulatory network shows that upregulation of WNK1 is associated with
downregulation of miR-181a-2-3p and miR-106b-3p (Figure 4). WNK1 is important for proper
proliferation, chemotaxis and invasion of endothelial cells [61]. Deficiency of the WNK1 gene in mice
induces embryonic lethality due to angiogenic and cardiovascular defects [61]. MiRNAs belonging
to miR-181 family play a key role in vascular inflammation through regulation of NF-κB signaling,
activation of endothelial cells and homeostasis of immune cells [62]. Upregulation of miR-181a in
THP-1 cells exposed to oxidated LDL, lipopolysaccharides and phorbol myristate leads to reduction of
foam cells formation and inflammatory cytokines levels, lower production of reactive oxygen species
and inhibition of apoptosis [63,64]. A higher level of miR-181a in plasma was proposed as a biomarker
of myocardial infarction [65]. Overexpression of miR-106b-3p was previously described in the late stage
of endothelial replicative senescence [66]. Downregulation of miR-106b-3p was observed in human
retinal pigment epithelium cells (ARPE-19) exposed to hydrogen peroxide (H2O2) [67]. Therefore,
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we hypothesize that upregulation of WNK1 observed in our study, associated with downregulation
of miR-181a-2-3p and miR-106b-3p is a possible mechanism promoting inflammation and aging in
response to oxidative stress in CVD.

WNK1 was identified in our study as a putative target for downregulated miR-128-3p (Figure 4).
Zhou et al. showed that downregulation of miR-128-3p promotes endothelial cell proliferation
through Ca2+ and ERK1/2-Akt signaling [68]. Upregulation of WNK1 as a consequence of miR-128-3p
downregulation may constitute the mechanism promoting endothelial cell proliferation in CVD.
Downregulation of miR-128-3p could also be a factor alleviating inflammation, since it was reported to
stimulate inflammation via targeting the TNFAIP3 gene and enhancing NF-κB signaling [69].

MiRNA regulatory network of CVD (Figure 4) shows that miR-33a-5p targets PABPC3, which is a
gene encoding a putative regulator of MEG3 stability [70]. MEG3 is a suppressor of tumor growth,
inhibiting proliferation and promoting apoptosis in cancer cells [71] via activation of p53 [72]. Our
study points to downregulation of PABPC3 with accompanying overexpression of miR-33a-5p as a
factor which may affect MEG3 stability and in consequence promote cell proliferation in CVD.

Another upregulated miRNA found in CVD subjects, associated with MEG3 is miR-183-5p.
This miRNA was reported to alleviate symptoms of hypoxia (such as a decrease in cell viability and
migration) in H9c2 rat cardiomyocytes via targeting genes encoding MEG3 and p27 [73]. Thus, the
upregulation of miR-183-5p observed in our study may be considered as another factor enhancing cell
proliferation and hypertrophy in CVD. Additionally, in the presented miRNA regulatory network,
upregulated miR-183-5p interacts with the upregulated WNK1 gene. This relationship may also lead to
a hyper-proliferative effect, since WNK1 has been reported to be required for proliferation of endothelial
cells and vascular smooth muscle cells [61,74].

In our study, downregulation of miR-769-5p in CVD patients was observed. Lower expression of
this miRNA was reported in cancer cells and was associated with enhanced proliferation and reduced
apoptosis [75,76]. Downregulation of miR-769-5p was also found in arterial samples of abdominal and
popliteal arterial aneurysm [77]. In the miRNA regulatory network presented here, HDAC5 is proposed
as a putative target of miR-769-5p. Xu et al. reported that HDAC5 mediates angiotensin II-induced
MEF2 activation and vascular smooth muscle cells hypertrophy [78]. These findings suggest that
HDAC5 upregulation, most likely resulted from downregulation of miR-769-5p, may be responsible for
pathological vascular hypertrophy in CVD.

We indicated upregulation of miR-206 in CVD patients as an important target, which was already
revealed to impair viability and migration of endothelial progenitor cells and to promote apoptosis
through targeting VEGF [79]. MiR-206 mediate silencing of VEGF leading to inhibition of angiogenesis
during Danio rerio development [80]. Upregulation of miR-206 in our study may thus point to
inhibition of angiogenesis; however, two genes encoding downstream effectors of VEGF signaling,
WNK1 [81] and CDS2 [82], were upregulated in CVD subjects. Upregulation of WNK1 and CDS2
may be a consequence of increase in VEGF expression mediated by chromatin remodeling caused by
upregulation of HDAC5 [83,84], which was also observed in the current study. These findings may
suggest an increase in angiogenesis in CVD independently from the VEGFR signaling. On the other
hand, a different study indicated HDAC5 as a negative regulator of angiogenesis acting through genes
for pro-angiogenic factors FGF2 and Slit2 [85], showing that reciprocal interaction network in CVD is
more complex and requires further studies to answer all questions.

Downregulation of miR-30e-3p was previously observed in coronary microembolization and
was associated with myocardial injury mediated by impairment of autophagy in cardiomyocytes [86].
Therefore, the downregulation of miR-30e-3p found in this study may be involved in vascular
dysfunction related to the thrombosis in CVD.

Kim and collaborators reported at least 5-fold higher level of miR-33a in plasma from individuals
with high risk of atherosclerosis, compared to non-high-risk subjects [87]. A significantly higher level
of this miRNA was also described in PBMCs isolates from patients with CAD and was positively
correlated with higher lipid levels and risk of atherosclerosis [88,89]. Therefore, the upregulation
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of miR-33a-5p found in our study may indicate higher risk of atherosclerosis in subjects with CVD,
compared to non-CVD subjects.

Upregulation of circulating miR-92a-3p was observed in the plasma of both mild cognitive
impairment and Alzheimer disease subjects [90] and was proposed as a biomarker of schizophrenia [91].
In our study, downregulated miR-92a-3p putatively targets upregulated PRRC2B (Figure 4), which
is a gene encoding protein involved in brain development [92]. It suggests that some elements of
neurodevelopmental process may also participate in CVD pathology, showing connections between
vascular and neurodegenerative disorders.

The preliminary functional analysis of proposed transcriptomic biomarkers provides useful
information on the pathogenesis of CVD. Functional analysis showed the association of three genes
(CDS2, TBC1D22A and WNK1) with tobacco use disorder. The discriminative character of these
genes in our study may be, to a certain extent, a result of smoking prevalence in the CVD group;
however, smoking is also an established risk factor of CVD [2] and altered expression of CDS2,
TBC1D22A and WNK1 could be involved in CVD development through smoking-related mechanisms.
Many smoking-induced miRNAs were previously identified and associated with various pathological
conditions, including carcinogenesis [93]. Presence of other smoking-related diseases was limited by
inclusion patients diagnosed exclusively for CVD, with no other, especially cardiovascular, conditions
detected during examination.

PBMCs constitute an important element of inflammation process in vascular diseases [11]; thus,
transcriptional profiling of this cell pool should provide reliable information pertinent for vascular
pathology. Another advantage of PBMCs is their accessibility through minimally invasive procedures,
facilitating utilization in basic and clinical research. Despite of all advantages, co-prevalence of other
diseases like chronic obstructive pulmonary disease, hypertension, diabetes mellitus and accompanying
complications may bias the evaluation of expression profiles on a systemic scale. To cope with this
bias, only subjects without co-existing conditions mentioned in the experimental section were included
to the study. Such strict evaluation helped us to find systemic regulatory changes in miRNA and
gene expression, which potentially are reflective of local changes in CVD. However, application of
these exclusion criteria entailed construction of CVD and control groups with statistically significant
differences in age and smoking history, which can introduce some biological bias to our results;
therefore, further investigations with more balanced population groups should be performed.

We are aware that our research has several limitations. Studied PBMCs samples may differ in
proportions of cell subpopulations (lymphocytes, monocytes), which may introduce a bias in miRNA
and gene expression patterns. To assess the impact of this factor, we performed a deconvolution
procedure using two methods: “quanTIseq” and “MCPcounter” implemented in an immunedeconv
package, enabling comparison between cell types and between samples. The results of deconvolution
do not indicate that differences in proportions of particular cell subpopulations across samples which
included the CVD and control group had a significant impact on the study outcome (Figures S8 and S9).

Due to technical constraints (server capacity), gene expression analysis was performed on the
subset of participants subjected to miRNA expression analysis, which may affect the described
transcriptomic effect of miRNA expression alterations in CVD patients. Despite this imbalance, we
confirmed some previously validated interactions (Table S11) and determined with high probability
other connections in signaling network (Table S12). Future studies should also include in vitro and
in vivo validation of predictive interactions of presented miRNA regulatory network. Moreover, in the
group selected for gene expression analysis, both miRNA and total RNA were isolated from PBMC
specimens obtained from exactly the same subjects and represent the same physiological conditions
probed at the same time and circumstances.

Despite applying strict criteria to select the most promising signatures of CVD, the biomarker
role of particular miRNAs and gene sets should be confirmed in further studies with larger cohorts
and with the application of other validation methods, such as RT-qPCR. Further experiments will
involve investigations regarding clinical factors (e.g., stage of disease or medications) and elucidation
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of whether dysregulations of miRNAs and genes indicative for CVD were predictive of or responsive
to the disease development.

The results obtained in our current study confirm the significance of miRNA-dependent epigenetic
regulation in the pathogenesis of CVD. Although we proposed a novel biomarker panel of CVD, there
is still a need for further research on the role of miRNA regulation in the CVD due to small sample size
as well as a clear exploratory and hypothesis-generating character of the presented experiments.

The presented discoveries may be used in further fundamental research and may prove to be
useful for clinicians and practitioners, providing new paths in diagnosis, differentiation and treatment
procedures for CVD patients in future.

5. Conclusions

Owing to broad and detailed Next Generation Sequencing analysis one is able to draw some
general conclusions about CVD. Analysis of microRNAs and genes dysregulated in CVD unveiled
numerous terms related to general physiological processes and traits like inflammation, metabolism,
aging as well as more specific ones like lipidomics, cardiovascular diseases and chemodependencies.
Future research on much numerous groups of patients and controls would broaden our knowledge
about cardiovascular diseases, enabling personalized approach to individual patients.
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Kołodziej, P.; Zubilewicz, T.; Feldo, M.; et al. Dysregulation of microRNA regulatory network in lower
extremities arterial disease. Front. Genet. 2019, 10, 1200. [CrossRef]

31. Morelli, V.M.; Brækkan, S.K.; Hansen, J.-B. Role of microRNAs in venous thromboembolism. Int. J. Mol. Sci.
2020, 21, 2602. [CrossRef] [PubMed]

32. Markovic, J.N.; Shortell, C.K. Genomics of varicose veins and chronic venous insufficiency. Semin. Vasc.
Surg. 2013, 26, 2–13. [CrossRef] [PubMed]

33. Cui, C.; Liu, G.; Huang, Y.; Lu, X.; Lu, M.; Huang, X.; Li, W.; Jiang, M. MicroRNA profiling in great saphenous
vein tissues of patients with chronic venous insufficiency. Tohoku J. Exp. Med. 2012, 228, 341–350. [CrossRef]
[PubMed]

34. Pastar, I.; Khan, A.A.; Stojadinovic, O.; Lebrun, E.A.; Medina, M.C.; Brem, H.; Kirsner, R.S.; Jimenez, J.J.;
Leslie, C.; Tomic-Canic, M. Induction of specific microRNAs inhibits cutaneous wound healing. J. Biol. Chem.
2012, 287, 29324–29335. [CrossRef]

35. Jin, Y.; Xu, G.; Huang, J.; Zhou, D.; Huang, X.; Shen, L. Analysis of the association between an
insertion/deletion polymorphism within the 3′ untranslated region of COL1A2 and chronic venous
insufficiency. Ann. Vasc. Surg. 2013, 27, 959–963. [CrossRef]

36. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data
with DESeq2. Genome Biol. 2014, 15, 550. [CrossRef]

37. Centner, V.; Massart, D.L.; de Noord, O.E.; de Jong, S.; Vandeginste, B.M.; Sterna, C. Elimination of
uninformative variables for multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [CrossRef]

38. Mehmood, T.; Hovde, K.H.; Liland Snipen, L.; Sæbø, S. A review of variable selection methods in Partial
Least Squares Regression. Chemometr. Intell. Lab. Syst. 2012, 118, 62–69. [CrossRef]

39. Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler
diagrams in R. BMC Bioinform. 2011, 12, 35. [CrossRef]

40. Ligges, U.; Mächler, M. Scatterplot3d—An R package for visualizing multivariate data. J. Stat. Softw. 2003, 8,
1–20. [CrossRef]

41. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source
package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef] [PubMed]

42. Finotello, F.; Mayer, C.; Plattner, C.; Laschober, G.; Rieder, D.; Hackl, H.; Krogsdam, A.; Loncova, Z.; Posch, W.;
Wilflingseder, D.; et al. Molecular and pharmacological modulators of the tumor immune contexture revealed
by deconvolution of RNA-seq data. Genome Med. 2019, 11, 34. [CrossRef] [PubMed]

43. Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.;
Sautès-Fridman, C.; Fridman, W.H.; et al. Estimating the population abundance of tissue-infiltrating immune
and stromal cell populations using gene expression. Genome Biol. 2016, 17, 218. [CrossRef]

http://dx.doi.org/10.1038/nature09267
http://dx.doi.org/10.1038/ng.905
http://www.ncbi.nlm.nih.gov/pubmed/21857679
http://dx.doi.org/10.3390/jcm4081651
http://www.ncbi.nlm.nih.gov/pubmed/26308063
http://dx.doi.org/10.1038/nrd.2016.246
http://www.ncbi.nlm.nih.gov/pubmed/28209991
http://dx.doi.org/10.3390/jcm5030036
http://www.ncbi.nlm.nih.gov/pubmed/27005669
http://dx.doi.org/10.1097/FJC.0b013e318203759b
http://dx.doi.org/10.1097/MOH.0000000000000424
http://dx.doi.org/10.1515/cclm-2016-0576
http://dx.doi.org/10.1161/CIRCRESAHA.115.306300
http://dx.doi.org/10.1038/aps.2018.30
http://dx.doi.org/10.3389/fgene.2019.01200
http://dx.doi.org/10.3390/ijms21072602
http://www.ncbi.nlm.nih.gov/pubmed/32283653
http://dx.doi.org/10.1053/j.semvascsurg.2013.04.003
http://www.ncbi.nlm.nih.gov/pubmed/23932556
http://dx.doi.org/10.1620/tjem.228.341
http://www.ncbi.nlm.nih.gov/pubmed/23132275
http://dx.doi.org/10.1074/jbc.M112.382135
http://dx.doi.org/10.1016/j.avsg.2013.04.001
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1021/ac960321m
http://dx.doi.org/10.1016/j.chemolab.2012.07.010
http://dx.doi.org/10.1186/1471-2105-12-35
http://dx.doi.org/10.18637/jss.v008.i11
http://dx.doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/pubmed/21414208
http://dx.doi.org/10.1186/s13073-019-0638-6
http://www.ncbi.nlm.nih.gov/pubmed/31126321
http://dx.doi.org/10.1186/s13059-016-1070-5


J. Clin. Med. 2020, 9, 1251 21 of 23

44. Sturm, G.; Finotello, F.; Petitprez, F.; Zhang, J.D.; Baumbach, J.; Fridman, W.H.; List, M.; Aneichyk, T.
Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology.
Bioinformatics 2019, 35, i436–i445. [CrossRef] [PubMed]

45. Ru, Y.; Kechris, K.J.; Tabakoff, B.; Hoffman, P.; Radcliffe, R.A.; Bowler, R.; Mahaffey, S.; Rossi, S.; Calin, G.A.;
Bemis, L.; et al. The multiMiR R package and database: Integration of microRNA–target interactions along
with their disease and drug associations. Nucleic Acids Res. 2014, 42, e133. [CrossRef] [PubMed]

46. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T.
Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res.
2003, 13, 2498–2504. [CrossRef]

47. Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using
DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [CrossRef]

48. Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the
comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [CrossRef]

49. Gloviczki, P.; Comerota, A.J.; Dalsing, M.C.; Eklof, B.G.; Gillespie, D.L.; Gloviczki, M.L.; Lohr, J.M.;
McLafferty, R.B.; Meissner, M.H.; Murad, M.H.; et al. The care of patients with varicose veins and associated
chronic venous diseases: Clinical practice guidelines of the Society for Vascular Surgery and the American
Venous Forum. J. Vasc. Surg. 2011, 53 (Suppl. 5), 2S–48S. [CrossRef]

50. Han, H.; Qu, G.; Han, C.; Wang, Y.; Sun, T.; Li, F.; Wang, J.; Luo, S. MiR-34a, miR-21 and miR-23a as potential
biomarkers for coronary artery disease: A pilot microarray study and confirmation in a 32 patient cohort.
Exp. Mol. Med. 2015, 47, e138. [CrossRef]

51. Raitoharju, E.; Lyytikäinen, L.P.; Levula, M.; Oksala, N.; Mennander, A.; Tarkka, M.; Klopp, N.; Illig, T.;
Kähönen, M.; Karhune, P.J.; et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human
atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 2011, 219, 211–217. [CrossRef]
[PubMed]

52. Hernández-Walias, F.J.; Vázquez, E.; Pacheco, Y.; Rodríguez-Fernández, J.M.; Pérez-Elías, M.J.; Dronda, F.;
Casado, J.L.; Moreno, A.; Hermida, J.M.; Quereda, C.; et al. Risk, diagnostic and predictor factors for classical
hodgkin lymphoma in HIV-1-infected individuals: Role of plasma exosome-derived miR-20a and miR-21. J.
Clin. Med. 2020, 9, 760. [CrossRef]

53. Irimie-Aghiorghiesei, A.I.; Pop-Bica, C.; Pintea, S.; Braicu, C.; Cojocneanu, R.; Zimt,a, A.-A.; Gulei, D.;
Slabý, O.; Berindan-Neagoe, I. Prognostic Value of MiR-21: An updated meta-analysis in Head and Neck
Squamous Cell Carcinoma (HNSCC). J. Clin. Med. 2019, 8, 2041. [CrossRef] [PubMed]

54. Shi, J. Considering exosomal miR-21 as a biomarker for cancer. J. Clin. Med. 2016, 5, 42. [CrossRef] [PubMed]
55. Ulivi, P.; Petracci, E.; Marisi, G.; Baglivo, S.; Chiari, R.; Billi, M.; Canale, M.; Pasini, L.; Racanicchi, S.;

Vagheggini, A.; et al. Prognostic role of circulating miRNAs in early-stage non-small cell lung cancer. J. Clin.
Med. 2019, 8, 131. [CrossRef]

56. Saito, Y.; Nakaoka, T.; Saito, H. microRNA-34a as a therapeutic agent against human cancer. J. Clin. Med.
2015, 4, 1951–1959. [CrossRef]

57. Cario-Toumaniantz, C.; Boularan, C.; Schurgers, L.J.; Heymann, M.F.; Le Cunff, M.; Léger, J.; Loirand, G.;
Pacaud, P. Identification of differentially expressed genes in human varicose veins: Involvement of matrix
gla protein in extracellular matrix remodeling. J. Vasc. Res. 2007, 44, 444–459. [CrossRef]

58. Charles, C.A.; Tomic-Canic, M.; Vincek, V.; Nassiri, M.; Stojadinovic, O.; Eaglstein, W.H.; Kirsner, R.S. A
gene signature of nonhealing venous ulcers: Potential diagnostic markers. J. Am. Acad Dermatol. 2008, 59,
758–771. [CrossRef]

59. Chang, M.Y.; Chiang, P.T.; Chung, Y.C.; Ho, S.Y.; Lin, S.D.; Lin, S.R.; Neoh, C.A. Apoptosis and angiogenesis
in varicose veins using gene expression profiling. Fooyin J. Health Sci. 2009, 1, 85–91. [CrossRef]

60. Hsieh, C.S.; Tsai, C.T.; Chen, Y.H.; Chang, S.N.; Hwang, J.J.; Chuang, E.Y.; Wu, I.H. Global expression
profiling identifies a novel hyaluronan synthases 2 gene in the pathogenesis of lower extremity varicose
veins. J. Clin. Med. 2018, 7, 537. [CrossRef]

61. Dbouk, H.A.; Weil, L.M.; Perera, G.K.; Dellinger, M.T.; Pearson, G.; Brekken, R.A.; Cobb, M.H. Actions of
the protein kinase WNK1 on endothelial cells are differentially mediated by its substrate kinases OSR1 and
SPAK. Proc. Natl. Acad. Sci. USA 2014, 111, 15999–16004. [CrossRef]

62. Sun, X.; Sit, A.; Feinberg, M.W. Role of miR-181 family in regulating vascular inflammation and immunity.
Trends Cardiovasc. Med. 2014, 24, 105–112. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/bioinformatics/btz363
http://www.ncbi.nlm.nih.gov/pubmed/31510660
http://dx.doi.org/10.1093/nar/gku631
http://www.ncbi.nlm.nih.gov/pubmed/25063298
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1016/j.jvs.2011.01.079
http://dx.doi.org/10.1038/emm.2014.81
http://dx.doi.org/10.1016/j.atherosclerosis.2011.07.020
http://www.ncbi.nlm.nih.gov/pubmed/21820659
http://dx.doi.org/10.3390/jcm9030760
http://dx.doi.org/10.3390/jcm8122041
http://www.ncbi.nlm.nih.gov/pubmed/31766478
http://dx.doi.org/10.3390/jcm5040042
http://www.ncbi.nlm.nih.gov/pubmed/27043643
http://dx.doi.org/10.3390/jcm8020131
http://dx.doi.org/10.3390/jcm4111951
http://dx.doi.org/10.1159/000106189
http://dx.doi.org/10.1016/j.jaad.2008.07.018
http://dx.doi.org/10.1016/S1877-8607(10)60005-7
http://dx.doi.org/10.3390/jcm7120537
http://dx.doi.org/10.1073/pnas.1419057111
http://dx.doi.org/10.1016/j.tcm.2013.09.002
http://www.ncbi.nlm.nih.gov/pubmed/24183793


J. Clin. Med. 2020, 9, 1251 22 of 23

63. Xie, W.; Li, M.; Xu, N.; Lv, Q.; Huang, N.; He, J.; Zhang, Y. MiR-181a regulates inflammation responses in
monocytes and macrophages. PLoS ONE 2013, 8, e58639. [CrossRef] [PubMed]

64. Du, X.J.; Lu, J.M.; Sha, Y. MiR-181a inhibits vascular inflammation induced by ox-LDL via targeting TLR4 in
human macrophages. J. Cell Physiol. 2018, 233, 6996–7003. [CrossRef] [PubMed]

65. Zhu, J.; Yao, K.; Wang, Q.; Guo, J.; Shi, H.; Ma, L.; Liu, H.; Gao, W.; Zou, Y.; Ge, J. Circulating miR-181a as
a potential novel biomarker for diagnosis of acute myocardial infarction. Cell Physiol. Biochem. 2016, 40,
1591–1602. [CrossRef]

66. Yentrapalli, R.; Azimzadeh, O.; Kraemer, A.; Malinowsky, K.; Sarioglu, H.; Becker, K.F.; Atkinson, M.J.;
Moertl, S.; Tapio, S. Quantitative and integrated proteome and microRNA analysis of endothelial replicative
senescence. J. Proteomics. 2015, 126, 12–23. [CrossRef]

67. Ayaz, L.; Dinç, E. Evaluation of microRNA responses in ARPE-19 cells against the oxidative stress. Cutan.
Ocul. Toxicol. 2018, 37, 121–126. [CrossRef]

68. Zhou, J.; He, Z.; Guo, L.; Zeng, J.; Liang, P.; Ren, L.; Zhang, M.; Zhang, P.; Huang, X. MiR-128-3p directly
targets VEGFC/VEGFR3 to modulate the proliferation of lymphatic endothelial cells through Ca(2+) signaling.
Int. J. Biochem. Cell Biol. 2018, 102, 51–58. [CrossRef]

69. Xia, Z.; Meng, F.; Liu, Y.; Fang, Y.; Wu, X.; Zhang, C.; Liu, D.; Li, G. Decreased MiR-128-3p alleviates the
progression of rheumatoid arthritis by up-regulating the expression of TNFAIP3. Biosci. Rep. 2018, 38,
BSR20180540. [CrossRef]

70. Liu, S.; Zhu, J.; Jiang, T.; Zhong, Y.; Tie, Y.; Wu, Y.; Zheng, X.; Jin, Y.; Fu, H. Identification of lncRNA
MEG3 binding protein using MS2-Tagged RNA affinity purification and mass spectrometry. Appl. Biochem.
Biotechnol. 2015, 176, 1834–1845. [CrossRef]

71. Zhang, X.; Zhou, Y.; Mehta, K.R.; Danila, D.C.; Scolavino, S.; Johnson, S.R.; Klibanski, A. A pituitary-derived
MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab. 2003, 88, 5119–5126.
[CrossRef]

72. Zhou, Y.; Zhong, Y.; Wang, Y.; Zhang, X.; Batista, D.L.; Gejman, R.; Ansell, P.J.; Zhao, J.; Weng, C.; Klibanski, A.
Activation of p53 by MEG3 non-coding RNA. J. Biol. Chem. 2007, 282, 24731–24742. [CrossRef]

73. Gong, L.; Xu, H.; Chang, H.; Tong, Y.; Zhang, T.; Guo, G. Knockdown of long non-coding RNA MEG3
protects H9c2 cells from hypoxia-induced injury by targeting microRNA-183. J. Cell Biochem. 2018, 119,
1429–1440. [CrossRef] [PubMed]

74. Zhang, Y.J.; Zheng, H.Q.; Chen, B.Y.; Sun, L.; Ma, M.M.; Wang, G.L.; Guan, Y.Y. WNK1 is required for
proliferation induced by hypotonic challenge in rat vascular smooth muscle cells. Acta Pharmacol. Sin. 2018,
39, 35–47. [CrossRef] [PubMed]

75. Wang, L.; Xu, M.; Lu, P.; Zhou, F. MicroRNA-769 is downregulated in colorectal cancer and inhibits cancer
progression by directly targeting cyclin-dependent kinase 1. Onco Targets Ther. 2018, 11, 9013–9025. [CrossRef]
[PubMed]

76. Yang, Z.; He, J.; Gao, P.; Niu, Y.; Zhang, J.; Wang, L.; Liu, M.; Wei, X.; Liu, C.; Zhang, C.; et al. MiR-769-5p
suppressed cell proliferation, migration and invasion by targeting TGFBR1 in non-small cell lung carcinoma.
Oncotarget 2017, 8, 113558–113570. [CrossRef]

77. Busch, A.; Busch, M.; Scholz, C.J.; Kellersmann, R.; Otto, C.; Chernogubova, E.; Maegdefessel, L.; Zernecke, A.;
Lorenz, U. Aneurysm miRNA Signature Differs, Depending on Disease Localization and Morphology. Int. J.
Mol. Sci. 2016, 17, 81. [CrossRef]

78. Xu, X.; Ha, C.H.; Wong, C.; Wang, W.; Hausser, A.; Pfizenmaier, K.; Olson, E.N.; McKinsey, T.A.; Jin, Z.G.
Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear
export leading to vascular smooth muscle cell hypertrophy. Arterioscler. Thromb. Vasc. Biol. 2007, 27,
2355–2362. [CrossRef]

79. Wang, M.; Ji, Y.; Cai, S.; Ding, W. MiR-206 suppresses the progression of coronary artery disease by modulating
Vascular Endothelial Growth Factor (VEGF) Expression. Med. Sci. Monit. 2016, 22, 5011–5020. [CrossRef]

80. Stahlhut, C.; Suárez, Y.; Lu, J.; Mishima, Y.; Giraldez, A.J. MiR-1 and miR-206 regulate angiogenesis by
modulating VegfA expression in zebrafish. Development 2012, 139, 4356–4364. [CrossRef]

81. Lai, J.G.; Tsai, S.M.; Tu, H.C.; Chen, W.C.; Kou, F.J.; Lu, J.W.; Wang, H.D.; Huang, C.L.; Yuh, C.H. Zebrafish
WNK lysine deficient protein kinase 1 (wnk1) affects angiogenesis associated with VEGF signaling. PLoS ONE
2014, 9, e106129. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0058639
http://www.ncbi.nlm.nih.gov/pubmed/23516523
http://dx.doi.org/10.1002/jcp.26622
http://www.ncbi.nlm.nih.gov/pubmed/29737518
http://dx.doi.org/10.1159/000453209
http://dx.doi.org/10.1016/j.jprot.2015.05.023
http://dx.doi.org/10.1080/15569527.2017.1355314
http://dx.doi.org/10.1016/j.biocel.2018.05.006
http://dx.doi.org/10.1042/BSR20180540
http://dx.doi.org/10.1007/s12010-015-1680-5
http://dx.doi.org/10.1210/jc.2003-030222
http://dx.doi.org/10.1074/jbc.M702029200
http://dx.doi.org/10.1002/jcb.26304
http://www.ncbi.nlm.nih.gov/pubmed/28731278
http://dx.doi.org/10.1038/aps.2017.56
http://www.ncbi.nlm.nih.gov/pubmed/28770829
http://dx.doi.org/10.2147/OTT.S183847
http://www.ncbi.nlm.nih.gov/pubmed/30588014
http://dx.doi.org/10.18632/oncotarget.23060
http://dx.doi.org/10.3390/ijms17010081
http://dx.doi.org/10.1161/ATVBAHA.107.151704
http://dx.doi.org/10.12659/MSM.898883
http://dx.doi.org/10.1242/dev.083774
http://dx.doi.org/10.1371/journal.pone.0106129
http://www.ncbi.nlm.nih.gov/pubmed/25171174


J. Clin. Med. 2020, 9, 1251 23 of 23

82. Pan, W.; Pham, V.N.; Stratman, A.N.; Castranova, D.; Kamei, M.; Kidd, K.R.; Lo, B.D.; Shaw, K.M.;
Torres-Vazquez, J.; Mikelis, C.M.; et al. CDP-diacylglycerol synthetase-controlled phosphoinositide
availability limits VEGFA signaling and vascular morphogenesis. Blood 2012, 120, 489–498. [CrossRef]
[PubMed]

83. Brugarolas, J.B.; Vazquez, F.; Reddy, A.; Sellers, W.R.; Kaelin, W.G., Jr. TSC2 regulates VEGF through
mTOR-dependent and -independent pathways. Cancer Cell 2003, 4, 147–158. [CrossRef]

84. Deroanne, C.F.; Bonjean, K.; Servotte, S.; Devy, L.; Colige, A.; Clausse, N.; Blacher, S.; Verdin, E.; Foidart, J.M.;
Nusgens, B.V.; et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial
growth factor signaling. Oncogene 2002, 21, 427–436. [CrossRef]

85. Urbich, C.; Rössig, L.; Kaluza, D.; Potente, M.; Boeckel, J.N.; Knau, A.; Diehl, F.; Geng, J.G.; Hofmann, W.K.;
Zeiher, A.M.; et al. HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression
pattern of endothelial cells. Blood 2009, 113, 5669–5679. [CrossRef]

86. Wang, X.T.; Wu, X.D.; Lu, Y.X.; Sun, Y.H.; Zhu, H.H.; Liang, J.B.; He, W.K.; Zeng, Z.Y.; Li, L. Potential
involvement of mir-30e-3p in myocardial injury induced by coronary microembolization via autophagy
activation. Cell Physiol. Biochem. 2017, 44, 1995–2004. [CrossRef]

87. Kim, S.H.; Kim, G.J.; Umemura, T.; Lee, S.G.; Cho, K.J. Aberrant expression of plasma microRNA-33a in an
atherosclerosis-risk group. Mol. Biol. Rep. 2017, 44, 79–88. [CrossRef]

88. Dong, J.; Liang, Y.Z.; Zhang, J.; Wu, L.J.; Wang, S.; Hua, Q.; Yan, Y.X. Potential role of lipometabolism-related
micrornas in peripheral blood mononuclear cells as biomarkers for coronary artery disease. J. Atheroscler.
Thromb. 2017, 24, 430–441. [CrossRef]

89. Deng, X.; Qin, S.; Chen, Y.; Liu, H.Y.; Yuan, E.; Deng, H.; Liu, S.M. B-RCA revealed circulating miR-33a/b
associates with serum cholesterol in type 2 diabetes patients at high risk of ASCVD. Diabetes Res. Clin. Pract.
2018, 140, 191–199. [CrossRef]

90. Siedlecki-Wullich, D.; Català-Solsona, J.; Fábregas, C.; Hernández, I.; Clarimon, J.; Lleó, A.; Boada, M.;
Saura, C.A.; Rodríguez-Álvarez, J.; Miñano-Molina, A.J. Altered microRNAs related to synaptic function as
potential plasma biomarkers for Alzheimer’s disease. Alzheimers Res. Ther. 2019, 11, 46. [CrossRef]

91. Ma, J.; Shang, S.; Wang, J.; Zhang, T.; Nie, F.; Song, X.; Zhao, H.; Zhu, C.; Zhang, R.; Hao, D. Identification of
miR-22-3p, miR-92a-3p, and miR-137 in peripheral blood as biomarker for schizophrenia. Psychiatry Res.
2018, 265, 70–76. [CrossRef] [PubMed]

92. Mei, Q.; Liu, J.; Liu, Y.; Li, C.; Wang, H.; Li, H.; Chen, X.; Lan, X. Expression of proline-rich coiled-coil 2B
protein in developing rat brains. Neurosci. Lett. 2013, 557 Pt B, 171–176. [CrossRef]

93. Fujii, T.; Shimada, K.; Nakai, T.; Ohbayashi, C. MicroRNAs in smoking-related carcinogenesis: Biomarkers,
functions, and therapy. J. Clin. Med. 2018, 7, 98. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1182/blood-2012-02-408328
http://www.ncbi.nlm.nih.gov/pubmed/22649102
http://dx.doi.org/10.1016/S1535-6108(03)00187-9
http://dx.doi.org/10.1038/sj.onc.1205108
http://dx.doi.org/10.1182/blood-2009-01-196485
http://dx.doi.org/10.1159/000485905
http://dx.doi.org/10.1007/s11033-016-4082-z
http://dx.doi.org/10.5551/jat.35923
http://dx.doi.org/10.1016/j.diabres.2018.03.024
http://dx.doi.org/10.1186/s13195-019-0501-4
http://dx.doi.org/10.1016/j.psychres.2018.03.080
http://www.ncbi.nlm.nih.gov/pubmed/29684772
http://dx.doi.org/10.1016/j.neulet.2013.10.041
http://dx.doi.org/10.3390/jcm7050098
http://www.ncbi.nlm.nih.gov/pubmed/29723992
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Section 
	Study Participants Characteristics 
	Study Material Preparation 
	Libraries Preparation and Sequencing 
	Statistical Analysis 

	Results 
	Study Population Analysis 
	Primary Results 
	Differential Expression Analysis of miRNA 
	Differential Expression Analysis of Genes 
	In Silico Identification of miRNA:Gene Interactions 
	Functional Analysis of miRNA Targets 

	Discussion 
	Conclusions 
	References

