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Abstract: Potatoes are one of the most demanded products due to their richness in nutrients. How-
ever, the lack of attention to external and, especially, internal defects greatly reduces its marketability
and makes it prone to a variety of diseases. The present study aims to identify healthy-looking
potatoes but with internal defects. A visible (Vis), near-infrared (NIR), and short-wavelength infrared
(SWIR) spectrometer was used to capture spectral data from the samples. Using a hybrid of artificial
neural networks (ANN) and the cultural algorithm (CA), the wavelengths of 861, 883, and 998 nm in
Vis/NIR region, and 1539, 1858, and 1896 nm in the SWIR region were selected as optimal. Then, the
samples were classified into either healthy or defective class using an ensemble method consisting
of four classifiers, namely hybrid ANN and imperialist competitive algorithm (ANN-ICA), hybrid
ANN and harmony search algorithm (ANN-HS), linear discriminant analysis (LDA), and k-nearest
neighbors (KNN), combined with the majority voting (MV) rule. The performance of the classifier
was assessed using only the selected wavelengths and using all the spectral data. The total correct
classification rates using all the spectral data were 96.3% and 86.1% in SWIR and Vis/NIR ranges,
respectively, and using the optimal wavelengths 94.1% and 83.4% in SWIR and Vis/NIR, respectively.
The statistical tests revealed that there are no significant differences between these datasets. Inter-
estingly, the best results were obtained using only LDA, achieving 97.7% accuracy for the selected
wavelengths in the SWIR spectral range.

Keywords: potato; spectroscopy; internal defect; majority voting

1. Introduction

Potatoes, as one of the most important agricultural products in the world, play an
important role in providing food. Since potato is nutrient-rich, it can be easily attacked
by pests and diseases [1]. Potatoes are susceptible to various diseases, some of which are
widespread, and others have a limited diffusion and are local. The origins of these infectious
diseases include bacteria, fungi, viruses, mycoplasmas, viroids, and nematodes [2,3].
Another group called physiological, non-infectious, diseases include complications due
to adverse weather conditions, nutrient deficiencies, or other non-living factors [4,5].
The applications of common methods for diagnosing some of these internal diseases is
destructive, difficult, or even impossible, because the diseases do not have any visible
symptoms. Early detection of defects and diseases, in order to separate the products before
storage leads to the prevention of disease transmission and increased marketability [6].
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The study area of the present paper, in the West of Iran, is one of the most susceptible
areas for potato production due to its temperate climate. However, its export value is
decreasing due to the decline in product quality owing to several factors: lack of access to
healthy tubers for cultivation; lack of crop rotation leading to increasing pests, diseases, and
weeds; and lack of storage with favorable conditions, etc. Most of the observed defects are
not externally visible, such as brown rot, hollow heart, black heart and flesh discoloration.

Non-destructive analysis experiments use methods without destructive effects of
photo-physical, thermal, chemical, mechanical, and photochemical nature [7,8]. Numerous
methods have been developed so far to assess the quality of agricultural products, but only
some of them have been able to meet the demand and were technically and industrially
justified. Among these non-destructive methods, magnetic resonance imaging (MRI) has
the highest accuracy, but one of its major disadvantages is the impact of measurement
speed on the accuracy, in addition to its high cost. Moreover, it is not recommended for
fruits with low moisture content [9]. The application of x-rays in the online inspection of
agricultural products has been reported, since this method is sensitive to the mass density
of the substance, not to chemical compounds [10]. Ultrasonic waves are also used for
measuring the quality of crops, but its development faces serious challenges because it
requires measuring the ultrasonic properties of different agricultural products.

Among the non-destructive methods for quality control of products, machine vision
and spectroscopy techniques have a promising prospect in agricultural science. These
technologies are used in various fields such as analysis of ground and aerial mapping of
natural resources, crop monitoring, precision agriculture, robotics, automated guidance,
non-destructive inspection of products, quality control, predicting the chemical properties
of products, and so on [11]. Therefore, they can be used to quickly determine the quality of
agricultural products both on a laboratory scale and in online processing [12–14].

Phytochemical, morphological, and physiological processes can lead to changes in
the natural spectral behavior of the plants [15,16]. For example, Haase [17] investigated
raw potatoes using near-infrared spectroscopy at the range of 850–2500 nm. The properties
of dry matter, sugar, and starch were predicted. The results revealed that coefficients of
determination, R2, were about 0.99, 0.66, and 0.96 for dry matter, sugar, and starch, respec-
tively. Zhou et al. [18] assessed the possibility of classifying potatoes with blackheart using
partial least squares-linear discriminant analysis (PLS-LDA) and visible (Vis)/near-infrared
(NIR) spectroscopy at the range of 513–850 nm. According to the analysis, wavelengths
of 698, 711, 741, 817, and 839 nm were determined as the most effective for the identifica-
tion of potatoes with blackheart; the total correct classification rate obtained was 96.82%.
Moslemkhani et al. [19] used a spectroscopy technique to detect tomatoes infected by the Y
virus (PVY) at the range of visible and a part of NIR. They concluded that wavelengths of
900–1100 nm were strongly sensitive to the PVY infection. The linear discriminant analysis
was modeled, and the results showed a suitable potential to detect virus-infected plants.
Escuredo et al. [20] studied the physicochemical properties of potatoes, including their
soluble solid content (SSC), dry matter, phenols, antioxidant, texture, and color features at
L*a*b* color space using NIR spectrum. A strong relationship between the color features
and the antioxidant components was identified by Spearman correlations. Modified par-
tial least squares (MPLS) regression and principal component analysis (PCA) were used
to model the best equations for predicting the mentioned properties. Their results indi-
cated that NIR technology was able to rapidly predict the quality parameters of potatoes.
Sanchez et al. [21] conducted a review on assessing the quality of raw and sweet potato
using imaging and spectroscopy. They concluded that spectroscopic techniques were more
reliable and economical than conventional analytical methods. Moreover, according to
the reviewed research, potato and sweet potato were physiologically similar; therefore,
challenges should be faced for online classification of sweet potato, and it is necessary to
develop advanced non-invasive techniques since the quality of food is considered highly
more important than the cost. Marino et al. [22] classified potatoes based on external
defects, including black dot, damaged, black scurf, greening, and common scab using a
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supervised learning method. A new labeled dataset was created. Then, a convolutional
neural network (CNN) was trained to conduct the classification task based on coarse-to-fine
segmentation. The results revealed that CNN was able to classify potatoes with a recall of
0.90 and precision of 0.91.

According to previous research, it is found that many studies have been accomplished
on potatoes, most of them focused on the detection of visible defects and normally using
a single detection algorithm. The innovation of the present study is the proposal, de-
velopment, and validation of an ensemble classifier, combined with the majority voting
rule [23] that includes hybrid artificial neural networks (ANN) and imperialist competitive
algorithm (ANN-ICA), hybrid ANN and harmony search algorithm (ANN-HS), linear
discriminant analysis (LDA), and k-nearest neighbors algorithm (KNN), to identify internal
defects of potatoes that have no visible symptoms.

2. Materials and Methods

The research process followed in this research consisted of five main steps, from the
cultivation and collection of the samples to the classification using the majority voting
method, as presented in Figure 1. These stages are described in the following sections.
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Figure 1. Stages of the applied methodology for detecting deficiencies in potatoes using Vis/NIR spectroscopy.

2.1. Potato Preparation in the Farm

In this study, 285 potatoes (Solanum tuberosum L. var Banba) were collected from
Shahin Dej, Iran (location 36◦40′04” N, 46◦34′01” E), as depicted in Figure 2. All the
samples were washed with water to remove earth crusts and dirt on the outside, but
without removing the skin. Then, they were labeled and transferred to a laboratory for
acquiring spectral information.

After spectroscopic analysis and storage of the spectral data, all the samples were cut to
examine their internal state and possible damage (which, in all cases, was not recognizable
by the external appearance of the tubers). This was done by human experts, since the
defects were evident after cutting the samples, as shown in Figure 2. The most common
diseases observed in the potatoes were brown rot and hallow heart. Out of the 285 samples,
120 healthy and 120 defective samples were selected for further analysis. The remaining
45 samples were healthy tubers which were discarded for having balanced classes.
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2.2. Configuration of the Hardware System to Obtain Spectral Information

The hardware system used to capture the spectral information includes: (a) a spectrom-
eter ASD FieldSpec 3 (Malvern Panalytical Ltd., Malvern, UK) at Vis/NIR (350–1100 nm)
and short-wavelength infrared (SWIR) (1100–2500 nm); (b) three separate detectors for
ranges of 350–1000, 1000–1830, and 1830–2500 nm, and (c) a laptop for data transmission
and analysis. This equipment is shown in Figure 3.
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The reflection mode was used to measure the spectral data [24]. In this mode, the
samples are illuminated with a light of the corresponding wavelengths. Then, the spec-
trometer measures the spectrum of the light reflected by the sample, i.e., reflected from
the potato samples skin. In this process, the projected light cannot penetrate deep into
the sample, no more than 2–3 mm. The objective is not to observe the defects in a direct
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way but to analyze how the internal defects affect the external spectrum of the tubers at
different wavelength values.

2.3. Preprocessing of the Obtained Spectral Information

As is well known, spectral data must be preprocessed before using it. First, using
Equation (1), the reflectance was converted to absorption spectra to reduce the impact of
noise due to ambient light, spectroscopy type, and others on the real data.

Absorption spectra = log(1/Reflectance spectra) (1)

Then, light scattering was corrected by the wavelength detrending algorithm. Finally,
the smoothing operation was performed by the median filter using ParLeS [25], a chemical
software used for multivariate modeling and forecasting (see Figure 4).
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data for different potato samples.

Figure 5 presents an example of a spectral plot for a healthy and a defective potato at
the range 350–2500 nm. As can be seen, at the SWIR region the difference between the two
samples is greater than at Vis/NIR, presenting higher peaks for the healthy sample.
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2.4. Determination of the Optimal Wavelengths Using Hybrid ANN-CA

The ultimate goal of identifying healthy and internally defective potatoes is to develop
a new detection algorithm for online grading lines. The cost and speed of operation of
the portable system used in the experiments was considerable. Therefore, it would be
desirable that the number of wavelengths for extracting the spectral data were reduced.
For this reason, the first step of the research is to find the optimal set of wavelengths for
the problem of interest. This idea of selecting a reduced number of effective wavelengths is
not new, but has been successfully applied by other authors [26–28].

In this study, a hybrid method consisting of artificial neural networks (ANN) and
the cultural algorithm (CA) was used to select the most effective wavelengths for potato
classification. CA is an evolutionary algorithm that has been developed by simulating the
principles of the culture of human societies. The cultural optimization process consists of
two populations and belief spaces that are interconnected by acceptance functions. The
population space is the same as the population of other evolutionary algorithms, which
consists of a number of answers to the optimization problem. In belief space, information
about population space such as status and normative information is recorded, which
is used during the optimization process to determine the direction of the search in the
problem-solving space.

In the hybrid method of ANN-CA, the CA heuristic sends different vectors of spectral
data (selected wavelengths) as input to the ANN; the ANN is a classifier network whose
output is the potato class, either healthy or defective. The ANN performs a complete
train/testing process with the selected spectral data, and the results are recorded in the
form of the mean squared error over the test set. The vector of wavelengths with the least
mean square error is considered as the optimal vector, and the associated wavelengths are
considered as the most effective wavelengths for the problem under study. Table 1 shows
the structure of the hidden layers of the ANN used in the experiments.

Table 1. Structure of the ANN used to select effective wavelengths in the ANN-CA process.

Number of
Hidden Layers

Number of
Neurons Per

Layer

Transfer
Function

Backpropagation
Function

Backpropagation
Weight/Bias

Function

2 1st: 12, 2nd: 16 poslin logsig, purelin trainbfg

2.5. Classification of Potatoes Using the Majority Voting Method

The proposed classification method is based on an ensemble of four basic classifiers
combined with the majority voting (MV) rule. First, potatoes were classified using different
techniques, including hybrid ANN and imperialism competitive algorithm (ANN-ICA),
ANN and harmony search algorithm (ANN-HS), k-nearest neighbors analysis (KNN) and
linear discrimination analysis (LDA). Then, their outputs are combined with the majority
voting method. If three classifiers agree on one class, the result will be that class. This
process was done using MATLAB (MathWorks, Natick, Massachusetts, USA) with the
Statistics and Machine Learning Toolbox.

2.5.1. Classification Using ANN-ICA

As in ANN-CA, the imperialist competitive algorithm is also an evolutionary algo-
rithm, in this case inspired by humans and human communities, and seeks the general
optimal point to solve an optimization problem [29]. By mathematically modeling the pro-
cess of socio-political evolution, this algorithm provides a method for solving optimization
mathematical problems with a number of random populations, each of which is called a
country. Some of the best elements of the population (the elites) are selected as colonizers.
The rest of the population is also considered a colony.

Depending on their power, the colonizers draw these colonies towards themselves
with a certain process. The total power of any empire depends on both its constituent parts,
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namely the colonial state (as the central nucleus), and its colonies. With the formation of
early empires, colonial rivalry between them begins. Any empire that fails to succeed in
colonial competition and increase its power, will be removed from the scene of colonial
competition. Thus, the survival of an empire will depend on its ability to attract the colonies
of rival empires. As a result, the power of larger empires will gradually increase, and
weaker empires will be eliminated.

Again, this metaheuristic process works in conjunction with an ANN. The parameters
of the ANN are selected as a vector by ICA, and transferred to the ANN. The performance
of the network after each proposed structure is recorded by the algorithm using the mean
squared error of the classification after the train/testing of the ANN. The input of the
ANN is the spectral data, and the output is the corresponding class of potato. Finally, the
structure with least mean squared error is selected as the optimal structure of the ANN.

The number of hidden layers selectable by ICA was a minimum of 1 and a maximum
of 3. The number of selectable neurons per hidden layer was between 1 and 25. The
transfer function of each layer was selected from 13 different transfer functions, such as the
tangential sigmoid. The back-propagation network training function was selected from
19 different functions. Finally, the back-propagation weight/bias learning function can be
selected from 15 different functions.

After the parameters of the ANN were optimally adjusted in this process, 200 iterations
were executed to evaluate the validity of the classifier. For each iteration, 60% of the samples
were randomly selected for training, 30% for testing, and 10% for validation of the ANN;
all of them are disjoint sets.

2.5.2. Classification Using ANN-HS

This hybrid method follows the same architecture as in the previous case. A meta-
heuristic process, in this case the harmony search (HS) algorithm, works in conjunction
with an ANN, with the purpose of selecting the optimal structure of the hyperparame-
ters of the ANN. The difference resides in the procedure that guides the evolution of the
population in the space of solutions.

HS algorithm is inspired by the modeling and simulation of the process that a com-
poser goes through to harmonize a piece of music. The step of each musical instrument
determines the beauty of the song, so the step of each instrument must be in optimal
condition. Thus, the value of the objective function is determined by the values of the
problem variables [30]. As a result, the architecture of the ANN selected by this method
can be different to that obtained with ANN-ICA.

2.5.3. Classification Using KNN

KNN is a well-known algorithm that is often used for classification problems. Basically,
it consists of the following steps given a training set T, a new sample s, and a value of
k parameter:

1. For each training sample in T, calculate the distance from s to the training sample.
In our case, Euclidean distance is used as the measuring distance, which is the most
common method.

2. Sort the computed distances in ascending order.
3. Select the k nearest training samples.
4. The output class (healthy/defective) is the class with the most samples in the previ-

ous selection.

2.5.4. Classification Using LDA

Linear discrimination analysis is another common classification method in machine
learning, which consists of selecting the hyperplane that best separates the existing classes.
The method of LDA can be performed in three different ways: direct, hierarchical, and
step-by-step. The step-by-step method is more widely used by researchers because it
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incorporates independent variables based on their predictive power. Therefore, in this
study, the stepwise method was used [31].

2.6. Assessment of the Performance of the Classifiers

The performance of the classifiers was evaluated with different criteria, among the
most commonly used in binary classification tasks. These criteria are recall, accuracy,
specificity, precision and F-score, and graphical criteria derived from the receiver operation
curve (ROC) as well as the area under the ROC curve [32]. Among these criteria, the
most valuable is the accuracy, or correct classification rate (CCR), which represents the
percentage of test samples that are classified correctly.

3. Results and Discussion
3.1. Optimal Wavelengths for Classifying Healthy/Defective Potatoes

As presented in Section 2, the selection of the most effective wavelengths was carried
out using ANN-CA. The spectrum was divided into Vis/NIR (350–1100 nm) and SWIR
(1100–2500 nm) regions. The ANN-CA process was configured to test different selections of
three wavelengths, which evolved according to the CA strategy. This process was repeated
until reaching convergence. Finally, the three most effective wavelengths of Vis/NIR region
were 861, 883, and 998 nm, and the most effective at the SWIR region were 1539, 1858, and
1896 nm. These values correspond to some of the peaks depicted in Figure 5, where the
differences between healthy and defective samples are higher.

3.2. Performance of the MV Classifier

Table 2 presents the performance of the MV classifier using the confusion matrix, the
total CCR, and the classification error per class after 200 iterations of the experiment.

Table 2. Evaluation of the performance of the MV classifier using the confusion matrix, the error rate
per class, and the CCR, after 200 train/test iterations.

Spectral Range Class Healthy Defective Total Data Misclassified (%) CCR

SWIR Healthy 6877 337 7214 4.7 94.1
Defective 515 6671 7186 7.2

Vis/NIR Healthy 6303 1004 7307 13.7 83.4
Defective 1391 5702 7093 19.6

A total of 852 out of the 14,400 samples were incorrectly classified using SWIR, and
2395 using Vis/NIR. These number of incorrectly classified samples resulted in CCRs of
94.1% and 83.4%, respectively. This indicated that SWIR information was clearly more
useful to detect the internal defects of the potatoes, obtaining a high accuracy that could be
adequate for practical uses, while the high error using Vis/NIR could make it unpractical.
It can also be observed that in both cases, the technique tended to produce an over-
classification in the healthy class. For this reason, the errors in the defective class were
higher than those in the healthy one. The sensitivity of the classifiers should be adjusted to
produce a more balanced accuracy in the classes, if necessary.

Table 3 shows the five performance criteria of the MV classifier computed from the
confusion matrix for the 200 iterations. The first evident fact is that the classification in
the SWIR range was able to achieve better results than those in Vis/NIR. The accuracy in
SWIR was more than 10% better, which was a considerable value. The best accuracy of 94%
was feasible for practical use, while the 83% of Vis/NIR could be unpractical. Both cases
tend to over-classify the samples in the healthy class, so the classification error is higher for
the defective class (about 50% higher).
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Table 3. Performance criteria of the MV classifier after 200 iterations in the two spectral ranges.

Spectral Range Class Recall (%) Accuracy (%) Specificity (%) Precision (%) F-Score (%)

SWIR Defective 95.2 94.1 93.0 92.8 94.0
Healthy 93.0 94.1 95.2 95.3 94.2

Vis/NIR Defective 85.0 83.4 81.9 80.4 82.6
Healthy 81.9 83.3 85.0 86.3 84.0

In both spectral ranges, the accuracy of the two classes was very similar, and therefore
the results of both classes were closer to the actual value of the same class. But the precision
of the healthy class was greater than the defective one in SWIR and Vis/NIR, indicating the
classifier’s ability to correctly identify defective potatoes. In other words, it reveals how
many of the defective samples were correctly detected (positive test result). On the other
hand, the specificity of the healthy class was greater than that of the defective class, which
indicated the ability of the classifier to recognize the healthy class. These results were also
derived from the trend of the methods to over-classify in the healthy class.

Figure 6 represents the performance of the ensemble classifier using boxplots of CCR
and the areas under the ROC curve (AUC) for the 200 iterations. The compactness of these
boxplots indicates the high stability of the classifiers, especially in SWIR.
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class. Upper row: classification using SWIR spectral range. Lower row: classification using Vis/NIR spectral range.

Figure 7 represents the ROC curve of the ensemble classifier for the 200 iterations. As
it is clear, the graphs of both classes are far from the bisector line and closer to the vertical,
indicating the high performance of the classifier in the corresponding class.
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Figure 7. ROC curves of the MV classifier to classify potatoes in 200 iterations. (a) Using SWIR
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Again, it can be observed that the classification in SWIR is more precise than in
Vis/NIR, presenting the former a sharper curve, nearer the ideal curve. Both ROC curves in
SWIR are very similar. Thus, the classifier can be conveniently adjusted to produce similar
values of the false positives and false negatives. In this way, the over-classification in the
healthy class could be avoided.

The average and standard deviation of the CCR and AUCs of the 200 iterations
are contained in Table 4. This information can be related with the boxplots in Figure 6,
indicating a good stability of the proposed classifiers in both ranges. There are only several
iterations that fall far from the typical values, as shown in the red crosses in Figure 6.

Table 4. Mean and standard deviation (SD) of the MV classifier for the 200 iterations, using the CCR
and the AUCs (AUC1 stands for the defective class, and AUC2 for the healthy class), over the two
spectral ranges.

Spectral Range Value CCR AUC1 AUC2

SWIR Mean 94.1 0.980 0.980
SD 8.04 0.065 0.067

Vis/NIR Mean 83.4 0.900 0.900
SD 6.76 0.065 0.068

3.3. Comparison of Different Classifiers Used for Majority Voting

Since the proposed method is a combination of four basic classifiers, it is also inter-
esting to analyze the individual effectivity of these constituent methods. The confusion
matrices, classification errors by class, and accuracies obtained by these four methods for
the 200 iterations are given in Table 5, while Table 6 contains the performance criteria
derived from the confusion matrices. The results obtained by the different methods are
very varied, from a CCR of 70.8% for KNN using Vis/NIR, to 97.7% for LDA using SWIR.
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Table 5. Evaluation of the performance of the four basic classifiers using the confusion matrix, the error rate per class, and
the CCR after 200 train/test iterations.

Basic Method Spectral Range Class Healthy Defective Total Data Misclassified (%) CCR (%)

KNN SWIR Healthy 6010 1204 7214 20.0 78.4
Defective 1911 5275 7186 36.2

Vis/NIR Healthy 5424 1883 7307 34.5 70.8
Defective 2329 4764 7093 48.9

LDA SWIR Healthy 7214 0 7214 0 97.7
Defective 338 6848 7186 4.9

Vis/NIR Healthy 6698 609 7307 9.1 87.1
Defective 1245 5848 7093 21.3

ANN-ICA SWIR Healthy 6720 494 7214 7.4 92.6
Defective 573 6613 7186 8.7

Vis/NIR Healthy 6150 1157 7307 18.8 81.1
Defective 1571 5522 7093 28.4

ANN-HS SWIR Healthy 6841 373 7214 5.5 93.0
Defective 636 6550 7186 9.7

Vis/NIR Healthy 6275 1032 7307 16.4 82.2
Defective 1525 5568 7093 27.4

Table 6. Different criteria for evaluating the performance of different classifiers to classify potatoes in 200 iterations.

Basic
Method

Spectral
Range Class Recall (%) Accuracy (%) Specificity (%) Precision (%) F-Score (%)

KNN SWIR Defective 81.4 78.4 75.9 73.4 77.2
Healthy 75.9 78.4 81.4 83.3 79.4

Vis/NIR Defective 71. 7 70.8 70.0 67.2 69.3
Healthy 70.0 70.8 71.7 74.3 72.0

LDA SWIR Defective 100 97.7 95.5 95.3 97.6
Healthy 95.5 97.7 100 100 97.7

Vis/NIR Defective 90.6 87.1 84.3 82.4 86.3
Healthy 84.3 87.1 90.6 91.7 87.8

ANN-ICA SWIR Defective 93.0 92.6 92.1 92.0 92.5
Healthy 92.1 92.6 93.0 93.6 92.6

Vis/NIR Defective 82.7 81.1 79.7 77.9 80.2
Healthy 79.7 81.1 82.7 84.2 81.8

ANN-HS SWIR Defective 94.6 93.0 91.5 91.1 92.8
Healthy 91.5 93.0 94.6 94.8 93.1

Vis/NIR Defective 84.4 82.3 80.4 78.5 81.3
Healthy 80.4 82.3 84.4 85.9 83.1

It is notable that the maximum accuracy may not be achieved using the majority
voting method, but a reliable result can be achieved using only the LDA classifier. This fact
can be due to the reduction of dimensionality of the original problem after the selection
of the three most effective wavelengths in SWIR and Vis/NIR. In this way, although the
classes could not be linearly separable with the full spectral data, they become separable
after reducing the problem to a low dimensionality. LDA is not only better than the MV
method in SWIR, but also in Vis/NIR.

On the other hand, the two hybrid methods based on ANN present very similar
results, with accuracies near 93%; the differences are not significant. It is also interesting to
observe that SWIR consistently offers better results than Vis/NIR. This insists on the idea
that the internal defects are not apparent in the visible range, but more spectral information
is required. In fact, the three wavelengths selected in Vis/NIR (861, 883, and 998 nm)
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correspond to the NIR range. More information on the results of the basic classifiers is
presented in Figures 8 and 9, containing boxplots and ROC curves after the 200 iterations.
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Figure 9. ROC curves of the four basic classifiers to classify potatoes in 200 iterations, using SWIR
and Vis/NIR spectral ranges.

Since the KNN classifier only has a working mode and cannot be configured to be
more tolerant or restrictive (unlike the other methods), its ROC curve only has one point.
For this reason, the ROC curve of KNN is not included in Figure 9. Again, the superiority
of LDA over the rest of the methods is evident, although it is not able to achieve good
results in Vis/NIR.
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3.4. Comparison of Either Using the Whole Spectral Range or the Selected Wavelengths

As discussed above, to develop an inexpensive capture device and a high-speed
classifier, it is necessary to identify the most effective wavelengths for the problem of
study. This would allow the development of simplified spectral cameras that capture only a
specific range of the spectrum, and the latter analysis in a portable device. For this reason, it
is interesting to analyze the difference between using all the available spectral information
or using only the selected wavelengths. So, the ensemble classifier was applied on the
same dataset of potatoes using all the spectral information of the samples, with the same
constituent methods and partition of the samples in train/test/validation disjoint sets.

The results of the classification using all the wavelengths and the most effective ones
are compared in Table 7.

Table 7. Comparison of mean and standard deviation (SD) values of CCR and AUCs of the ensemble classifier using either
all the spectral data or using only the selected wavelengths, over SWIR and Vis/NIR spectral ranges.

Wavelengths Used Spectral Range Value CCR AUC1 AUC2

Effective SWIR Mean 94.1 0.98 0.98
wavelengths SD 8.04 0.065 0.067

Effective Vis/NIR Mean 83.4 0.90 0.90
wavelengths SD 6.76 0.065 0.068
Full spectra SWIR Mean 96.3 0.98 0.98

SD 7.49 0.065 0.067
Full spectra Vis/NIR Mean 86.1 0.903 0.902

SD 15.6 0.147 0.150

These results show that, although the detection rate obtained by using all the spectral
information is slightly higher, the standard deviation produced is also large. In fact, the
difference in the best case (using SWIR) is only about 2%, much lower than the standard
deviations of both methods (above 7%). To study the statistical significance of this fact in
more detail, a two-tailed t-test method was used to analyze the given differences. The null
hypothesis (H0) is that the mean CCRs obtained using all the spectral data and using only
the most effective wavelengths are equal, and the alternative hypothesis (Ha) is that they
are different. The results of the test are presented in Table 8.

Table 8. T-test of the difference of the total correct classification rate (CCR) of the MV classifier using all the spectral data
and using only the most effective wavelengths in SWIR.

Mean Standard Deviation T-Value Degree of Freedom Significance

Pair 1 Effective-Whole −2.475 0.332 −10.53 1 0.060

The test shows that there is no statistically significant difference between the CCRs
obtained for these two datasets. In consequence, the option of using only the three selected
wavelengths in SWIR is justified. It has been considered unnecessary to compare the CCRs
of SWIR and Vis/NIR, since the differences in this case are clearly larger than the observed
standard deviations.

Finally, the obtained results have been compared with other works in the literature
that are similar to our study, although all of them use their own datasets. These works
are specialized on certain potato diseases. This is the case in the study proposed by
Liang et al. [33], focused on the detection of zebra chip disease in potatoes using spectral
information. They analyzed Vis/NIR/IR, observing that the wavelengths in the visible
range were the most effective (468, 582, 680, and 720 nm), achieving an accuracy of 97%.
This accuracy was similar to our findings using LDA, although in our case the Vis range
was not found to be effective. This supports the idea that different diseases could have
spectral signatures in different parts of the spectrum. Additional multi-disease experiments
in potatoes would be required to validate this hypothesis.
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Another closely related work is the method proposed by Zhou et al. [18], where the
detection of blackheart disease in potatoes was studied using spectroscopy and machine
learning. They observed that the most effective values were located in the Vis/NIR range,
between 678 and 839 nm, selecting six optimal wavelengths. The authors centered their
attention on the morphological corrections, for example, with respect to the height of the
tubers. The accuracy obtained ranged between 96.53% and 97.11%, which is also very
close to the 97.7% in our best method. In any case, as previously stated, the results are not
directly comparable since our work is not specific to a single disease and, consequently, the
datasets are different. Even so, it is very interesting to observe that all the state-of-the-art
methods are able to obtain high accuracies slightly above 97%.

4. Conclusions

The purpose of this research was to accurately detect potatoes with internal defects,
such as brown rot, hollow heart, and black heart, using simple external spectroscopy
analysis. The study was conducted at the regions of Vis/NIR (350–1100 nm) and SWIR
(1100–2500 nm) of the spectrum. First, the most effective wavelengths were determined for
each region using a hybrid ANN-CA approach. Then, an ensemble classifier was proposed
using the majority voting rule on four constituent methods: ANN-ICA, ANN-HS, LDA,
and KNN. The results of the ensemble classifier showed that the correct classification rate of
the samples was 94.1% for the SWIR range, and 83.4% for the Vis/NIR range. SWIR region
was found to be the most appropriate for detecting internal potato defects. Interestingly,
one of the constituent methods, LDA, was able to achieve the best classification results,
with 97.7% accuracy in SWIR. This method would be preferable over the ensemble classifier,
due to its precision and simplicity. The effectivity of using only the three best wavelengths
was also compared with respect to the use of the whole spectrum. In this case, it was
observed that there were not statistically significant differences between both methods, so
obviously, the best option would be to use only the selected wavelengths.

These findings will help to develop new capture devices that could be more simplified
and practical to use, since only the wavelengths of interest would be captured. With the
development of simplified portable devices, the detection technology could be applied
either in the field or in factories at their handling processes. In the field, it can be used to
perform random sampling of the tubers to carry out an early detection of possible plant
diseases. Inside the factory, it can be used in a processing line for quality inspection, where
the defective potatoes would be discarded. Both the capture of just three wavelengths
and classification times using LDA allows potential real-time processing in practice. An-
other future line of research is to analyze how the different diseases affect potato spectral
signatures at various wavelengths. Further experiments would be needed to classify the
defective samples according to the types of diseases observed.
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