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Background: This study aims to screen out differentially expressed genes

(DEGs) regulated by BRCA1-associated protein 1 (BAP1) in osteosarcoma

cells, and to analyze their biological functions.

Methods: Themicroarray dataset GSE23035 of BAP1-knockdown osteosarcoma

cells was obtained fromGene ExpressionOmnibus (GEO) database, consisting of

shControl, shBAP1#1 and shBAP1#2 samples. The DEGs between the BAP1-

knockdown osteosarcoma cells and the untreated osteosarcoma cells were

screened with limma package, and then subjected to Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Gene

Set Enrichment Analysis (GSEA) was also performed for the three groups of

samples. Hub genes in a protein-protein interaction (PPI) network of DEGs was

filtered, and then subjected to prognostic analysis and correlation analysis with

BAP1 in Therapeutically Applicable Research to Generate Effective Treatments

(TARGET) database. Besides, the correlation between BAP1 and biological

processes/pathways was analyzed by Gene Set Variation Analysis (GSVA)

method and the correlation between BAP1 and immune infiltration by

CIBERSORT and ESTIMATE methods. The roles of BAP1 in regulating

proliferation and epithelial-mesenchymal transition (EMT) were validated by

CCK-8 and western blot.

Results: 58 upregulated DEGs and 81 downregulated DEGs were obtained with

|logFC| ≥ 1 and adj.p < 0.05. Cell cycle, DNA repair, and focal adhesion were

associated with BAP1 in datasets. Further, BAP1 was negatively correlated with

naïve CD4 T cells infiltration. In vitro, BAP1 inhibited proliferation and EMT.

Conclusion: BAP1 might be a tumor suppressor in osteosarcoma and a

promising therapeutic target.
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Introduction
Osteosarcoma is the most common malignant bone tumor

and has become the second leading cancer-related mortality

factor in children and adolescents (1). The psychological toll of

traditional surgical treatment for osteosarcoma patients is huge,

and the majority of amputation patients die within 1 year of

diagnosis (2). With the continuous improvement in the

treatment of osteosarcoma, neoadjuvant chemotherapy

combined with surgery has improved the overall survival rate,

but the 5-year survival rate is still less than 70% (3). In addition,

the recurrence and metastasis rates of osteosarcoma are high (4),

and the survival time is significantly shorter for patients with

recurrence, metastasis and chemotherapy resistance (5), so the

search for new treatments has become a research priority. Recent

advances in research on tumor-related signaling pathways and

novel gene targeted therapies (6) have provided new strategies

and approaches for the prevention and treatment

of osteosarcoma.

BRCA1-associated protein 1 (BAP1) is a 729 amino acid

deubiquitinating enzyme encoded by the BAP1 gene that

removes ubiquitination modifications from substrate proteins,

allowing the substrate to escape the “ubiquitin-proteasome”

degradation pathway, enhancing its stability, or affecting the

functional activity of the substrate, thereby regulating the

relevant signaling (7). The encoded enzyme binds to BRCA1

protein through its ring finger domain and acts as a tumor

suppressor (8). In addition, the enzyme may be involved in

transcriptional regulation, cell cycle and growth regulation,

response to DNA damage, and chromatin dynamics (9).

Germline mutations in this gene may be associated with

tumor predisposition syndrome (TPDS), which increases the

risk of cancers, including malignant mesothelioma, uveal

melanoma, and cutaneous melanoma (10). Currently, the

relationship between BAP1 and tumors is receiving increasing

attention, and its structural stability and functional integrity are

of great importance to the performance of cancer suppression

(8). However, the roles of BAP1 in osteosarcoma are

currently unknown.

In recent years, multiple public databases have been widely

used for diagnostic and prognostic biomarker studies of tumors,

where microarray technology plays an increasingly important

role (11). Gene expression profiling databases are an important

tool in medical oncology with important clinical applications

(12, 13). With the study of a large amount of gene expression

profile data and the application of gene microarray technology, it

has been shown that differentially expressed genes (DEGs) are

involved in a variety of biological processes, pathways and

molecular functions (14, 15). In this study, we obtained the

osteosarcoma dataset from the Therapeutically Applicable

Research to Generate Effective Treatments (TARGET)

database and the BAP1 knockdown dataset GSE23035
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associated with osteosarcoma from the gene expression

omnibus (GEO) database. Moreover, we used bioinformatics

to screen for potential BAP1-regulated hub genes in

osteosarcoma and to analyze their immune infiltration

patterns, providing new directions for the study of the

pathogenesis and therapeutic strategies of osteosarcoma.
Methods

Data collection and preprocessing

The microarray dataset GSE23035 of human osteosarcoma

cell line U20S was downloaded from the GEO database via the

GEOquery package (16). U2OS cells, transfected with a non-

target control shRNA (shControl) or shRNAs targeting BAP1

(shBAP1#1 and shBAP1#2), were selected with puromycin

containing medium and then synchronized at the G1/S border

to allow comparative analysis of gene expression. The probe

information in the dataset was annotated with the platform file

GPL570. Probes corresponding to more than one gene are

removed, and only the probe with the largest signal value is

retained in cases where there are multiple probes corresponding

to the same gene in the dataset. Missing values in the dataset are

added by interpolation, and then the data are normalized by the

normalize Between Arrays function of the limma package. The

inter-group clustering of samples is viewed by principal

component analysis (PCA) plots. Examination of the

interference efficiency of BAP1 showed that BAP1 expression

was significantly lower in the shBAP1#1 and shBAP1#2 groups

compared to the shControl group, indicating that BAP1

interference was effective.

From TARGET database, we downloaded mRNA-seq data

of Counts format and corresponding clinical data in the

osteosarcoma project. Then, the mRNA-seq data were log-

transformed as TPM format and median centered.
DEGs screening

The limma package was used to perform differential analysis.

DEGs were filtered with |logFC| ≥ 1 and adj.p < 0.05 and visualized

by volcano plots. DEGs common to the shBAP1#1 and shBAP1#2

groups was identified by a venn diagram and visualized by

heatmaps via ComplexHeatmap package (2.2.0) (17).
Gene ontology and kyoto encyclopedia
of genes and genomes analysis

The GO functional enrichment analysis and KEGG pathway

enrichment analysis were performed using the cluster Profiler

package (3.14.3) (18) of R software. GO annotations are divided
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into three categories, including biological process (BP), cellular

components (CC), and molecular function (MF). In the

enrichment analysis, Fisher’ exact test was used to test whether

the DEGs were enriched in a term, and p.adj<0.05 and

qvalue<0.2 were set as the screening conditions. Besides,

pearson analysis was used to evaluate the correlation of BAP1

and genes in enriched terms.
Gene set enrichment analysis

GO-BP gene sets and KEGG pathway gene sets were

obtained from The Molecular Signatures Database (MSigDB)

(19) as the reference gene set. The enrichment of two BAP1-

knockdown groups in the GSE23035 dataset relative to the

shControl group was analyzed by GSEA (20). A false discovery

rate (FDR) < 0.25 and adj.p<0.05 were considered statistically

significant. Top 5 enriched gene sets with largest |NES|

were illustrated.
Protein-protein interaction

The 139 DEGs were submitted to STRING 11.5 database

(21) for protein-protein interaction (PPI) network construction

with an interaction score = 0.15. The results were imported into

Cytoscape software (3.7.1), and the most significant network

module was screened by the Molecular complex detection

(MCODE) plug-in. The parameters were set as follows:

degree-cutoff=2, node score cutoff=0.2, k-core=2, max.

depth=100. In addition, the top 10 hub genes in the PPI

network were screened using the between, closeness, and

degree algorithms in the CytoHubba plug-in. The distribution

of the hub genes in chromosomes was analyzed via RCircos

package (22). The expression of hub genes was verified in three

groups of GSE23035 samples.
The expression and prognostic value of
hub genes in TARGET database

The hub genes expression was validated in osteosarcoma

dataset of the TARGET database. Then, the correlation of BAP1

and hub genes was analyzed via pearson method. Additionally,

samples with missing prognostic data were excluded and Kaplan-

Meier survival curves were plotted with Cox regression methods.

p<0.05 was considered a statistically significant difference.
Gene set variation analysis

We first downloaded the c2.cp.kegg.v7.4.symbols.gmt and

c5.go.bp.v7.4.symbols.gmt subsets from MSigDB. Setting the
Frontiers in Oncology 03
minimum gene set to 5 and the maximum gene set to 5000. The

enrichment score of each sample in each gene set was

calculated with GSVA package (1.40.1) (23) using

osteosarcoma dataset of the TARGET database. Besides, the

samples were divided into low and high BAP1 groups. The

difference of GSVA enrichment scores between BAP1 groups

was filtered with |logFC|≥1.2 and adj.p<0.05 and illustrated in a

volcano plot.
Immune infiltration in osteosarcoma
tissue samples in the TARGET database

The immune infiltration scores in each sample from

osteosarcoma dataset in the TARGET database were

characterized with Estimation of Stromal and Immune cells in

Malignant Tumors using Expression data (ESTIMATE) (24) and

Cell-type Identification by Estimating Relative Subsets of RNA

Transcripts (CIBERSORT) (25) algorithms. Besides, differential

analysis and Pearson analysis were used to clarify the

relationship of BAP1 and immune scores.
Cell lines and transfection

Nontumor osteoblast cell line hFOB1.19 (CL-0353, Procell)

was cultured using DMEM/F12 medium containing 10% FBS at

34°. Osteosarcoma cell lines SAOS2 (CL-0202, Procell) was

cultured using McCoy’s 5A medium containing 10% FBS at

37°. Osteosarcoma cell lines SJSA1 (CL-0703, Procell) was

cultured using RPMI-1640 medium containing 10% FBS at

37°. They were all cultured in an incubator containing 5% CO2.

To establish stable cell lines, the shRNAs targeting BAP1

(BAP1-sh1 and BAP1-sh2) and scrambed shRNA (NC-sh) were

synthesized by Genechem (Shanghai, China) and cloned into the

vector pLKO.1. The shRNAs sequences were shown in

Supplementary Table 1. Besides, full-length BAP1 was inserted

into pEF-HA vectors. According to the Lipofectamine 2000

(Invitrogen, Thermo Fisher Scientific, Inc.) instructions, the

lentiviral vector carrying BAP1 or shRNA was transfected into

SJSA1 cells or SAOS2 cells, respectively.
qPCR

Total RNAs in cells were extracted by TRIzol reagent

(Invitrogen). Reverse transcription was performed with

ReverTra Ace kit (TOYOBO) at 37° for 15 min and 85° for 5

s. Quantitative PCR was performed with SYBR Premix Ex Taq

(Takara) in conditions of 45 cycles of PCR, 95° for 30 s, 60° for

30 s, and 72° for 40s. GAPDH was served as an internal reference

and the relative expression of BAP1 was calculated by 2-DDCt
method. The primers were listed in Supplementary Table 2.
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Western blot

The proteins from cells were extracted by RIPA buffer

(Gibco), quantified via bicinchoninic acid (BCA) method,

separated by 10% SDS-PAGE gel electrophoresis, and blotted

onto PVDF membranes (Millipore). Then, the membranes were

blocked with 5% skimmed milk for 1h and incubated overnight

at 4° with primary antibody, including rabbit anti-BAP1 (1:1000,

#13271, CST), rabbit anti-PCNA (1:1000, #13110, CST), rabbit

anti-Vimentin (1:1000, #5741, CST), rabbit anti-E-Cadherin

(1:1000, #3195, CST), rabbit anti-N-Cadherin (1:1000, #13116,

CST), rabbit anti-GAPDH (1:1000, #2118, CST). Then, the

membranes were incubated with goat anti-rabbit secondary

antibody (1:1000, A0208, Beyotime) for 1h at room

temperature. The blots were visualized with BeyoECL Star kit

(P0018AM, Beyotime).
Cell counting kit-8

Cell suspensions were prepared and inoculated into 96-well

plates with approximately 2×103 cells/100 mL/well. Three

replicate wells were set up for each group. After 24, 48 and

72 h of culture, each well was added with 10 mL of CCK8 solution
(C0038, Beyotime, China) and incubated for 2 h at 37°C. The

absorbance values of each well were measured at 450 nm.
Statistical analysis

All experimental results were expressed as mean ± standard

deviation, and GraphPad Prism 9 (GraphPad Software, La Jolla,

CA, USA) was used for statistical analysis. The mean between

two groups was compared by independent sample t-test, and the

mean between multiple groups was compared by one-way

ANOVA analysis or two-way ANOVA analysis, and the

difference was considered statistically significant at p < 0.05.
Results

DEGs obtaining

PCA plot showed well clustering of three groups of samples

(Figure 1A). BAP1 expression was both downregulated in

shBAP1#1 and shBAP1#2 groups (Figure 1B), suggesting the

model samples were well constructed. Then, the DEGs were

screened (Figures 1C–E) and demonstrated in Figure 2.
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By GO and KEGG analysis, we found that DEGs were

enriched in DNA replication, DNA-dependent DNA

replication, DNA replication initiation, extracellular matrix

organization, G1/S transition of mitotic cell cycle, cell cycle

G1/S phase transition, positive regulation of cell cycle process,

cell cycle arrest, positive regulation of cell cycle arrest, Cell cycle,

and double-strand break repair (Figures 3A, B). Besides, the

genes in enriched terms were al l corre lated with

BAP1 (Figure 3C).

In terms of GSEA analysis, DNA replication-, extracellular

matrix organization-, and cell cycle- related terms were also

enriched. Top 5 GO terms with largest |NES| enriched in

shBAP1#1 and shBAP1#2 samples were presented in Figure 4.

Top 5 KEGG terms with largest |NES| enriched in shBAP1#1

and shBAP1#2 samples were presented in Figure 5. Interestingly,

focal adhesion was enriched in shBAP1#1 and shBAP1#2

samples (Figure 5), suggesting BAP1 might inhibit EMT

in osteosarcoma.
Hub genes screening

By constructing PPI network of DEGs (Figure 6A), we found

a most significant module (Figure 6B). Besides, through

cytoHubba plugin, we calculated top 10 hub genes via between

(Figure 6C), closeness (Figure 6D), and degree (Figure 6E)

algorithms, respectively. Further, we obtained 8 overlapped

hub genes by the three algorithms, including ACTA2, BIRC5,

BRCA1, CCNE2, CDC45, CDC6, KAT2B, and LOX (Figure 6F).

The distribution of the hub genes was plotted in Figure 6G.
Hub genes expression and prognostic
value

Among hub genes, BRCA1, CDC6, KAT2B, CCNE2,

CDC45, and BIRC5 were downregulated, while ACTA2 and

LOX were upregulated in shBAP1#1 and shBAP1#2 samples in

GSE23035 (Figure 7A). In the osteosarcoma dataset of TARGET

database, although BAP1 expression was similar in

osteosarcoma tissues from patients with di fferent

clinicopathologic characteristics (Supplementary Table 3), it

was positively correlated with BRCA1, CDC6, and CDC45

(Figure 7B). Besides, low expression of BAP1 and ACTA2 was

correlated with poor overall survival (Figures 7C, E) and

progress free survival (Figures 7D, F). However, the expression

of BIRC5, BRCA1, CCNE2, CDC45, CDC6, KAT2B, and LOX

did not affect survival (Figure S1).
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A B

D

E

C

FIGURE 1

DEGs screening in GSE23035. (A) PCA plot of three groups of osteosarcoma cell samples in GSE23035. (B) BAP1 expression in shControl,
shBAP1#1 and shBAP1#2 samples. (C) A volcano plot showing DEGs between shControl and shBAP1#1 groups. (D) A volcano plot showing
DEGs between shControl and shBAP1#2 groups. (E) Overlapped DEGs between shBAP1#1 and shBAP1#2 were screened via a venn diagram
***p < 0.001.
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GSVA analysis of the osteosarcoma
dataset in TARGET database

To confirm the role of BAP1 in GSE23035, we performed

GSVA analysis in the osteosarcoma dataset in TARGET

database. There were 10 differential terms in GO-BP gene

sets between high and low BAP1 groups (Figure 8A). In high

BAP1 group, the GSVA score of lysosomal micro autophagy,

response to fungicide, modulation by symbiont of host

programmed cell death, regulation of protein localization to
Frontiers in Oncology 06
cilium, negative regulation of double strand break repair via

nonhomologous end joining, modulation by symbiont of host

autophagy, regulat ion of synaptic vesicle priming,

micropinocytosis, phosphatidylglycerol biosynthetic process,

and synaptic vesicle docking was higher than that in low

BAP1 group (Figure 8B). Consistent with above results in

GSE23035, BAP1 was positively correlated with negative

regulation of double strand break repair via nonhomologous

end joining (Figure 8C). In terms of KEGG gene sets, there

were no differential terms (Figure S2).
A B

FIGURE 2

DEGs expression in shControl, shBAP1#1 and shBAP1#2 samples. (A) Upregulated DEGs. (B) Downregulated DEGs.
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BAP1 was negatively correlated with
naïve CD4 T cells infiltration

To investigate the role of BAP1 in regulating immune

infiltration, we used CIBERSORT and ESTIMATE methods.

The results based on CIBERSORT algorithm showed that there

was no difference in immune cell infiltration fraction between

high and low BAP1 groups (Figure S3A). However, Pearson

analysis demonstrated that BAP1 was negatively correlated with

the fraction of naïve CD4 T cells in osteosarcoma tissues
Frontiers in Oncology 07
(Figure 9). In ESTIMATE algorithm, the results also displayed

that BAP1 was not correlated with the fraction of stromal and

other immune cell types (Figures S3B–D).
BAP1 suppressed osteosarcoma cell
growth and EMT

To further validate anti-cancer effects of BAP1, we first

detected BAP1 expression in nontumor osteoblast cell line
A

B

C

FIGURE 3

Enrichment analysis of DEGs. (A) GO and KEGG analysis of DEGs. (B) A network of enriched terms and DEGs. (C) Pearson analysis of BAP1 and
DEGs enriched in GO and KEGG terms.
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hFOB1.19 and osteosarcoma cell lines SAOS2 and SJSA1. The

results showed that mRNA and protein expression of BAP1

was higher in hFOB1.19 cells than that in SAOS2 and SJSA1

cells (Figure 10A). Then we silenced or overexpressed BAP1 in

SAOS2 and SJSA1 cells, respectively (Figures 10B, 11A). In

BAP1-knockdown SAOS2 cells, we found higher protein

expression of PCNA, N-cadherin, and Vimentin than in
Frontiers in Oncology 08
control SAOS2 cells (Figure 10C). Further, higher growth

rate was observed in BAP1-knockdown SAOS2 cells

(Figure 10D). (Figure 10E) Immunofluorescent image to

detect BAP1 knockdown efficiency in SAOS2 cells. In BAP1-

overexpression SJSA1 cells, the opposite results displayed,

implying BAP1 could inhibit osteosarcoma cell growth and

EMT (Figures 11B, C).
A

B

FIGURE 4

GSEA analysis in GO gene sets. (A) Top 5 GO terms with largest |NES| enriched in shBAP1#1 samples. (B) Top 5 GO terms with largest |NES|
enriched in shBAP1#2 samples.
frontiersin.org

https://doi.org/10.3389/fonc.2022.973914
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2022.973914
Discussion

Osteosarcoma has a high degree of malignancy, progresses

rapidly, with the majority advanced at the time of diagnosis, and

metastasizes easily to the lung (26). In this study, by analyzing

osteosarcoma dataset GSE23035 in GEO database, we found that

BAP1 could significantly regulate 139 genes expression. These
Frontiers in Oncology 09
DEGs were involved in DNA replication, cell cycle, and DNA

repair. Among these DEGs, hub genes were ACTA2, BIRC5,

BRCA1, CCNE2, CDC45, CDC6, KAT2B, and LOX. In TARGET

database, low BAP1 or ACTA2 expression both predicted poor

overall survival and progress free survival. Besides, BAP1 was

negatively correlated with naïve CD4 T cells infiltration. In vitro,

BAP1 could inhibit osteosarcoma cells proliferation and EMT.
A

B

FIGURE 5

GSEA analysis in KEGG gene sets. (A) Top 5 KEGG terms with largest |NES| enriched in shBAP1#1 samples. (B) Top 5 KEGG terms with largest |
NES| enriched in shBAP1#2 samples.
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BAP1 belongs to the ubiquitin C-terminal hydrolase

subfamily of deubiquitinases (27). Most of the earlier studies

demonstrated that BAP1 exerts a tumor suppressive function.

Overexpression of BAP1 in breast cancer MCF-7 cells inhibits
Frontiers in Oncology 10
the formation of soft agar clones (28). Overexpression of wild-

type BAP1 in lung cancer NCI-H226 cells significantly inhibits

the tumorigenic ability of the cells in nude mice, while

overexpression of BAP1 with either enzyme-activity mutation
A B

D E

F G

C

FIGURE 6

PPI network and hub genes. (A) A PPI network based on DEGs. (B) The most significant cluster found by MCODE plugin in Cytoscape software.
(C) Hub genes calculated by Between algorithm. (D) Hub genes calculated by Closeness algorithm. (E) Hub genes calculated by Degree
algorithm. (F) A venn diagram displaying overlapped hub genes. (G) The distribution of overlapped hub genes in chromosomes.
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(C91A) or nuclear localization sequence deletion (NLS2-Ala)

did not affect the tumorigenic ability (29), suggesting that the

anti-tumor function of BAP1 depends on its catalytic activity

and nuclear localization. However, in recent years, some

contrary reports have also emerged. For example, one study

showed that BAP1 promotes the development of breast cancer
Frontiers in Oncology 11
by enhancing the stability of the transcription factor KLF5 (30).

In this study, we found that focal adhesion was enhanced in

shBAP1 cell samples and negative regulation of double strand

break repair via nonhomologous end joining was enhanced in

BAP1 high tissue samples, suggesting its cancer-inhibiting effect.

In addition, Lysyl oxidase (LOX) and its family members
A

B

D E F

C

FIGURE 7

The expression and prognostic value of hub genes in GSE23035 and osteosarcoma dataset of TARGET database. (A) Hub genes expression in
GSE23035. (B) The correlation of BAP1 and hub genes in the osteosarcoma dataset of TARGET database. (C) The overall survival of
osteosarcoma patients in low and high BAP1 groups in TARGET database. (D) The progress free survival of osteosarcoma patients in low and
high BAP1 groups in TARGET database. (E) The overall survival of osteosarcoma patients in low and high ACTA2 groups in TARGET database. F,
The progress free survival of osteosarcoma patients in low and high ACTA2 groups in TARGET database. *p < 0.05; **p < 0.01; ***p < 0.01. ns,
non significant.
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LOXL1-4, the copper-dependent amine oxidases playing critical

roles in ECM crosslinking and remodeling, are implicated in

cancer progression and metastasis. The transduction of resultant

matrix mechanical property changes into cellular signaling

promotes disruption of cell polarity, dynamic cytoskeleton

rearrangement, cell migration and invasion (31). Furthermore,

the acquisition of invasive behavior of cells expressing Alpha-

Actin (ACTA2) are also partially attributed to the EMT in
Frontiers in Oncology 12
transcription factor snail dependent- and independent-

manners (32). Therefore, the roles in anti-proliferation and

anti-EMT should be further validated in vitro.

Mutations in BAP1 may affect the deubiquitinase activity of

BAP1 protein or lead to deletion of its nuclear localization

sequence (31), disrupting its anti-cancer function and

ultimately causing tumorigenesis. Mutations in BAP1 were

first identified in studies of familial malignancies, which
A

B

C

FIGURE 8

The correlation of BAP1 and GSVA score of GO-BP gene sets. (A) The difference of GSVA score of GO-BP gene sets in low and high BAP1
groups. (B) The GO-BP gene sets with differential GSVA score. (C) The correlation of BAP1 and negative regulation of double strand break repair
via nonhomologous end joining.
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manifested as increased prevalence of rare malignancies in some

families, such as malignant mesothelioma, cutaneous melanoma,

and uveal melanoma (32). However, we could not find any

osteosarcoma dataset about BAP1 mutation, so the potential

mechanisms involved in the progression of osteosarcoma are to

be explored later. Additionally, Roy Baas et al. found by mass

spectrometry analysis that BAP1 interacts with various proteins

such as ASXL1, HAT1, COPI, etc (33). The underlying

molecular mechanisms directly mediated by BAP1 in

osteosarcoma need to be further explored.

Reportedly , BAP1 could regulate many tumors

microenvironment. Using integrated analysis, the relationship

between BAP1 and multiple immune checkpoints in pan-cancer

was revealed (34). Carlos R Figueiredo et al. reported that loss of

BAP1 expression in uveal melanoma contributed to an
Frontiers in Oncology 13
immunosuppressive microenvironment (35). Loss of BAP1 in

mesothelioma correlates with an inflammatory tumor

microenvironment characterized by immune checkpoint

receptor activation and BAP1 status might predict ICI therapy

benefit (36, 37). Unlike in most cancers, BAP1 had no effects on

immune infiltration in osteosarcoma.

Although Shuming Gao et al. reported the suppressive

effects on cancer of BAP1 in osteosarcoma (38), only in vitro

cellular studies were performed. This shortcoming makes the

study low clinical translational value. In this study, the roles

of BAP1 in potential targets, biological functions, signaling

pathways, and immune infiltration were comprehensively

explored by mining the osteosarcoma datasets from GEO

and TARGET databases using the rapidly developing

bioinformatics in recent years.
FIGURE 9

The correlation of BAP1 and naïve CD4 T cells infiltrated in osteosarcoma tissues.
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FIGURE 10

BAP1 knockdown promoted SAOS2 cells growth and EMT. (A) BAP1 expression in hFOB1.19, SAOS2, and SJSA1 cells detected by qPCR and
western blot. (B) BAP1 expression after BAP1 knockdown detected by qPCR. (C) The protein expression of BAP1, PCNA, E-cadherin, N-cadherin,
and Vimentin after BAP1 knockdown. (D) The viability of SAOS2 cells after BAP1 knockdown detected by CCK8. (E) Immunofluorescent image to
detect BAP1 knockdown efficiency in SAOS2 cells. **p < 0.01.
A B C

FIGURE 11

BAP1 overexpression inhibited SAOS2 cells growth and EMT. (A) BAP1 expression after BAP1 overexpression detected by qPCR. (B) The protein
expression of BAP1, PCNA, E-cadherin, N-cadherin, and Vimentin after BAP1 overexpression. (C) The viability of SAOS2 cells after BAP1
overexpression detected by CCK-8. ***p < 0.001.
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In summary, through bioinformatics and in vitro assays, this

study demonstrated that BAP1 was a tumor suppressor in

osteosarcoma and provided new clues for osteosarcoma

treatment such as BAP1-targeted therapy.
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