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Abstract: Depression has become one of the most crucial
public health issues, threatening the quality of life of over
300 million people throughout the world. Nevertheless,
the clinical diagnosis of depression is now still hampered
by behavioral diagnostic methods. Due to the lack of
objective laboratory diagnostic criteria, accurate identifi-
cation and diagnosis of depression remained elusive.
With the rise of computational psychiatry, a growing
number of studies have combined resting-state electro-
encephalography with machine learning (ML) to alleviate
diagnosis of depression in recent years. Despite the
exciting results, these were worrisome of these studies.
As a result, ML prediction models should be continuously
improved to better screen and diagnose depression.
Finally, this technique would be used for the diagnosis
of other psychiatric disorders in the future.

Keywords: EEG, artificial intelligence, psychiatric disorder,
identification

1 Introduction

Depression is a common mood disorder that has a sub-
stantial negative impact on the physical and mental
health of patients [1,2]. The typical symptoms of depres-
sion encompassed low energy, fatigue, depressed mood,
and even self-injurious or suicidal behavior in severe
cases [3]. A recent survey from WHO has shown that
the number of depression patients worldwide has exceeded
300 million people [4]. However, the clinical diagnosis
of depression still relied on the Statistical Manual of
Mental Disorders (DSM-V) and the subjective judgment
of clinicians. Accurate identification and diagnosis of
depression remained shrewd due to the lack of objective
laboratory diagnostic criteria. Fortunately, the develop-
ment of modern neurophysiological techniques offered
a potential strategy for early disease detection. The
application of the techniques in the field of clinical
diagnosis has amassed large achievements in recent
years.

Electroencephalogram (EEG) was widely used in neu-
roscience as a non-invasive neurophysiological technique.
Compared to functional magnetic resonance imaging, EEG
recordings had the advantage of shorter test times and
lower prices, making them more suitable for identifying
various psychiatric disorders [5]. Resting-state EEG (rsEEG)
could accurately reflect the activity of human brain net-
works. Several studies have indicated that the frequency
domain characteristics and functional connectivity (FC) of
rsEEG were important in depression identification [6,7].
The analysis of rsEEG features might unravel the under-
lying complex neural mechanisms of depression. With the
development of computational psychiatry [8], the use of
rsEEG-based machine learning (ML) techniques to identify
disease phenotypes has heightened increasing attention,
which provided a theoretical basis for diagnosing clinical
depression. Since Ahmadlou et al. first applied ML

Yuan Liu, Shan Xia: Department of Psychosomatic Medicine,
The First Affiliated Hospital of Nanchang University, No.17
Yongwaizheng Street, Donghu District, Nanchang 330006, Jiangxi
Province, China
Changqin Pu: Queen Mary College, Nanchang University, Nanchang
330031, Jiangxi Province, China
Dingyu Deng: Department of Internal Neurology, The First Affiliated
Hospital of Nanchang University, Nanchang 330006, Jiangxi
Province, China



* Corresponding author: Xing Wang, School of Life Sciences,
Nanchang University, No.999 Xuefu Avenue, Honggutan District,
Nanchang 330036, Jiangxi Province, China; Clinical Diagnostics
Laboratory, Clinical Medical Experiment Center, Nanchang University,
Nanchang 330036, China, e-mail: xing.wang@ncu.edu.cn,
tel: +86-791-13732921996
* Corresponding author: Mengqian Li, Department of
Psychosomatic Medicine, The First Affiliated Hospital of Nanchang
University, No.17 Yongwaizheng Street, Donghu District, Nanchang
330006, Jiangxi Province, China, e-mail: mengqianli@ncu.edu.cn,
tel: +86-791-15879098200

Translational Neuroscience 2022; 13: 224–235

Open Access. © 2022 Yuan Liu et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/tnsci-2022-0234
mailto:xing.wang@ncu.edu.cn
mailto:mengqianli@ncu.edu.cn


techniques to the early identification and diagnosis of
depression [9], an increasing number of original studies
have been published with exciting results [10–12].
Therefore, the rational application of rsEEG-based ML
for diagnosing depression could help clinicians in rapid
decision-making and treatment.

To systematically analyze the ML approaches for
diagnosing depression using rsEEG, this study focused
on reviewing the literature pertained to rsEEG-based ML
for s depression diagnosis. (1) A total of 36 related articles
were included by systematically searching domestic and
international databases and filtering by specific criteria.
(2) The ML approaches and their accuracy were high-
lighted in the studies above. Finally, this study would
discuss the current status of rsEEG-based ML studies in
the field of depression diagnosis and furnish further sug-
gestions for future research.

2 Methods

2.1 Literature search strategy

Our study retrieved the results of domestic and interna-
tional data from 1 January 2010 to 1 June 2022. The Chinese
databases included Zhiwang,Wanfang, andWipu, and the
English databases encompassed PubMed, Web of Science,
and Medline. Meanwhile, we utilized subject terms + key-
words for the literature search, with the search terms:
(“depression” OR “depressive disorder”) AND (“electro-
encephalography” OR “EEG”) AND ML. Finally, a total
of 435 articles were involved in the analysis. In addition,
this study further widened the number of articles ana-
lyzed by conducting reference back and hand searching,
and a total of 449 articles were retrieved.

2.2 Inclusion and exclusion criteria

We further screened the literature for initial inclusion in
the analysis based on the following criteria: (1) the main
purpose is depression diagnosis; (2) the sample includes
patients with unipolar depression and healthy controls;
(3) rsEEG data as the data driver; (4) depression detection
using ML; and (5) accuracy as the primary outcome. In
addition, duplicates, conference papers, and literature
for which full text was not accessible were excluded
from this study. Finally, a total of 36 relevant articles
that met the inclusion and exclusion criteria were entailed.

3 Results

Our study systematically reviewed 36 articles on depres-
sion diagnosis published between 2010 and 2022 to illus-
trate the current value of rsEEG-based ML approaches in
depression diagnosis. Because of the distinct methods
used in different studies, our study would focus on the
sample size, EEG data acquisition and preprocessing
methods, feature extraction and selection, types of ML
techniques, and their accuracy in depression diagnosis
wielded in the aforementioned literature, as shown in
Figures 1 and 2.

3.1 Sample size

Ahmadlou et al. published the first study based on rsEEG-
based ML for the diagnosis of depression. In their study,
a sample of 24 cases was included in the analysis [9].
Subsequently, Puthankattil and Joseph and Faust et al.
increased the sample size (both 60 cases) and conducted
similar studies to attain more credible results [10,12].
Further, Hosseinifard et al. published their study with
a larger sample size (90 cases) [11]. Bairy et al. and
Mohammadi et al., respectively, collected 60 and 96
cases for rsEEG-based ML on depression diagnostic ana-
lysis [13,14]. In the same year, Acharya et al. included 30
cases for analysis and used the data again in a subse-
quent study [15,16]. Later, Mumtaz et al. published four
studies with sample sizes ranging from 60 to 64 cases
[17–20]. Liao et al. in a study published included a
sample of 24 cases [21]. One year later, Cai et al. and
Wan et al. included 265 and 65 cases in their analyses
[22,23]. In 2020, nine studies respectively compiled sam-
ples ranging from 32 to 92 cases for analysis [24–32].
An increasing number of researchers have conducted
studies using data from previous or public samples
[29,31,33–36]. Recently, some researchers revealed the
sample size (20–400 cases) in their studies [37–44]. To
our knowledge, 400 cases are the largest sample size to
date. Overall, a total sample of 2,545 cases was included
in this study. The distributions of the training and
testing sets are shown in Table 1.

3.2 EEG data acquisition methods

The number of electrodes, sampling frequency, and sam-
pling duration altered slightly between studies, which
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might lead to different analytical results. Ahmadlou et al.
first recorded rsEEG signals for 3 min with the eyes
closed in depressed patients and healthy controls using
19 electrodes (10/20 standards) with a sampling frequency
of 256 Hz [9]. A great number of following research
employed the same number of electrodes and sample
frequency, with only minor changes in sampling dura-
tion. With the development of EEG acquisition technology,
many researchers have raised the sampling frequency to
500Hz or higher. In recent years, some studies have used
64 electrodes EEG devices for recording depressed patients

and healthy controls to enrich the reliability of rsEEG
signals [24,25,27]. Furthermore, researchers were increas-
ingly interested in region-specific EEG signals. Puthankattil
and Joseph, Faust et al., and Acharya et al. have respec-
tively investigated four electrodes (Fp1-T3), (Fp2-T4) in
the left and right hemispheres, using a sampling fre-
quency of 256 Hz [10,12,14,16]. Cai et al. obtained EEG
signals in three electrodes (Fp1, Fpz, and Fp2) and six
electrodes (FT7, FT8, T7, T8, TP7, and TP8) [22]. Later,
Wan et al. compared the effect of singles from single
electrodes (Fp1) and pairs of electrodes (Fp1 and Fp2)

Figure 2: Flowchart of the EEG-based machine learning for depression diagnosis.

Figure 1: Overview of the EEG-based machine learning for depression diagnosis.
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on the performance of rsEEG-based ML in the diagnosis
of depression [23]. The sampling duration of these stu-
dies tended to be longer, up to 30 min (Table 1).

3.3 EEG data preprocessing

Because EEG data were very shaky, weak, and prone to
interference, it was critical to preprocess them. There were
various methods to remove data noise, among which most
studies use manual methods or filters to remove noise. In
addition, Independent Component Analysis (ICA) has
pertained in several studies as a common technique
for noise removal. Mumtaz et al. and Liao et al. used
specific software to remove various types of artifacts
from EEG signals [17,21]. It was worth noting that the
removal of EEG noise could potentially lead to the loss of
useful physiological signals. Therefore, this step needed
to be performed with caution. Kang et al. eliminated the
adverse effects caused by odd lead data by normalizing
the EEG data so that each channel has a similar ampli-
tude scale [31]. In addition, techniques such as Fast
Fourier Transform (FFT), Discrete Cosine Transform,
and Wavelet Transform (WT) were also applied for the
preprocessing of EEG signals in the included studies
(Table 1).

3.4 Data feature extraction and selection

Data feature extraction and selection were one of the
most important steps in ML. Feature extraction refers to
the extraction of linear or nonlinear features from EEG
data. Feature selection was the further dimensionality
reduction of the traits to remove redundant and irrelevant
information. The methods of data feature extraction and
selection used by different researchers vary. Ahmadlou
et al. calculated Higuchi fractal dimension (HFD) and
Katz fractal dimension (KFD) values as features using
two different algorithms [9]. Puthankattil and Joseph
used a multi-resolution decomposition of EEG signals
and selected wavelet entropy as the feature [10]. Hossei-
nifard et al. used detrended fluctuation analysis (DFA) as
one of the feature extraction methods and included band
power, HFD, and other data as EEG features [11]. Faust
et al. extracted nonlinear features by extracting suitable
subbands from EEG signals and using the procured signals
as algorithm inputs [12]. Bairy et al. incorporated various
features into the analysis [13]. Mohammadi et al.

published a study focusing on EEG spectral features
[14]. Mumtaz et al. respectively allotted features such
as synchronization likelihood (SL) and alpha interhemi-
spheric asymmetry for analysis in their studies [17–19].
Liao et al. proposed a new EEG feature extraction algo-
rithm called kernel eigen-filter-bank common spatial pat-
tern (KEFB-CSP) [21]. Cai et al. selected various linear or
nonlinear features and feature selection methods [22].
Wan et al. selected the best traits of EEG signal by using
GA to boost the performance of EEG-based ML in differ-
entiating depressed patients from normal controls [23].
Shen et al. applied spectral asymmetry index (SASI),
DFA, and GA for EEG feature extraction and selection
[24]. In the same year, Shen et al. used network parameters
and their Area Under Curve (AUC) of EEG of depressed
patients and healthy controls as characteristics for ML
analysis [25]. Čukić et al. used HFD and sample entropy
(SampEn) as the main features [26]. To improve the clas-
sification accuracy of ML, Duan et al. combined interhemi-
spheric asymmetry with cross-correlation as EEG signal
features to compensate for the lack of single trait informa-
tion [27]. Mahato and Paul and Mahato et al. successively
used Relief Algorithm and Multi-Cluster Feature Selection
to select the best EEG signal features such as band power,
interhemispheric asymmetry, and SampEn [29,34]. Saeedi
et al. conducted further studies using features such as
band power, approximate entropy, and SampEn [30]. In
the same year, Kang et al. used EEG asymmetric matrix
images as features for deep learning (DL) screening of
depression [31]. However, in other studies of DL, researchers
did not report the strategy used in EEG feature extraction
and selection. Recently, Ghiasi et al. calculated the mean
phase coherence (MPC) index as the brain FC feature [43].
Movahed et al. not only used FC as the main feature in the
analysis but also proposed a novel algorithm sequential
backward feature selection (SBFS) for the features selec-
tion to derive the optimal classifier model [36,42]. Wu
et al. and Liu et al. successively used SBFS to select the
optimal features in their studies [38,41]. As time goes by,
assorted feature extraction and selection methods were
widely applied in this field (Table 1).

3.5 ML strategies

The ML strategies utilized by different researchers vary,
Ahmadlou et al. used Enhanced probabilistic neural net-
works (EPNN) to classify the EEG signals of normal
and depressed individuals [9], while Puthankattil and
Joseph used Relative wavelet energy and Artificial neural
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networks (ANN) to differentiate the data [10]. Hosseinifard
et al. used K-nearest neighbor (KNN), linear discriminant
analysis (LDA), and logistic regression (LR) classifiers in
their study [11]. Faust et al. compared the performance
of probabilistic neural network (PNN), support vector
machine (SVM), decision tree (DT), KNN, Naïve Bayes
classification (NBC), Gaussian mixture model (GMM)
and Fuzzy Sugeno classifier (FSC) to obtain the best
classification model [12]. Bairy et al. analyzed the per-
formance differences of multiple classifiers such as DT
[13], while Mohammadi et al. scrutinized only the clas-
sification performance of DT alone [14]. Acharya et al.,
respectively, used SVM and (Convolutional neural net-
work) CNN for EEG signal classification [15,16]. Mumtaz
et al. successively chose various traditional ML classi-
fiers and DL classifiers to explore the best performance
of EEG-based ML in depression diagnosis [17–20]. Liao
et al. used SVM to build the prediction models [21]. Cai
et al. published a study systematically analyzing the per-
formance differences of classification strategies including
SVM, KNN, DT, LR, and random forest (RF) [22]. Wan et al.
used KNN, RF, LDA, and Classification and regression
trees (CART) classifiers [23]. Shen et al. explored the per-
formance of SVM in different EEG features [24,25]. Multi-
layer perceptron (MLP), LR, linear, and polynomial kernel
SVM, DT, RF, and NBC were used to differentiate between
normal controls and depressed patients in the study by
Čukić’s study [26]. Similar to Liao et al., Mahato et al.
also wielded SVM to build prediction models, and then,
they compared the performance of three different kernel
functions of SVM in classification [21,29,34]. Saeedi et al.
also focused on the application of combined enhanced
K-nearest neighbor (E-KNN) and EEG signals to diagnose
depression [30]. Movahed et al. obtained the best ML
framework by comparing the performance of various clas-
sifiers in distinguishing normal and depressed individuals
[36]. Subsequently, they also presented dictionary learning
approaches for automated MDD diagnosis [42]. Both past
and present, SVM had been more widely employed in
related studies [39–41,43,44]. Meanwhile, an increasing
number of studies had used CNN or CNN + LSTM for EEG
recognition of normal individuals and depressed patients
(Table 1).

3.6 Validation strategies

Most studies enlightened how to assess the stability of
the performance of the above ML models. K-fold cross-
validation (K = 10 or 5) is one of the most commonly used

methods, and a large number of studies use this method
to assess the classification performance of ML. Some
studies assessed the reliability of classification accuracy
by leave-one-out cross-validation (LOOCV) and its var-
iants. Only two of all included studies used hold-out
cross-validation (Table 1).

3.7 Accuracy of various ML strategies in
depression diagnosis

Ahmadlou et al. found that the HFD in the Beta rhythm
was a more effective feature in distinguishing between
normal and depressed individuals, and the classification
accuracy of EPNN was 91.30% [9]. Puthankattil and
Joseph used ANN to classify normal and depressed sig-
nals and obtained an accuracy of 98.11% [10]. Faust et al.
showed that PNN was the better classifier in distin-
guishing normal and depressed patients’ EEG signals
with a classification accuracy of 99.50% [12]. Hosseini-
fard et al. found that the combination of multiple non-
linear features was effective in improving the accuracy of
the classifier with a maximum accuracy of 90% [11]. Bairy
et al. obtained an accuracy of 93.8% using the SVM clas-
sifier [13]. Mohammadi et al. earned the best accuracy of
80% using the DT algorithm [14]. Mumtaz et al. respec-
tively reported the higher diagnostic accuracy (SVM:
98%, SVM: 98.40%, SVM: 90%, and CNN: 98.32%) in
their four studies [17–20]. Liao et al. applied KEFB-CSP
features and SVM classifier with an average diagnostic
accuracy of 80% [21]. Acharya et al., respectively, used
SVM and CNN to identify EEG data of normal and
depressed individuals with the accuracy of 98% and
95.49% [15,16]. Cai et al. obtained 76.4% accuracy using
the DT classifier [22]. Wan et al. applied LOOCV, and its
classification accuracy was 86.67% [23]. Zhu et al. found
that classification accuracies of the CNN-LSTM model
for the right EEG signals (99.12%) were higher than in
the left hemisphere [32]. Shen et al. found that using
strength, average feature path length, and AUC of average
clustering coefficient as features can effectively improve
the classification accuracy with a maximum classification
accuracy of 82% [24]. In the same year, Shen et al. obtained
the highest classification accuracy of 90.60% using multi-
channel EEG based on GA screening [25]. Čukić et al.
reported an average accuracy of 90.24–97.56% for each
of seven ML algorithms in distinguishing EEG between
normal and depressed individuals [26]. Duan et al.
obtained the highest accuracy of 94.13% using the
SVM classifier [27]. Uyulan et al. respectively reported
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89.33 and 92.66% classification accuracies in the left
and right hemispheres using MobileNet architecture
[28]. Mahato and Paul and Mahato et al. successively
used different feature extraction and selection, and the
classification accuracy of the SVM classifiers were 96.02
and 88.33% [29,34]. Saeedi et al. used an enhanced KNN
classifier to attain the highest diagnostic accuracy of
98.44% [30]. Kang et al. used DL to analyze EEG asym-
metric matrix images with a classification accuracy of
98.85% [31]. Especially, Zhu et al. used EEG and other
data to detect depression with an accuracy of 92.65% [32].
Movahed et al. used an radial basis function kernel-based
SVM classifier and obtained an average accuracy of 99%
[36]. Wang et al. used CNN to classify normal and depressed
individuals with an accuracy of 99.08% [35]. Other stu-
dies also obtained higher accuracy for depression diagnosis
[37–42]. Recently, some studies have begun to use SVM to
classify subclinically depressed and normal individuals (the
accuracy of 76 and 83.91%, respectively; Table 1) [43,44].

4 Discussion

In recent years, an increasing number of studies have
combined EEG with ML for the diagnosis of depression
with thrilling results. Among the included studies, the
highest classification accuracy was up to 99.5% [12],
which offers the potential strategy for screening and pre-
vention of early clinical depression. Although the MRI-
based ML studies have attracted a lot of attention over
time [45–47], EEG-based ML has achieved better perfor-
mance in depression diagnosis in terms of both cost and
classification accuracy [5]. It was worth pointing out
that, despite the high accuracy of such studies in distin-
guishing normal individuals from depression patients,
additional studies are needed to confirm their reliability
and variability. Among all past published studies, the
overall classification accuracy ranged from 76 to 99.5%
with a large variation. This reason might be related
to the sample size, data collection and preprocessing
methods, various feature combinations, and ML models
wielded by different studies.The small sample size was a
common problem faced by most of the current EEG-based
ML studies. Of the 36 studies published from 2010 to date,
only three studies had a sample size of more than 100
cases [22,38,40]. The problem of the limited sample size
further constrained the diagnostic utility of EEG signals
at the personalized level of depression, which might be
one of the important reasons for the stability of classifi-
cation accuracy. Although increasing the sample size

for diagnostic accuracy was not necessary [22], it was
essential to improve the sample size for analysis in order
to make prediction models applicable to a huge popula-
tion. With the publication of more studies in related
fields and the improvement of public databases, a growing
number of studies used more data volume for further ana-
lysis. This has addressed the above-mentioned issues to
some extent [29–31,33,35,36]. However, the generaliza-
tion of the results from public databases is limited due to
the variability in data collection and data processing. As
a result, it was essential to constantly improve the
public databases. In the future, researchers needed to
focus on the standardization and reproducibility of EEG
data acquisition and processing processes. In addition,
the distributions of the training and testing sets should
be reported in the study, because they had a direct
impact on the accuracy and clinical application of the
obtained results.

Feature extraction and selection were the indispen-
sable steps in ML. The use of appropriate features facili-
tated the overall performance of the prediction model.
Although some researchers have demonstrated that uti-
lizing raw EEG data for DL prediction models provides
excellent performance (98.32%) [20], selecting EEG fea-
tures of depression is a crucial strategy to improve the
model’s diagnostic accuracy. Currently, a large number of
studies have reported the variability in EEG between
depressed and normal individuals [49,50]. In depression
patients, the asymmetry of different rhythms in the left
and right hemispheres is one of the most valuable neuro-
physiological indicators [17]. Similarly, graph theory
analysis based on FC has been widely used in the study
of depression abnormalities [31]. Furthermore, various
nonlinear characteristics have been widely used in ML
models, outperforming various linear features in the
diagnosis of depression [12,13]. It was worth noting
that GA was used to reduce the dimensionality of the
features to improve the performance of the classifier in
some studies [14,24,25]. Therefore, it was mandatory to
select and combine various EEG features in a rational
way to further improve the accuracy of the ML model,
especially the left and right hemisphere asymmetry of
the alpha rhythm, FC, and various nonlinear traits.

Most studies used SVM and its variants as the main
classifier, which may be related to its reliable theoretical
foundation and flexible response characteristics to high-
dimensional data [12,13,36,44,45]. SVM was used to
classify EEG nonlinear features of depression with good
accuracy in almost half of the past studies. However, the
studies are also restricted by issues such as the small
sample size and excessive nonlinear features, which may
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further lead to the overfitting of the data. It was reported
that leave-one-out cross-validation or k-fold cross-
validation applied could be avoided overfitting of the
prediction model and thus improve the generalization
ability of the model [49]. Unfortunately, some studies did
not report explicit internal or external validation informa-
tion, thus failing to ensure the reliability of the prediction
model accuracy. Therefore, it was key to accurately select
the appropriate ML method, data properties, and reason-
able validation methods in the future. At present, DL,
especially CNN, is gradually applied to a depression diag-
nosis. The self-learning functions of CNN can effectively
obtain and integrate valid information from complex data
to obtain better prediction ability (95.96%) [16]. Therefore,
the application of DL to assist in depression diagnosis is
the focus of ensuing research.

Diagnostic heterogeneity of depression might be one
of the motives to lead the different results [48]. The dif-
ferent diagnostic tools and criteria might be used in the
different studies about EEG-based ML of depression diag-
nosis. It could influence the performance of the classifier
[43,44]. Furthermore, depression is usually co-morbidity
with other mental disorders such as anxiety, substance
use disorders, and borderline personality disorder [51,52].
Meanwhile, it was also difficult to distinguish between
bipolar and unipolar depression [53]. EEG information
might be different in various psychiatric symptoms. For-
tunately, some studies have begun to employ EEG-based
classification models to identify various depressive symp-
toms [54,55]. Especially, the researcher found that the
resting-state connectivity biomarker could be used to
define neurophysiological subtypes of depression [56].
It would be an important reference to precisely identify
clinical subtypes of depression.

In conclusion, it was necessary to continuously opti-
mize ML prediction models. To move the diagnostic
window of depression forward and effectively prevent
the onset and progression, some strategies should be
adopted such as increasing the sample size, combining
multiple EEG features, and using the DL model. In the
future, it would benefit many patients with psychiatric
disorders and high-risk groups, especially with affective
spectrum disorders.

At the same time, the limitations of our article still
needed to be deemed carefully. Our study only discusses
using a single EEG signal as a data-driven ML model in
the diagnosis of depression, which lacks clinical utility
and accuracy compared to current ML models combining
multimodal data. Given these limitations, we would
further integrate socio-epidemiological survey data, neuro-
biological and molecular biology techniques, and other

multimodal data to build more accurate artificial predic-
tion models, which would eventually provide new strate-
gies for early diagnosis of depression as well as other
psychiatry disorders.
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