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Given a dataset of careers and incomes, how large a difference of incomes between any pair of careers would be? 
Given a dataset of travel time records, how long do we need to spend more when choosing a public transportation 
mode 𝐴 instead of 𝐵 to travel? In this paper, we propose a framework that is able to infer orders of categories as 
well as magnitudes of difference of real numbers between each pair of categories using an estimation statistics 
framework. Our framework not only reports whether an order of categories exists, but it also reports magnitudes 
of difference of each consecutive pair of categories in the order. In a large dataset, our framework is scalable 
well compared with existing frameworks. The proposed framework has been applied to two real-world case 
studies: 1) ordering careers by incomes from 350,000 households living in Khon Kaen province, Thailand, and 2) 
ordering sectors by closing prices from 1,060 companies in NASDAQ stock market between years 2000 and 2016. 
The results of careers ordering demonstrate income inequality among different careers. The stock market results 
illustrate dynamics of sector domination that can change over time. Our approach is able to be applied in any 
research area that has category-real pairs. Our proposed Dominant-Distribution Network provides a novel approach 
to gain new insight of analyzing category orders. A software of this framework is available for researchers or 
practitioners in an R CRAN package: EDOIF.
1. Introduction

We use an order of items with respect to their specific properties all 
the time to make our decision. For instance, when we plan to buy a new 
house, we might use an ordered list of houses based on their prices or 
distances from a downtown. We might use travel times to order a list of 
transportation modes to decide which option is the best to travel from 
A to B, etc.

Ordering is related to a concept of partial order or poset in order the-
ory [1]. A well-known form of poset is a directed acyclic graph (DAG) 
that is widely used in studying of causality [2, 3], animal behavior [4], 
social networks [5, 6], etc. Additionally, in social science, ordering of 
careers based on incomes can be applied to a study of inequality in so-
ciety (see Section 7.2).

Hence, ordering is an important concept that is used daily and can 
impact society decision and scientific research. However, in the era of 
big data, inferring orders of categorical items based on their real-valued 
properties from large datasets are far from trivial.

* Corresponding author.
E-mail address: chainarong.amo@nectec.or.th (C. Amornbunchornvej).

In this paper, we investigate a problem of inferring an order of cat-
egories based on their real-valued properties, DOMINANT-DISTRIBUTION 
ORDERING INFERENCE PROBLEM, using the poset concept [1] as well as 
estimating a magnitude of difference between any pair of categories. 
We also propose a Dominant-Distribution Network as a representation of 
dominant category orders. We develop our framework based on a new 
concept of statistics named Estimation Statistics principle. The aim of es-
timation statistics is to resolve issues of the traditional methodology, 
null hypothesis significance testing (NHST), that focuses on using p-
value to make a dichotomous yes-no question (see Section 2).

In an aspect of scalability, our framework can finish analyzing a 
dataset of 10,000 data points in 11 seconds while a candidate approach 
needs 300 seconds for the same dataset. The software of our proposed 
framework is available for researchers and practitioners with a user-
friendly R CRAN package: EDOIF at [7].

This paper is organized as follows. Section 2 reviews related works, 
analyzing existing gaps and how our contributions address them. Then, 
Section 5 describes our proposed framework. Experimental setup is 
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Fig. 1. An example of distribution of category 𝐴 dominates a distribution of 
category 𝐵. A probability of a data point 𝑎 in 𝐴 s.t. 𝑎 ≥ 𝐸[𝐵] is greater than a 
probability of a data point 𝑏 in 𝐵 s.t. 𝑏 ≥𝐸[𝐴].

shown in Section 6 where corresponding results are discussed in Sec-
tion 7. Finally, Section 8 concludes this paper.

DOMINANT-DISTRIBUTION ORDERING INFERENCE PROB-
LEM: In order to say that one category (or set) dominates 
another, real numbers from one category must be higher 
than real numbers from another category on average (see 
Fig. 1). Given 𝐾 distributions of real numbers, our goal 
is to find an ordered list of domination of these dis-

tributions. If a distribution 𝐴 dominates a distribution 
𝐵 in the ordered list, then, with high probability, real 
numbers from 𝐴 are greater than real numbers from 𝐵
and not vice versa. A magnitude of difference of a real 
numbers from 𝐴 minus a real-number from 𝐵 must be 
positive on average with high probability.

2. Related works

There are several NHST frameworks in both parametric (e.g. Stu-
dent’s t-test [8]) and nonparametric (Mann-Whitney test [9]) types that 
are able to compare two distributions and report whether one has a 
greater sample mean or median than another using a p-value. Never-
theless, these approaches are not capable of providing a magnitude of 
mean difference between two distributions. Moreover, there are several 
issues of using only p-values to compare distributions. For instance, a 
null hypothesis might always get rejection since, in some system, there 
is always some effect but an effect might be too small [10]. The NHST 
also treats distribution comparison as a dichotomous yes-no question 
and ignores a magnitude of difference, which might be an important 
information for a research question [11]. Besides, using only a p-value 
information is a major issue on repeatability in many research publica-
tions [12].

Hence, Estimation Statistics has been developed as an alternative 
methodology to NHST. The estimation statistics is considered to be 
more informative than NHST [13, 14, 15]. A primary purpose of 
estimation-statistic methods is to determine magnitudes of difference 
among distributions in terms of point estimates and confidence inter-
vals rather than reporting only a p-value in NHST.

Recently, the Data Analysis using Bootstrap-Coupled ESTimation in 
R (DABESTR) framework [15], which is an estimation-statistics ap-
proach, has been developed. It mainly uses Bias-corrected and accel-
2

erated (BCa) bootstrap [16] as a main approach to estimate a confi-
dence interval of mean difference between distributions. BCa bootstrap 
is robust against a skew issue in a distribution [16] than a percentile 
confidence interval and other approaches. However, it is not obvious 
whether BCa bootstrap is better than other approaches in the task of in-
ferring a confidence interval of mean difference when two distributions 
have a high level of uniform noise (see Fig. 2). Moreover, DABESTR is 
not scalable well when there are many pairs of distributions to compare; 
it cannot display all confidence intervals of mean difference of all pairs 
in a single plot. Another issue of using BCa bootstrap is that it is too 
slow (see Section 6.5) in practice compared to other approaches. There 
is also no problem formalization of DOMINANT-DISTRIBUTION ORDERING 
INFERENCE PROBLEM, which should be considered as a problem that can 
be formalized by the Order Theory, using a partial order concept [1].

2.1. Our contributions

To fill these gaps in the field, we formalize DOMINANT-DISTRIBUTION 
ORDERING INFERENCE PROBLEM using a partial order concept [1] in the 
order theory (see Section 3). We provide a framework as a solution of
DOMINANT-DISTRIBUTION ORDERING INFERENCE PROBLEM. Our frame-
work is a non-parametric framework based on a bootstrap principle 
that has no assumption regarding models of data (see Section 4). We 
also propose a representation for a dominant order namely Dominant-

Distribution Network (Definition 4). Our proposed framework is capable 
of:

• Inferring an order of multiple categories: inferring orders of 
domination of categories and representing orders in a graph form;

• Estimating a magnitude of difference between a pair of cate-

gories: estimating confidence intervals of mean difference for all 
pairs of categories; and

• Visualizing a network of dominant orders and magnitudes of 
difference among categories: visualizing dominant orders in one 
graph entitled, Dominant-Distribution Network, as well as illustrating 
all magnitudes of difference of all category pairs within a single 
plot.

We evaluate our framework in an aspect of sensitivity analysis of 
uniform noise using simulation datasets that we posses a ground truth 
to compare our framework against several methods. To demonstrate 
real-world applications of our framework, we also provide two case 
studies. The first is a case of inferring income orders of careers in order 
to measure income inequality in Khon Kaen province, Thailand based 
on surveys of 350,000 households. Another case study is to use our 
framework to study dynamics of sector domination in NASDAQ stock 
market using 1,060 companies stock-closing prices between 2000 and 
2016. The assessment on these two independent/irrelevant domains in-
dicates the potential that our framework is applicable to any field of 
study that requires ordering of categories based on real-valued data. 
Our Dominant-Distribution Network (Definition 4) provides a novel ap-
proach to gain insight of analyzing category orders.

2.2. Why confidence intervals?

We can simply order categories by their means or medians. How-
ever, comparing only means cannot tell us how much overlapping 
areas of values from two categories are. Hence, we need mean con-
fidence intervals to approximate overlapping areas as well as using 
mean-difference confidence intervals to tell a magnitude of difference 
between two categories. Additionally, if there are many categories and 
we want to infer how many pairs of categories dominate others, then 
we can use a network to represent these dominant relationships. In this 
paper, we propose a network called a Dominant-distribution network to 
represent dominant relationships among categories.
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Fig. 2. An example of distribution of category 𝐴 dominates distribution of category 𝐵 with different degrees of uniform noise w.r.t. total data density: (left) 1%, 
(middle) 20%, and (right) 40% of noise. A higher degree of uniform noise implies that it is harder to distinguish whether 𝐴 dominates 𝐵.
3. Problem formalization

In this section, we provide details regarding that a dominant-
distribution relation is a partial order as well as providing the problem 
formalization of DOMINANT-DISTRIBUTION ORDERING INFERENCE PROB-
LEM.

For any given pair of categories 𝐴, 𝐵, we define an order that cat-
egory 𝐴 dominates category 𝐵 using their real random variables as 
follows.

Definition 1 (Dominant-distribution relation). Given two continuous ran-
dom variables 𝑋1 ∼ 1 and 𝑋2 ∼ 2 where 𝐷1, 𝐷2 are distributions. 
Assuming that 𝐷1 and 𝐷2 have the following property: 𝑃 (𝑋1 ≥𝐸[𝑋1]) =
𝑃 (𝑋2 ≥ 𝐸[𝑋2]). We say that 𝐷2 dominates 𝐷1 if 𝑃 (𝑋1 ≥ 𝐸[𝑋2]) ≤
𝑃 (𝑋2 ≥ 𝐸[𝑋1]); denoting 𝐷1 ⪯ 𝐷2. We denote 𝐷1 ≺ 𝐷2 if 𝑃 (𝑋1 ≥

𝐸[𝑋2]) < 𝑃 (𝑋2 ≥𝐸[𝑋1]).

We provide a concept of equivalent distributions as follows.

Proposition 3.1. Let 𝐷1, 𝐷2 be distributions such that 𝐷1 ⪯𝐷2 and 𝐷2 ⪯
𝐷1, then 𝐷1, 𝐷2 are equivalent distributions denoted 𝐷1 ≡𝐷2.

Proof. When 𝐷1 ⪯ 𝐷2 and 𝐷2 ⪯ 𝐷1, the first obvious case is 𝑃 (𝑋1 ≥

𝐸[𝑋2]) = 𝑃 (𝑋2 ≥ 𝐸[𝑋1]). For the case that 𝐷1 ≺ 𝐷2 and 𝐷2 ≺ 𝐷1, this 
cannot happen because of contradiction. Hence, 𝐷1 ⪯ 𝐷2 and 𝐷2 ⪯ 𝐷1
implies only 𝑃 (𝑋1 ≥𝐸[𝑋2]) = 𝑃 (𝑋2 ≥𝐸[𝑋1]). □

We provide a relationship between expectations of distribution and 
a dominant-distribution relation below.

Proposition 3.2. Let 𝐷1, 𝐷2 be distributions, and 𝑋1 ∼ 𝐷1, 𝑋2 ∼ 𝐷2 s.t. 
𝑃 (𝑋1 ≥𝐸[𝑋1]) = 𝑃 (𝑋2 ≥𝐸[𝑋2]). 𝐸[𝑋1] ≤𝐸[𝑋2] if and only if 𝐷1 ⪯𝐷2.

Proof. In the forward direction, suppose 𝐸[𝑋1] ≤ 𝐸[𝑋2]. Because the 
center of 𝐷2 is on the right of 𝐷1 in the real-number axis, hence, 𝑃 (𝑋2 ≥

𝐸[𝑋1]) covers most areas of 𝐷2 distribution except the area of 𝑃 (𝑋2 <

𝐸[𝑋1]). In contrast, 𝑃 (𝑋1 ≥ 𝐸[𝑋2]) covers only a tiny area in the far 
right of 𝐷1. This implies that 𝑃 (𝑋1 ≥ 𝐸[𝑋2]) ≤ 𝑃 (𝑋2 ≥ 𝐸[𝑋1]) or 𝐷1 ⪯
𝐷2.

In the backward direction, we use the proof by contradiction. Sup-
pose 𝐷1 ⪯𝐷2. Because 𝐷1 ⪯𝐷2 implies 𝑃 (𝑋1 ≥𝐸[𝑋2]) ≤ 𝑃 (𝑋2 ≥𝐸[𝑋1])
and 𝑃 (𝑋1 ≥𝐸[𝑋1]) = 𝑃 (𝑋2 ≥𝐸[𝑋2]), then we have the following impli-
cations.

Let us assume that 𝐸[𝑋2] < 𝐸[𝑋1]. This implies that 𝑃 (𝑋1 ≥𝐸[𝑋1]) <
𝑃 (𝑋1 ≥𝐸[𝑋2]). Since 𝑃 (𝑋1 ≥𝐸[𝑋1]) = 𝑃 (𝑋2 ≥𝐸[𝑋2]), we have

𝑃 (𝑋2 ≥𝐸[𝑋2]) < 𝑃 (𝑋1 ≥𝐸[𝑋2]). (1)

Assuming 𝐸[𝑋2] <𝐸[𝑋1], we also have

𝑃 (𝑋2 ≥𝐸[𝑋1]) < 𝑃 (𝑋2 ≥𝐸[𝑋2]). (2)
3

By combining inequation (1) and inequation (2), we have

𝑃 (𝑋2 ≥𝐸[𝑋1]) < 𝑃 (𝑋1 ≥𝐸[𝑋2]). (3)

The inequation (3) contradicts with the requirement of 𝐷1 ⪯𝐷2, which 
is 𝑃 (𝑋1 ≥𝐸[𝑋2]) ≤ 𝑃 (𝑋2 ≥𝐸[𝑋1])! Therefore, 𝐸[𝑋1] ≤𝐸[𝑋2]. □

In the next step, we show that a dominant-distribution relation has 
a transitivity property.

Proposition 3.3. Let 𝐷1, 𝐷2, 𝐷3 be distributions such that 𝐷1 ⪯𝐷2, 𝐷2 ⪯
𝐷3, then 𝐷1 ⪯𝐷3.

Proof. According to Proposition 3.2, 𝐷1 ⪯𝐷2 implies 𝐸[𝑋1] ≤𝐸[𝑋2].
Now, we have 𝐸[𝑋1] ≤ 𝐸[𝑋2] ≤ 𝐸[𝑋3]. The 𝐷3 distribution must be 

on the right hand side of 𝐷1. Hence, 𝑃 (𝑋1 ≥ 𝐸[𝑋3]) ≤ 𝑃 (𝑋3 ≥ 𝐸[𝑋1]), 
which implies 𝐷1 ⪯𝐷3. □

Now, we are ready to conclude that a dominant-distribution relation 
is a partial order on a set of continuous distributions.

Theorem 3.4. Given a set 𝑆 of continuous distributions s.t. for any pair 
𝐷1, 𝐷2 ∈ 𝑆. Assuming that for any 𝑋1 ∼ 𝐷1, 𝑋2 ∼ 𝐷2, 𝑃 (𝑋1 ≥ 𝐸[𝑋1]) =
𝑃 (𝑋2 ≥𝐸[𝑋2]). The DOMINANT-DISTRIBUTION RELATION is a partial order 
on a set 𝑆 [1].

Proof. A relation is a partial order on a set 𝑆 if it has the following 
properties: antisymmetry, transitivity, and reflexivity.

• Antisymmetry: if 𝐷1 ⪯𝐷2 and 𝐷2 ⪯𝐷1, then 𝐷1 ≡𝐷2 by Proposi-
tion 3.1.

• Transitivity: if 𝐷1 ⪯𝐷2, 𝐷2 ⪯𝐷3, then 𝐷1 ⪯𝐷3 by Proposition 3.3.
• Reflexivity: ∀𝐷, 𝐷 ⪯𝐷.

Therefore, by definition, the DOMINANT-DISTRIBUTION RELATION is a 
partial order on a set of continuous distributions. □

Suppose we have 𝐷1 ⪯ 𝐷2 and 𝑋1 ∼ 𝐷1, 𝑋2 ∼ 𝐷2. We can have 
𝑌 = 𝑋2 −𝑋1 as a random variable that represents a magnitude of dif-
ference between two distributions. Suppose 𝜇𝑌 is the true mean of 𝑌 ’s 
distribution, our next goal is to find the confidence interval of 𝜇𝑌 .

Definition 2 (𝛼-Mean-difference confidence interval). Given two contin-
uous random variables 𝑋1 ∼1 and 𝑋2 ∼2 where 𝐷1, 𝐷2 are distribu-
tions, 𝑌 =𝑋2 −𝑋1, and 𝛼 ∈ [0, 1]. An interval [𝑙, 𝑢] is 𝛼-mean-difference 
confidence interval if 𝑃 (𝑙 ≤ 𝜇𝑌 ≤ 𝑢) ≥ 1 − 𝛼.

Now, we are ready to formalize DOMINANT-DISTRIBUTION ORDERING 
INFERENCE PROBLEM.
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Problem 1: DOMINANT-DISTRIBUTION ORDERING INFERENCE 
PROBLEM.

Input : A set  = {(𝑥, 𝑐)} s.t. 𝑥 is a realization of 𝑋𝑐 ∼𝐷𝑐 , and 𝑋𝑐1
, 𝑋𝑐2

i.i.d. from 
the same 𝐷𝑐 if 𝑐1 = 𝑐2 = 𝑐.

Output : A set of orders 𝐷𝑖 ⪯𝐷𝑗 , and their 𝛼-mean-difference confidence interval 
𝐶𝐼𝑖,𝑗 = [𝑙𝑖,𝑗 , 𝑢𝑖,𝑗 ].

4. Statistical inference

4.1. Bootstrap approach

Suppose we have 𝑌 =𝑋2 −𝑋1 and 𝑌 ∼𝐷𝑌 with the unknown 𝜇𝑌 , we 
can use the mean 𝑌 =𝐸[𝑌 ] as the point estimate of 𝜇𝑌 since it is an un-
biased estimator. We deploy the estimation statistics [13, 14, 15], which 
is a framework that focuses on estimating an effect sizes, 𝑌 , of two dis-
tributions. Compared to null hypothesis significance testing approach 
(NHST), estimation statistics framework reports not only whether two 
distributions are significantly different, but it also reports magnitudes 
of difference in the form of confidence interval.

The estimation statistics framework uses bootstrap technique [17] 
to approximately infer a bootstrap confidence interval of 𝜇𝑌 . Assuming 
that the number of times of bootstrapping is large, according to the 
Central Limit Theorem (CLT), even though an underlying distribution 
is not normal distributed, summary statistics (e.g. means) of random 
sampling approaches a normal distribution. Hence, we can use a normal 
confidence interval to approximate the confidence interval of 𝜇𝑌 .

Theorem 4.1 (Central Limit Theorem (CLT) [18]). Given 𝑋1, … , 𝑋𝑛 be 
i.i.d. random variables with 𝐸[𝑋𝑖] = 𝜇 < ∞ and 0 < VAR(𝑋𝑖) = 𝜎2 < ∞, 
and �̄� =

∑𝑛
𝑖=1 𝑋𝑖

𝑛
. Then, the random variable

𝑍𝑛 =
�̄� − 𝜇

𝜎∕
√

𝑛

converges in distribution to a standard normal random variable as 𝑛 goes to 
infinity, that is

lim
𝑛→∞

𝑃 (𝑍𝑛 ≤ 𝑥) = Φ(𝑥),∀𝑥 ∈ℝ,

where Φ(𝑥) is the standard normal CDF.

Lemma 4.2. Given 𝑋1,1, … , 𝑋1,𝑘 are random variables i.i.d. from 𝐷1, 
𝑋2,1, … , 𝑋2,𝑘 are random variables i.i.d. from 𝐷2, and 𝑌1, … , 𝑌𝑘 are ran-

dom variables where 𝑌𝑖 =𝑋2,𝑖 −𝑋1,𝑖.

Assuming that the number 𝑘 is large, the distribution of 𝑌𝑖 is unknown 
with an unknown variance VAR(𝑌𝑖) = 𝜎2

𝑌
< ∞. Suppose 𝑌 is the sample 

mean of 𝑌1, … , 𝑌𝑘, 𝜇𝑌 = 𝐸[𝑌𝑖], and 𝑠𝑌 is their standard deviation. Given 
that Φ(⋅) is the standard normal CDF and 𝑧 𝛼

2
= Φ−1(1 − 𝛼

2 ), then the interval

𝐶𝐼𝑌 = [𝑌 − 𝑧 𝛼

2

𝑠𝑌√
𝑘
,𝑌 + 𝑧 𝛼

2

𝑠𝑌√
𝑘
] (4)

is approximately (1 − 𝛼)100% confidence interval for 𝜇𝑌 .

Proof. Since 𝑘 is large, the distribution of sample mean of 𝑌1, … , 𝑌𝑘 fol-
lows the Central Limit Theorem. This implies that the random variable

𝑍𝑘 =
𝑌 − 𝜇𝑌

𝜎𝑌 ∕
√

𝑘

has approximately  (0, 1) distribution. Hence, 𝑌 is approximately nor-
mal distributed from  (𝜇𝑌 , 𝜎𝑌 ∕

√
𝑘). The (1 − 𝛼)100% confidence inter-

val for 𝑌 is [𝜇𝑌 − 𝑧 𝛼

2

𝜎𝑌√
𝑘
, 𝜇𝑌 + 𝑧 𝛼

2

𝜎𝑌√
𝑘
].

Since 𝑌 is the unbiased estimator of 𝜇𝑌 and 𝑠𝑌 is the unbiased esti-
mator of 𝜎𝑌 , we can have the approximation of (1 − 𝛼)100% confidence 
interval of 𝜇𝑌 as follows.

[𝑌 − 𝑧 𝛼

2

𝑠𝑌√ , 𝑌 + 𝑧 𝛼

2

𝑠𝑌√ ] □

𝑘 𝑘

4

According to Lemma 4.2, we need to access to a large number of 
𝑌1, … , 𝑌𝑘 to infer the confidence interval. We can generate 𝑌1, … , 𝑌𝑘 s.t. 
𝑘 is large using a bootstrap technique. The following theorem allows us 
to approximate the mean of 𝑌𝑖 in a bootstrap approach.

Theorem 4.3 (Bootstrap convergence [19, 20]). Given 𝑋1, … , 𝑋𝑛 are ran-

dom variables i.i.d. from an unknown distribution 𝐷 with VAR(𝑋𝑖) = 𝜎2 <

∞. We choose 𝑋′
1, … , 𝑋′

𝑚
from the set {𝑋1, … , 𝑋𝑛} by resampling with re-

placement. As 𝑛, 𝑚 approach ∞:

• Asymptotic mean: a conditional distribution of 
√

𝑚(�̄�′ − �̄�) given 
𝑋1, … , 𝑋𝑛 converges weakly to  (0, 𝜎2).

• Asymptotic standard deviation: 𝑠𝑚 ←←→ 𝜎 in a conditional probability: 
that is for any positive 𝜖,

𝑃 (|𝑠𝑚 − 𝜎| > 𝜖|𝑋1,… ,𝑋𝑛) ←←→ 0,

where �̄�′ =𝑚−1∑𝑚

1 𝑋′
𝑖
, �̄� = 𝑛−1

∑𝑛

1𝑋𝑖, and 𝑠2
𝑚
=𝑚−1∑𝑚

1 (𝑋
′
𝑖
− �̄�′)2.

From Theorem 4.3, when we increase a number of times we perform 
the resampling with replacement on 𝐷1, 𝐷2 to be large, we can approx-
imate the 𝑌 using the bootstrap sample mean 𝑌 ′. The same applies for 
the standard deviation 𝑠𝑌 that we can use its bootstrap version 𝑠′

𝑌
to 

approximate it. By using 𝑌 ′, 𝑠′
𝑌

, we can approximate the confidence in-
terval in Lemma 4.2.

4.2. Dominant-distribution relation inference

According to Proposition 3.2, 𝐸[𝑋1] ≤ 𝐸[𝑋2] implies 𝐷1 ⪯𝐷2. Sup-
pose that 𝜇1 = 𝐸[𝑋1] and 𝜇2 = 𝐸[𝑋2] are also random variables. If 
𝑃 (𝜇1 ≤ 𝜇2) or 𝑃 (𝜇2 − 𝜇1 ≥ 0) = 1, then 𝑃 (𝐷1 ⪯𝐷2) = 1. However, in real-
ity, 𝑃 (𝜇2 −𝜇1 ≥ 0) might not equal to one due to noise. Hence, we define 
the following notion of a relaxing dominant-distribution relation.

Definition 3 (𝛼-Dominant-distribution relation). Given two continuous 
random variables 𝑋1 ∼1 and 𝑋2 ∼2 where 𝐷1, 𝐷2 are distributions, 
and 𝛼 ∈ [0, 1]. Suppose 𝜇1 = 𝐸[𝑋1], 𝜇2 = 𝐸[𝑋2], we say that 𝐷2 domi-
nates 𝐷1 if 𝑃 (𝐸[𝜇2 − 𝜇1] ≥ 0) ≥ 1 − 𝛼; denoting 𝐷1 ⪯𝛼 𝐷2.

Suppose we have two empirical distributions 𝐷′
1 and 𝐷′

2. From The-
orem 4.3 and Lemma 4.2, we can define 𝑋1 and 𝑋2 as random variables 
from sample-mean distributions 𝐷1, 𝐷2 of empirical distributions 𝐷′

1
and 𝐷′

2. We can get 𝐷1 and 𝐷2 by bootstrapping data points from 𝐷′
1

and 𝐷′
2. Suppose 𝑌 =𝑋2 −𝑋1, then, we can approximate the confidence 

interval of 𝜇𝑌 =𝐸[𝑌 ] with 𝛼 using the interval 𝐶𝐼𝑌 in Lemma 4.2.
Next, we use (1 − 𝛼)100% confidence interval of 𝜇𝑌 to infer whether 

𝐷1 ⪯𝛼 𝐷2. Given 𝜇𝑦 = 𝜇2 −𝜇1, according to the Definition 3, if 𝑃 (𝐸[𝜇𝑌 ] ≥
0) ≥ 1 − 𝛼, then 𝐷1 ⪯𝛼 𝐷2. We can approximate whether 𝐸[𝜇𝑌 ] ≥ 0 with 
the probability 1 −𝛼 by the approximate (1 −𝛼)100% confidence interval 
of 𝜇𝑌 : 𝐶𝐼𝑌 = [𝑌 − 𝑧 𝛼

2

𝑠𝑌√
𝑘
, 𝑌 + 𝑧 𝛼

2

𝑠𝑌√
𝑘
]. If the lower bound 𝑌 − 𝑧 𝛼

2

𝑠𝑌√
𝑘

is 
greater than zero, then 𝑃 (𝐸[𝜇𝑌 ] ≥ 0) is approximately 1 − 𝛼.

In the aspect of hypothesis test, determining whether 𝐷1 ⪯𝛼 𝐷2 is 
the same as testing whether the expectation of 𝑋1 ∼𝐷1 is less than the 
expectation of 𝑋2 ∼ 𝐷2 where a null hypothesis is 𝐸[𝑋2] − 𝐸[𝑋1] < 0
and an alternative hypothesis is 𝐸[𝑋2] −𝐸[𝑋1] ≥ 0. We can verify these 
two hypothesis by inferring the confidence interval of 𝜇𝑌 = 𝐸[𝑋2] −
𝐸[𝑋1]. If the lower bound of 𝜇𝑌 is greater than zero with the probability 
1 − 𝛼, then we can reject the null hypothesis. Moreover, not only the 
confidence interval can test the null hypothesis, but it is also be able to 
tell us a magnitude of mean difference between 𝐷1 and 𝐷2. Hence, a 
confidence interval is more informative than the NHST approach.

Given a set of distributions {𝐷1, … , 𝐷𝑐}, in this paper, we choose to 
represent 𝛼-Dominant-distribution relations using a network as follows.
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Fig. 3. A high-level overview of the proposed framework.
Definition 4 (Dominant-distribution network). Given a set of 𝑐 contin-
uous distributions 𝑆 = {𝐷1, … , 𝐷𝑐} and 𝛼 ∈ [0, 1]. Let 𝐺 = (𝑉 , 𝐸) be a 
directed acyclic graph. The graph 𝐺 is a Dominant-distribution network 
s.t. a node 𝑖 ∈ 𝑉 represents 𝐷𝑖 and (𝑖, 𝑗) ∈𝐸 if 𝐷𝑗 ⪯𝛼 𝐷𝑖.

In the Section 5, we discuss about the proposed framework that can 
infer a dominant-distribution network 𝐺 from a set of category-real val-
ues.

5. Methods

For any given pair of categories 𝐴, 𝐵, based on Definition 1, we 
defined that a dominant-distribution relation of category 𝐴 dominates 
category 𝐵 exists if a value of 𝐴 is higher than a value of 𝐵 with high 
probability.

Since a dominant-distribution relation is a partial order relation 
(Theorem 3.4 in Section 3), an order always exists in any given set 
of category-real pairs. For each pair of categories 𝐴 and 𝐵, we can use a 
bootstrap approach to infer whether 𝐴 ⪯ 𝐵 as well as using an inferred 
mean-difference confidence interval from bootstrapping to represent a 
magnitude of difference between 𝐴 and 𝐵 (see Section 4).

We propose the Empirical Distribution Ordering Inference Frame-
work (EDOIF) as a solution of DOMINANT-DISTRIBUTION ORDERING 
INFERENCE PROBLEM using bootstrap and additional non-parametric 
method. Fig. 3 illustrates an overview of our framework. Given a set of 
order pairs of category-real values 𝑆 = {(𝑐𝑖, 𝑥𝑖)} as an input of our frame-
work where 𝑐𝑖 ∈  s.t.  = {𝑐} is a set of category classes, and 𝑥𝑖 ∈ℝ, in 
this paper, we assume that for any pair (𝑐𝑖, 𝑥𝑖), (𝑐𝑗 , 𝑥𝑗 ) if 𝑐𝑖 = 𝑐𝑗 = 𝑐, then 
both 𝑥𝑖 and 𝑥𝑗 are realizations of random variables from a distribution 
𝐷′

𝑐
.
In the first step, we infer a sample-mean confidence interval of each 

𝐷′
𝑐

and a mean-difference confidence interval between each pair of 𝐷′
𝑎

and 𝐷′
𝑏

(Section 5.1). Then, in Section 5.2, we provide details regarding 
the way to infer the Dominant-distribution network.

5.1. Confidence interval inference

Algorithm 2: MeanBootstrapFunction.
input : 𝐷′ = {𝑥𝑖}, 𝐾 , and 𝛼
output : 𝐷, 𝐶𝐼𝜇

1 Setting 𝐷 = ∅;
2 for 𝑘 = 1 to 𝑘 =𝐾 do

3 Get 𝐷′
𝑘

by sampling 𝐷′ with replacement;
4 Compute a sample mean of 𝐷′

𝑘
: �̄�𝑘 ;

5 Add �̄�𝑘 to 𝐷;

end

6 Infer (1 − 𝛼)100-confidence interval of 𝜇, denoted 𝐶𝐼𝜇 , from 𝐷;
7 Return 𝐷, 𝐶𝐼𝜇 ;

We separate a set 𝑆 = {(𝑐𝑖, 𝑥𝑖)} into 𝐷′
1, … , 𝐷′

𝐶
where 𝐷′

𝑐
= {𝑥𝑖} is 

a set of data points 𝑥𝑖, … that belong to a category 𝑐 in 𝑆. We sort 
𝐷′

1, … , 𝐷′
𝐶

based on their sample means s.t. �̄�𝑝 ≤ �̄�𝑝+1 where �̄�𝑝, �̄�𝑝+1
are sample means of 𝐷′ , 𝐷′ respectively.
𝑝 𝑝+1

5

For each 𝐷′
𝑐
, we perform the bootstrap approach (Section 4.1) to 

infer a sample-mean distribution 𝐷𝑐 and its (1 − 𝛼) × 100-confidence 
interval. Given 𝑋𝑐 ∼𝐷𝑐 and 𝜇𝑐 = 𝐸[𝑋𝑐 ], the framework infers the con-
fidence interval of 𝜇𝑐 w.r.t. 𝐷𝑐 denoted 𝐶𝐼𝜇𝑐

. Algorithm 2 illustrates 
details on how to infer 𝐶𝐼𝜇𝑐

using the bootstrap approach.

Algorithm 3: MeanDiffBootstrapFunction.
input : 𝐷′

𝑝
, 𝐷′

𝑞
, 𝐾 , and 𝛼

output : 𝐷𝑌 , 𝐶𝐼𝑌

1 Setting 𝐷𝑌 = ∅;
2 for 𝑘 = 1 to 𝑘 =𝐾 do

3 Get 𝐷′
𝑝,𝑘

by sampling 𝐷′
𝑝

with replacement;

4 Get 𝐷′
𝑞,𝑘

by sampling 𝐷′
𝑞

with replacement;

5 Compute a sample means of 𝐷′
𝑝,𝑘

, 𝐷′
𝑞,𝑘

: �̄�𝑝,𝑘 and �̄�𝑞,𝑘;

6 Add the mean difference �̄�𝑞,𝑘 − �̄�𝑝,𝑘 to 𝐷𝑌 ;

end

7 Infer (1 − 𝛼)100-confidence interval of 𝜇𝑌 , denoted 𝐶𝐼𝑌 , from 𝐷𝑌 ;
8 Return 𝐷𝑌 , 𝐶𝐼𝑌 ;

In the next step, we infer an 𝛼-mean-difference confidence interval 
of each pair 𝐷′

𝑝
, 𝐷′

𝑞
.

Given 𝐷𝑝, 𝐷𝑞 are sample-mean distributions that are obtained by 
bootstrapping 𝐷′

𝑝
, 𝐷′

𝑞
respectively, 𝑋𝑝 ∼𝐷𝑝, 𝑋𝑞 ∼𝐷𝑞 , 𝑌 =𝑋𝑞 −𝑋𝑝, and 

𝜇𝑌 =𝐸[𝑌 ].
The framework uses the bootstrap approach to infer sample-mean-

difference distribution of 𝑌 and the (1 − 𝛼)100-confidence interval of 
𝜇𝑌 . Algorithm 3 illustrates the details of how to infer 𝐶𝐼𝑌 using the 
bootstrap approach in general.

Even though we can use a normal confidence interval as a con-
fidence interval in line 6 of Algorithm 2 and line 7 of Algorithm 3
(see Lemma 4.2), the normal bound has an issue when a distribution 
is skew [15, 16]. Hence, we deploy both percentile confidence intervals 
and Bias-corrected and accelerated (BCa) bootstrap [16] to infer both 
confidence intervals: 𝐶𝐼𝜇𝑐

and 𝐶𝐼𝑌 .
For a percentile confidence interval inference (our default option) 

and BCa bootstrap, we deploy a standard library of bootstrap ap-
proaches in R “boot” package [21, 22, 23].

5.2. Dominant-distribution network inference

The first step of inferring a dominant-distribution network 𝐺 =
(𝑉 , 𝐸) in Definition 4 is to infer whether 𝐷𝑝 ⪯𝛼 𝐷𝑞 .

In a network 𝐺 = (𝑉 , 𝐸), a node 𝑝 ∈ 𝑉 represents 𝐷𝑝 and (𝑞, 𝑝) ∈𝐸 if 
𝐷𝑝 ⪯𝛼 𝐷𝑞 .

Given 𝑋𝑝 ∼𝐷𝑝, 𝑋𝑞 ∼𝐷𝑞 , 𝑌 =𝑋𝑞 −𝑋𝑝, we can check a normal lower 
bound of 𝐶𝐼𝑌 in Lemma 4.2 that we mentioned in Section 4.1. If a 
lower bound 𝑌 − 𝑧 𝛼

2

𝑠𝑌√
𝑘

is greater than zero, then 𝐷𝑝 ⪯𝛼 𝐷𝑞 . However, 
we deploy Mann-Whitney test [9] to infer whether 𝐷𝑝 ⪯𝛼 𝐷𝑞 due to 
its robustness (see Section 7). Along with Mann-Whitney test [9], we 
also deploy a p-value adjustment method by Benjamini and Yekutieli 
(2001) [24] to reduce a false positive issue.

In the next step, for each 𝐷𝑝, we add node 𝑝 to 𝑉 . For any pair 
𝐷𝑝, 𝐷𝑞 , if 𝐷𝑝 ⪯𝛼 𝐷𝑞 , then (𝑞, 𝑝) ∈ 𝐸. One of properties we have for 𝐺
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Fig. 4. A dominant-distribution network 𝐺 of simulation datasets.

is that a set of nodes that are reachable by a path from 𝑞 is a set of 
distributions of which 𝐷𝑞 dominates them.

5.3. Visualization

We use ggplot2 package [25] to create mean confidence intervals 
(e.g. Fig. 8) and mean-difference confidence intervals (e.g. Fig. 10) 
plots. For a dominant-distribution network, we visualize it using iGraph 
package [26] (e.g. Fig. 9).

6. Experimental setup

We use both simulation and real-world datasets to evaluate our 
method performance.

6.1. Simulation data for sensitivity analysis

We simulated datasets from a mixture distribution, which consists 
of normal distribution, Cauchy distribution, and uniform distribution. 
A random variable 𝑋 of our mixture distribution is defined as follows.

𝑋 ∼
⎧⎪⎨⎪⎩

 (𝜇0, 𝜎0), with probability 0.5
(𝑥0, 𝛾), with probability (0.5 − 𝑝1)
 (𝐿1,𝑈1), with probability 𝑝1

(5)

Where  (𝜇0, 𝜎0) is a normal distribution with mean 𝜇0 and vari-
ance 𝜎2

0 , (𝑥0, 𝛾) is a Cauchy distribution with location 𝑥0 and scale 
𝛾 ,  (𝐿1, 𝑈1) is a uniform distribution with the minimum number 
𝐿1 and maximum number 𝑈1, and 𝑝1 is a value that represents 
a level of uniform noise. When the 𝑝1 increases, the ratio of uni-
form distribution in the mixture distribution increases. We set 𝑝1 =
{0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40} to generate simulation 
datasets in order to perform the sensitivity analysis.

In all simulation datasets, there are five categories: 𝐶1, … , 𝐶5. The 
dominant-distribution relations of these categories are represented as 
a dominant-distribution network 𝐺 as shown in Fig. 4 where only 𝐶5
dominates others. For 𝐶1, … , 𝐶4, we set 𝜇0 = 80, 𝜎0 = 16, 𝑥0 = 85, 𝛾 =
2, 𝐿1 = −400, 𝑈1 = 400 to generate realizations of 𝑋. For 𝐶5, we set 
𝜇0 = 140, 𝜎0 = 16, 𝑥0 = 145, 𝛾 = 2, 𝐿1 = −400, 𝑈1 = 400.

Because a uniform distribution in the mixture distribution has a 
range between -400 and 400, but all areas of distributions of 𝐶1, … , 𝐶5
are within [−400, 400], a method has more issue to distinguish whether 
𝐶𝑖 ⪯ 𝐶𝑗 for any 𝐶𝑖, 𝐶𝑗 ∈ {𝐶1, … , 𝐶5} when we increase 𝑝1 (see Fig. 2).

The main task of inference here is to measure whether a given 
method can infer that 𝐶𝑖 ⪯ 𝐶𝑗 w.r.t. a network in Fig. 4 from these 
simulation datasets. We generate 100 datasets for each different value 
of 𝑝1. In total, there are 900 datasets.

To measure the performance of ordering inference, we define true 
positive (TP), false positive (FP), and false negative (FN) in order to 
calculate precision, recall, and F1 score as follows. Given any pair of 
6

categories 𝐶𝑖, 𝐶𝑗 , TP is when both ground truth (Fig. 4) and inferred 
result agree that 𝐶𝑖 ⪯ 𝐶𝑗 is true. FP is when a method infers that 𝐶𝑖 ⪯ 𝐶𝑗

but the ground truth disagrees. FN is when the ground truth has 𝐶𝑖 ⪯ 𝐶𝑗

but an inferred result from the method disagrees.
In the task of inferring whether 𝐶𝑖 ⪯ 𝐶𝑗 , we compared our approach 

(Mann-Whitney test [9] with p-value adjustment method [24]) against 
1) t-test with Pooled Standard Deviation [27], 2) t-test with p-value 
adjustment [24], 3) BCa bootstrap, and 4) percentile bootstrap (Perc). 
For both BCa bootstrap, and percentile bootstrap, we decide whether 
𝐶𝑖 ⪯ 𝐶𝑗 based on the lower bound of confidence intervals of mean dif-
ference between 𝐶𝑖 and 𝐶𝑗 . If the lower bound is positive, then 𝐶𝑖 ⪯ 𝐶𝑗 , 
otherwise, 𝐶𝑖  𝐶𝑗 .

6.2. Real-world data: Thailand’s population household information

This dataset was obtained from Thailand household-population sur-
veys from Thai government in 2018 [28]. The purpose of this survey 
was to analyze the Multidimensional Poverty Index (MPI) [29, 30], 
which is considered as a current main poverty index that the United 
Nations (UN) uses. We deployed the data of household incomes and 
careers information from 355,801 households of Khon Kaen province, 
Thailand to perform our analysis. We categorized careers of heads of 
households into 14 types: student (student), freelance (Freelance), plant 
farmer (AG-Farmer), peasant (AG-Peasant), orchardist (AG-Orchardist), 
fishery (AG-Fishery), animal farmer (AG-AnimalFarmer), unemploy-
ment (Unemployment), merchant (Merchant), company employee (EM-
ComEmployee), business owner (Business-Owner), government’s com-
pany employee (EM-ComOfficer), government officer (EM-Officer), and 
others (Others). The incomes in this dataset are annual incomes of 
households and the unit of incomes is in Thai Baht (THB).

Given a set of ordered pairs of career and household income, we 
analyzed the income gaps of different types of careers in order to study 
the inequality of population w.r.t. people careers.

6.3. Real-world data: NASDAQ Stock closing prices

The NASDAQ stock-market dataset has been obtained by the work 
in [4] from Yahoo! Finance.1 The dataset was collected from January 
2000 to January 2016. It consists of a set of time series of stock closing 
prices of 1,060 companies. Each company time series has a total length 
as 4,169 time-steps. Due to the high variety of company sectors, in this 
study, we categorized these time series into five sectors: ‘Service & Life 
Style’, ‘Materials’, ‘Computer’, ‘Finance’, and ‘Industry & Technology’.

In order to observe dynamics of domination, we separated time se-
ries into two intervals: 2000-2014, and 2015-2016. For each interval, 
we aggregated the entire time series of a company using median.

Given a set of ordered pairs of closing-price median and sector, the 
purpose of this study is to find which sectors dominated others in each 
interval.

6.4. Parameter settings

We set a significant level 𝛼 = 0.05 and a number of times of sampling 
with replacement for a bootstrap approach is 1, 000 for all experiments 
unless stated otherwise.

6.5. Running time and scalability analysis

In this experiment, we compared running times of two methods of 
bootstrapping to infer confidence intervals: BCa bootstrap (BCa) [16] 
and percentile (perc) approaches using simulation datasets from the 
previous section.2 We set a number of bootstrap replicates (numbers 

1 http://finance.yahoo.com/.
2 The computer specification that we used in this experiment is Dell 730, with 

CPU Intel Xeon E5-2630 2.4 GHz, and Ram 128 GB.
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Fig. 5. A comparison of running time between two methods of bootstrap confidence intervals with several numbers of data points.

Fig. 6. A comparison of running time between two methods of bootstrapping with different numbers of bootstrap replicates (numbers of times of sampling with 
replacement).
of times of sampling with replacement) at 4,000 rounds. In Fig. 5, the 
result implies that the BCa method was a lot slower than the percentile 
approach. In a dataset of 10,000 data points, the BCa bootstrap required 
the running time around 300 seconds while the percentile approach re-
quired only 11 seconds. Besides, for a dataset that has 500,000 data 
points, percentile approach was able to finish running around 11 min-
utes. This indicates that the percentile approach is scalable better than 
the BCa bootstrap.

In an aspect of numbers of bootstrap replicates, Fig. 6 illustrates 
running times of two methods of bootstrapping with different numbers 
of bootstrap replicates.3 The BCa bootstrap required six times or more 
running time than percentile bootstrap (perc).

Lastly, when datasets are too large, one of common methods that can 
deal with a large dataset for inferring bootstrap confidence intervals is 
to sample some data points from a full dataset. Table 1 shows a result 
from both bootstrap methods using different numbers of data points 
sampling from a simulation dataset (40,000 data points with 𝑝1 = 0.1) in 
Section 6.1.4 This result illustrates that a higher number of data points 
leads to a higher F1 score. In this dataset, we need only 20 percent 
of data points (8,000 data points) to accomplish a perfect F1 score at 
one for both bootstrap methods. However, the BCa method took longer 
running time than the perc method while both approaches provided 

3 The dataset has 2,500 data points.
4 We set a number of bootstrap replicates at 40,000 for all cases in the table.
7

Table 1. A comparison of running time, numbers of data points, and F1 score be-
tween two methods of bootstrapping using a simulation dataset that has 40,000 
data points. Each row represents a result from a specific number of data points 
sampling from the full dataset. F1 scores were computed w.r.t. a simulation 
ground truth in the task of categories ordering inference.

Bootstrap: BCa Bootstrap: perc

#data points F1 score Time (sec) F1 score Time (sec)
400 0.67 9.16 0.40 6.40

4,000 0.67 27.50 0.89 10.01

8,000 1.00 64.61 1.00 13.15

20,000 1.00 242.22 1.00 22.60

40,000 1.00 838.30 1.00 37.61

almost similar F1 scores. Hence, for large datasets, we recommend users 
to use the percentile approach since it is fast and the performance is 
comparable or even better than the BCa method that we will show in 
the next section.

7. Results

7.1. Simulation results

In this section, we report results of our analysis from simulation 
datasets (Section 6.1). The main task is an ordering inference; deter-
mining whether 𝐴 ⪯ 𝐵 for all pairs of categories.
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Fig. 7. The sensitivity analysis of categories ordering inference. Simulation datasets containing different levels of noise were deployed for the experiment (best 
viewed in color codes).
Table 2. The categories ordering inference result; each approach is used to infer 
orders of any pair of two categories w.r.t. the real-values within each category.

Precision Recall F1 scores
ttest (pool.sd) 0.61 0.52 0.55

ttest 0.72 0.72 0.72

Bootstrap: BCa 0.70 0.67 0.68

Bootstrap: Perc 0.73 0.68 0.70

EDOIF (Mann-Whitney) 0.77 0.85 0.81

Mean 0.60 1.00 0.75

Median 0.60 1.00 0.75

Table 2 illustrates the categories ordering inference result. Each 
value in the table is the aggregate results of datasets from different val-
ues of 𝑝1: 𝑝1 = {0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}. The table 
shows that our approach (using Mann-Whitney) performance is better 
than all approaches. While ttest (pool.sd) performed the worst, the tra-
ditional t-test performed slightly better than both bootstrap approaches. 
Comparing between BCa and percentile bootstraps, the performance 
of percentile bootstrap is slightly better than the BCa bootstrap. Even 
though the BCa bootstrap covers the skew issue better than the per-
centile bootstrap [15, 16], our result indicates that percentile bootstrap 
is more accurate than the BCa bootstrap when the noise presents in the 
task of ordering inference.

Fig. 7 shows the result of sensitivity analysis of all approaches when 
the uniform noise presents in different degrees. The horizontal axis rep-
resents noise ratios and the vertical axis represents F1 scores in the task 
of ordering inference. According to Fig. 7, our approach (using Mann-
Whitney) performed better than all methods in all levels of noise. t-test 
preformed slightly better than both bootstrap approaches. Results from 
Both bootstrap methods are quite similar. The t-test with (pool.sd) per-
formed the worst. Both Table 2 and Fig. 7 illustrate the robustness of 
our approach.

We also compare our method with the summary statistics: mean 
and median to perform the categories ordering inference. Table 2 illus-
trates that mean and median had high recall but low precision values 
compared against other methods. This is due to the fact that when one 
distribution dominate other significantly, by using just simple summary 
statistics, we can detect the domination. However, when two distri-
butions are not dominated each other, their means or medians might 
greater or lower than each other slightly due to the noise. This makes 
the false positive cases occur if we use these summary statistics to de-
tect domination relations. Hence, the precision values of both mean and 
median are low. Fig. 7 also illustrates the sensitivity analysis results 
of summary statistics: mean and median. Even though the mean and 
median results were not affect by the degree of noise, they performed 
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poorly compared to our approach (EDOIF). This makes the point that 
our method is more robust than summary statistics in this task.

7.2. Case study: ordering career categories based on Thailand’s household 
incomes in Khon Kaen province

In this section, we report orders of careers based on incomes of 
a population in Khon Kaen province, Thailand. Due to the expensive 
cost of computation of the BCa bootstrap, in this dataset, since there 
are 353,910 data points, we used the percentile bootstrap as a main 
method. Fig. 8 illustrates the bootstrap-percentile confidence intervals 
of mean incomes of all careers with an order ascendingly sorted by in-
come sample-means.

A government officer (EM-Officer) class is ranked as the 1st place of 
career that has the highest mean income, while a student class has the 
lowest mean income.

Fig. 9 shows orders of dominant-distribution relations of career 
classes in a form of a dominant-distribution network. It shows that 
a government officer (EM-Officer) class dominates all career classes. 
In a dominant-distribution network, its network density represents a 
level of domination; higher network density implies there are many 
categories that are dominated by others. The network density of the 
network is 0.79. Since the network density is high, a higher-rank career 
class seems to dominate a lower-rank career class with high probability. 
This implies that different careers provide different incomes. In other 
words, gaps between careers are high. Fig. 10 provides the magnitudes 
of income-mean difference between pairs of careers in the form of confi-
dence intervals. It shows us that the majority of pairs of different careers 
have gaps of annual incomes at least 25,000 THB (around $800 USD)!

Since one of definitions of economic inequality is income inequal-
ity [31, 32, 33], there is a high degree of career-income inequality 
in this area. In societies with a more equal distribution of incomes, 
people are healthier [32]. This inequality might lead to other issues 
such as health issue. Moreover, the income inequality is associate 
with happiness of people [33]. This case study shows that using our 
dominant-distribution network and mean-difference confidence inter-
vals is a novel way of studying career-income inequality.

Table 3 shows the Khon Kaen empirical result of dominant-
distribution network density inference varying numbers of data points 
sampling from 355,801 data points. Network densities of all methods 
increased when numbers of data points increased. This is due to a rea-
son that when a number of samples is high, methods can distinguish 
whether one category dominates another better. Network densities of 
almost all methods are slightly different except ttest (pool.sd) that per-
formed poorly in simulation datasets (Section 7.1).
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Fig. 8. Confidence intervals of household incomes of the population from Khon Kaen province categorized by careers.

Fig. 9. A dominant-distribution network of household incomes of the population from Khon Kaen province categorized by careers. A node size represents a magnitude 
of sample mean of incomes of a career.
In the aspect of using simple summary statistics, the network den-
sities of domination networks in Table 3 cannot directly be derived 
from any simple summary statistics such as mean or median. This is 
because we have to infer whether one distribution is dominated by 
another efficiently before calculating the domination network and its 
related statistics. The simple mean or median performed poorly in this 
9

task (see the Section 7.1 for the performance of summary statistics). 
Additionally, the confidence intervals of mean difference in Fig. 10
also cannot derive by simply using mean or median since these sum-
mary statistics cannot be used to guarantee any lower or upper bound 
of the interval the same way as bootstrapping approaches do. In prac-
tice, knowing the confidence interval bounds make users know how 



C. Amornbunchornvej, N. Surasvadi, A. Plangprasopchok et al. Heliyon 6 (2020) e05435

Fig. 10. Mean-difference confidence intervals of career pairs based on household incomes of the population from Khon Kaen province.
Table 3. The Khon Kaen empirical result of network density inference varying 
numbers of data points sampling from 355,801 data points. Each data point 
represents an ordered pair of career and house-hold income of people in Khon 
Kaen province, Thailand. Each element in the table is a network density of 
a dominant-distribution network. Due to BCa’s high cost of computation and 
limited resource, BCa was unable to perform on large datasets (N/A element).

#data 
points

ttest 
(pool.sd)

ttest Boot: BCa Boot: Perc EDOIF 
(Mann-
Whitney)

3539 0.09 0.36 0.43 0.40 0.47

7078 0.11 0.47 0.46 0.45 0.46

35391 0.22 0.69 N/A 0.66 0.70

176955 0.34 0.80 N/A 0.79 0.76

353910 0.36 0.87 N/A 0.82 0.79

much two systems are different from each other with high probabil-
ity. By using mean or median, we know that whether two systems are
different on average. However, we cannot claim anything that one sys-
tem (distribution) dominates another with high probability. This makes 
the reliability of results difference when we use either simple summary 
statistics or bootstrapping approach like our method.

Specifically, Fig. 10 provides more reliable and informative results 
that whether two careers (e.g. students vs. freelance) are different and 
how much they are different with high probability. By using only dif-
ference of average income between two careers, we only know that 
whether they are different on average. However, we cannot claim 
whether the minimum income gaps of two careers are different with 
high probability. Only the 95%-mean-difference confidence intervals 
can tell us. For example, in case 1), AG-Farmer and Freelance have dif-
ference means, but the distributions of incomes of these two careers are 
not significantly different (w.r.t. our statistical testing and bootstrap-
ping analysis). This implies that if we sampling two people from these 
two careers, we cannot conclude that a person from AG-Farmer has
higher income than a person from freelance even though the income 
mean of AG-Farmer is higher than the freelance career. In contrast, in 
case 2), the students have significantly lower incomes than people from 
10
EM-Officers. Both careers have a large gap of mean and the high value 
of lower bound of the mean-difference-confidence-interval. The lower 
bound of mean-difference-confidence-interval tells us that if we sam-
pling one student and one person from EM-Officers, then, with at least 
95% of the times, a student has a lower income than an EM-officer at 
least 200k THB annually. Summary statistics like mean or median can-
not distinguish between case 1 and case 2, but our approach can clearly 
distinguish them. The difference between case 1 and 2 is important for 
policies makers to provide support for any pairs of careers or study-
ing income inequality. There is no income inequality in case 1, but the 
income inequality exists in case 2.

7.3. Case study: ordering aggregate-closing prices of NASDAQ stock 
market based on sectors

This case study reveals dynamics of sector domination in NASDAQ 
stock market. We report the patterns of dominate sectors that change 
over time in the market.

Fig. 11 shows the sectors ordering result of NASDAQ stock closing 
prices from 1,060 companies between 2000 and 2014. The dominated 
sector is ‘Finance’ sector that dominates all other sectors. Due to the 
high network density of the dominant-distribution network at 0.8, there 
are large gaps between sectors in this time interval.

On the other hand, in Fig. 12, the result of sectors ordering of NAS-
DAQ stock closing prices between 2015 and 2016 demonstrates that 
there is no sector that dominates all other sectors. The network den-
sity is 0.4, which implies that the level of domination is less than the 
previous interval. The Finance sector is ranked as 4th position in the 
order. It is not because the Finance sector has a lower closing price in 
recent years, but all other sectors have higher closing prices lately. The 
computer sector has a higher closing price lately compared to the previ-
ous time interval, which is consistent with the current situation that the 
IT development (e.g. big data analytics, AI, blockchain) impacts many 
business scopes significantly [34].

Fig. 13 shows the empirical result of sectors ordering inference 
from NASDAQ stock closing prices. In an interval from 2000 to 2014, 
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Fig. 11. The sectors ordering result of NASDAQ stock closing prices from 1,060 companies between 2000 and 2014. a) Confidence intervals of closing prices of 
sectors. b) Confidence intervals of difference means of closing prices among sectors. c) A dominant-distribution network of sectors.

Fig. 12. The sectors ordering result of NASDAQ stock closing prices from 1,060 companies between 2015 and 2016. We separated companies into five main sectors: 
‘Service & Life Style’, ‘Materials’, ‘Computer’, ‘Finance’, and ‘Industry & Technology’. a) Confidence intervals of closing prices of sectors. b) Confidence intervals of 
difference means of closing prices among sectors. c) A dominant-distribution network of sectors.
all methods have a high numbers of domination edges (except ttest 
(pool.sd) that performed poorly in simulation datasets (Section 7.1).) 
In contrast, from 2015 to 2016, there are few edges in dominant-
distribution networks from all methods.

This result indicates that almost all methods reported the same dy-
namics of NASDAQ stock closing prices from the interval that has a 
high degree of domination (2000-2014) to the interval that has a lower 
degree of domination (2015-2016).

8. Conclusion

In this paper, we proposed a framework that is able to infer orders 
of categories based on their expectation of real-number values using the 
11
estimation statistics. Not only reporting whether an order of categories 
exists, but our framework also reports a magnitude of difference of each 
consecutive pairs of categories in the order using confidence intervals 
and a dominant-distribution network.

In large datasets, our framework is scalable well using the percentile 
bootstrap approach compared against the existing framework, DABE-
STR, that uses the BCa bootstrap. The proposed framework was applied 
to two real-world case studies: 1) ordering careers based on 350,000 
household incomes from the population of Khon Kaen province in Thai-
land, and 2) ordering sectors based on 1,060 companies’ closing prices 
of NASDAQ stock market between years 2000 and 2016.

The results of careers ordering showed income-inequality among dif-
ferent careers in a dominant-distribution network. The stock market 
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Fig. 13. The empirical result of sectors ordering inference from NASDAQ stock closing prices. Dominant-distribution networks were inferred from 1,060 companies 
using two intervals: (top) from 2000 to 2014 and (bottom) from 2015 to 2016.
results illustrated dynamics of sectors that dominate the market can be 
changed over time.

The encouraging results show that our approach is able to be applied 
to any other research area that has category-real ordered pairs. Our pro-
posed Dominant-Distribution Network provides a novel approach to gain 
new insight of analyzing category orders. The software of this frame-
work is available for researchers or practitioners with a user-friendly R 
package on R CRAN at [7].
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