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Abstract

In principle, electron cryo-tomography (cryo-ET) of thin portions of cells provides high-resolution 

images of the three-dimensional spatial arrangement of all members of the proteome. In practice, 

however, radiation damage creates a tension between recording images at many different tilt 

angles, but at correspondingly reduced exposure levels, versus limiting the number of tilt angles 

in order to improve the signal-to-noise ratio (SNR). Either way, it is challenging to read the 

available information out at the level of atomic structure. Here, we first review work that 

explores the optimal strategy for data collection, which currently seems to favor the use of a 

limited angular range for tilting the sample or even the use of a single image to record the 

high-resolution information. Looking then to the future, we point to the alternative of so-called 

“deconvolution microscopy”, which may be applied to tilt-series or optically-sectioned, focal 

series data. Recording data as a focal series has the advantage that little or no translational 

alignment of frames might be needed, and a three-dimensional reconstruction might require only 

2/3 the number of images as does standard tomography. We also point to the unexploited potential 

of phase plates to increase the contrast, and thus to reduce the electron exposure levels while 

retaining the ability align and merge the data. In turn, using much lower exposures per image 

could have the advantage that high-resolution information is retained throughout the full data-set, 

whether recorded as a tilt series or a focal series of images.
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1. Introduction

Electron tomograms of intact cells are nothing less than three-dimensional (3-D), in 
situ images of entire proteomes, as was perceptively recognized in (Baumeister, 2005). 

Nevertheless, for all but the largest structural elements within a cell, the ability to read 

this information out in an understandable form is currently limited by the still-incomplete 

development of electron cryo-microscopy (cryo-EM). Although electron microscopy has 

long been capable of producing atomic-resolution structures of materials that are robust 

against exposure to ionizing radiation, biological samples must be recorded with exposures 

that are too low to produce the signal-to-noise ratio (SNR) that is required to visualize 

structures at atomic resolution (Glaeser, 1971; Henderson, 1995).

Sub-tomogram averaging (STA) was introduced as a way to increase the SNR to the 

required level (Beck et al., 2007; Frangakis et al., 2002). Atomic-resolution structures 

were first achieved by STA for the capsid plus spacer peptide 1 region of Gag, using 

tomograms of purified, immature HIV-1 assemblies (Mattei et al., 2018; Schur et al., 

2016). Similar technology has since been extended to produce atomic-resolution structures 

of ribosome particles within their native, cellular environment (Tegunov et al., 2021). 

The same capability should now be achievable for other structural elements of the cell, 

provided that they are large and recognizable enough. EXtracting individual copies of the 

many thousands of smaller structural elements, however, remains challenging. Nevertheless, 

further development of cryo-EM technology is to be expected, offering hope that it will be 

possible to extend the high-resolution STA approach to more and more of the proteome.

Cellular high-resolution template matching (cHRTM) has recently been introduced as an 

alternative way to read out the positions and orientations of individual macromolecules 

(Rickgauer et al., 2017; Rickgauer et al., 2020). It uses already-known, atomic-resolution 

structures to generate templates, which are used to detect occurrences of the corresponding 

elements within cryo-EM images. cHRTM is appealing because it does not require 

averaging of data derived from multiple copies of a macromolecule, and because it provides 

a clear path to identifying small differences in individual composition or conformation. 

However, cHRTM is limited to finding elements for which one already has high-resolution 

structures, such as theoretical models or experimentally determined structures.

Whether using either STA or cHRTM, further improvements in the technology used for 

data collection will only help to reach the goal of imaging the full proteome. One such 

improvement may be to use a phase plate (Danev et al., 2014; Glaeser, 2013; Turnbaugh et 

al., 2021) rather than a large value of defocus to generate contrast at low spatial frequencies. 

A related goal of using a phase plate is to minimize oscillations in the contrast transfer 

function (CTF), to the extent that it is possible given the unavoidable variations in defocus 

that are associated with the thickness of the specimen itself. The benefit of doing so is to 

more fully recover the signal that is otherwise lost at spatial frequencies lying between the 

maxima in the power spectrum. A second area in which improvement is needed relates to 

the detective quantum efficiency (DQE) of the camera (McMullan et al., 2014). Values of the 

DQE should remain as close as possible to 1.0 out to atomic resolution, while retaining a 

large field of view, perhaps ~ 4 k × 4 k pixels or more. Finally, any remaining loss of signal, 
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such as that due to beam-induced specimen motion, must be avoided at the highest values of 

resolution.

This PERSPECTIVE reviews a few of the technological issues (Beck and Baumeister, 

2016) that currently make it difficult to achieve the goal of molecular readouts at atomic 

resolution in cryo-EM of intact cells, and it suggests some further advances that might 

now be considered. The focus is on improvements in both the instrumentation and the 

strategies used for data collection and analysis. At the same time, it is recognized that 

equally important issues remain in other areas, not covered here, such as sample preparation 

and software development.

1.1. Tilt-series tomography

As originally developed, electron tomography of cells assumed that cryo-EM images 

represented two-dimensional (2-D) projections of the object (Dierksen et al., 1993; Dierksen 

et al., 1992; Koster et al., 1992; Kremer et al., 1996; Ladinsky et al., 1999; O’Toole et al., 

2002). Data are usually collected while tilting about a single axis, although the possibility 

of tilting about two orthogonal axes was also recognized from the beginning (Mastronarde, 

1997). Images of biological specimens are extremely noisy, but high-resolution density 

maps can still be obtained by merging data from a large enough set of sub-tomograms, as 

mentioned earlier, provided that the particles have identical structures.

While single-axis tomography provides stunning images of samples (Mahamid et al., 2016; 

Medalia et al., 2002), provided that they are thinner than about 0.5 µm, multiple factors limit 

the resolution that can be achieved (without resorting to averaging) to values of 4 nm or 

so, which corresponds to sampling with a voXel size of 2 nm, estimated to be the smallest 

unit for which protein might be distinguished from water (Glaeser and Hall, 2011). Some of 

the limitations are practical issues that can, in principle, be overcome, such as the increase 

in beam-induced motion that becomes manifest as the sample is tilted. Other limitations, 

however, are more fundamental, such as the possible failure of the projection approximation 

when the resolution is increased; the increased fraction of inelastically scattered electrons, 

due to the increased thickness of material that the electron beam must go through as the 

sample is tilted; and the fact that radiation damage causes the structural information to 

decrease exponentially with electron exposure.

The approXimation that cryo-EM images represent projections would seem to inherently 

limit the allowed thickness of a specimen to values that are less than the depth of field 

(DOF). For the values of resolution that are achievable without averaging, however, which – 

as mentioned above – are expected to be no more than about 4 nm, the DOF greatly exceeds 

the thickness limit due to inelastic scattering. Thus, without using STA, the useful sample-

thickness values are limited by the loss of signal that is caused by inelastic scattering, rather 

than by the DOF.

As is explained in the Supplementary Material, on the other hand, the DOF decreases to 

about 250 nm at a resolution of 1 nm, and it drops to only about 25 nm as the resolution 

approaches 0.3 nm. When STA is used with the intent to obtain density maps at atomic 

resolution, one might thus expect the projection approXimation to fail for most sample 
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thicknesses of interest in tomography of cells. Fortunately, STA also opens the door for 

applying separate CTF corrections to each sub-tomogram (Galaz-Montoya and Ludtke, 

2017; Galaz-Montoya et al., 2015). Nevertheless, the question remains whether applying 

some form of Ewald sphere reconstruction (or wavefront reconstruction) to images in the 

tilt-series, and not just to individual sub-tomograms, would improve the resulting 3-D maps, 

making it easier to visualize structures at atomic resolution. More is said about this question 

in Section 1.4 on Deconvolution Microscopy, below.

The possibility of multiple elastic scattering occurring for thicker specimens, which also 

is not accounted for by the projection approximation, is a second issue that might cause 

concern. Since the thickness of specimens is generally kept to values less than the mean-

free-path for inelastic scattering, however, and since the cross section for inelastic scattering 

is about three times greater than that for elastic scattering, there is a good argument that 

multiple elastic scattering will generally not be a problem for tomography of biological 

specimens. It nevertheless is true that structure factors for large objects, on the scale 

of ribosomes, are very strong at low resolution. As a result, the image contrast of low-

resolution features is expected to deviate significantly from being linear in the total projected 

mass when a 90-degree phase plate is used – see Figure 7a in (Danev et al., 2009). A simple 

work-around, should a problem arise, might be to filter out the lowest frequencies when 

computing an atomic-resolution map, as is usually done in X-ray crystallography.

1.2. Optimizing the strategy for tomographic data collection

The fact that the high-resolution information decays more rapidly with electron exposure 

than does low-resolution information (Baker and Rubinstein, 2010) means that only the 

first several images in a tilt series will contribute high-resolution features. As a result, the 

high-resolution portions of data set will be incomplete – i.e. not present for most of the tilt 

series – as well as being noisy. Is there, then, an optimal way to record a tomographic series 

of images, in order to best recover a complete, high-resolution data set?

Using a dose-symmetric scheme (Hagen et al., 2017) has become standard practice in cryo-

tomography (cryo-ET): high-resolution information is confined to a limited set of central 

sections in Fourier space, which are symmetrically distributed on either side of the section 

corresponding to the image of an untilted specimen. Because they are recorded with very 

little specimen tilt, these data are affected to the least extent by beam-induced motion of the 

specimen.

The use of data sets collected with a smaller range of tilt angles, for example ± 45° or even 

as low as ± 30°, has also been investigated, but this strategy is not yet routine. In an early 

attempt (Schur et al., 2015), a resolution of ~8 Å was achieved for Rous-sarcoma virus Gag 

polyprotein, assembled into large, virus-like particles. While this work represented a major 

step forward, it did not yet use a direct-detection camera, and much further improvement 

could now be expected. Indeed, a resolution of ~3.96 Å has since been achieved for purified 

single particles, consisting of a ~300 kDa homohexameric complex of a dNTPase, using a 

tilt series confined to only ±36° (Bouvette et al., 2021).
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Inspired by earlier attempts to do single-particle tomography (Bartesaghi et al., 2012; Galaz-

Montoya et al., 2015), the question has even been raised whether it might be more effective 

to first record images of untilted specimens with relatively high electron exposures, for 

example 20 e/Å2 or perhaps even more, followed by recording the usual, dose-symmetric 

tilt series (Sanchez et al., 2020; Song et al., 2020). The goal in doing so is to obtain data 

corresponding to one central section in Fourier space with as high a SNR as possible, 

while still recovering a tomogram at the usual resolution, i.e. approaching ~ 4 nm. Such 

an approach effectively aims to combine the best of single-particle cryo-EM and cryo-ET. 

Although it contributes little high-resolution information, such a tomogram adds invaluable 

information about the positions of particles, including their relative z-heights, as well as 

providing constraints on the relative orientations of the macromolecular complexes.

The use of relatively thick, untilted specimens carries with it the fact that structural 

information contributed by elements above and below the object of interest represents 

unwanted background in the images of untilted specimens. We point out that, in principle, 

the low-resolution parts of this background can be subtracted from the initial images of 

untilted specimens once the desired sub-volumes are identified.

To do this subtraction, properly weighted data from the image of the untilted specimen 

would have to be included with data from the tilt series when reconstructing a tomogram. As 

is indicated schematically in Fig. 1, the region of interest would then be masked out from the 

resulting tomogram, and the projection of the remaining material would be subtracted from 

the initial images of untilted specimens. Building on the idea of masked refinement (Bai 

et al., 2015; Ilca et al., 2015; Zhou et al., 2015), the possibility then exists to merge these 

background-subtracted projection data in the same way as is done for single-particle analysis 

(SPA).

Unfortunately, high-resolution structural information contributed by elements above and 

below objects of interest also represents unwanted background in the image of the untilted 

specimen. Furthermore, this high-resolution background cannot be subtracted, since it no 

longer exists by the time that the tomographic series of images is recorded. High-resolution 

background, contributed by elements above and below extracted sub-volumes, is also present 

in tomographic data sets recorded in the usual way, of course, with an important exception: 

these high-resolution features are distributed over several central sections, rather than in just 

a single central section.

At present the question remains unanswered whether it is better to record a single, high-

resolution image of an untilted specimen or to distribute the initial electron exposure over at 

least a limited number of high-resolution images. If the latter is true, the good news is that a 

phase plate is expected to reduce the exposure needed to align images obtained at successive 

tilt angles, and thus the “safe” electron exposure of about 20 e/Å2 can be distributed over a 

larger range of tilt angles.

It is anticipated that the use of a phase plate might improve the quality of tomographic 

data sets in general, as well as that of the hybrid, “single-particle”/tomographic data sets 

envisioned above. Regrettably, data obtained with the Volta phase plate (VPP), initially used 
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to demonstrate the stunningly improved tomograms that are possible (Mahamid et al., 2016), 

has often proved to be difficult to process. In addition, data obtained with the VPP seems 

to suffer from an unexplained loss of signal at high resolution (Buijsse et al., 2020). It thus 

is hoped that the recent development of a “laser phase plate” (LPP) (Schwartz et al., 2019; 

Turnbaugh et al., 2021) will be free of the shortcomings encountered with the VPP, and that 

it will allow one to more fully realize the goal of recovering all of the information carried by 

the elastically scattered electrons.

1.3. High-resolution template matching

High-resolution template matching has been proposed as an alternative to STA as a way to 

read out the content of cells at atomic resolution (Lucas et al., 2021; Rickgauer et al., 2017; 

Rickgauer et al., 2020). In this approach, the template is a noise-free, 2-D image of a given 

macromolecule that is computed for a physically realistic model of the experimental imaging 

conditions. For a given particle, many such 2-D templates (“projections”) are then used to 

exhaustively search for matches that might be found within 2-D, experimental images.

Current implementations of this approach use electron exposures of 20 e/Å2 or more to 

record just a single image of an untilted specimen. As mentioned previously, use of untilted 

specimens minimizes the loss of information caused by beam-induced specimen motion, 

which helps to recover the maximum SNR at high resolution. Including the defocus value as 

an adjustable parameter not only maximizes the template correlation when correct matches 

are found, but it also serves to recover information about the 3-D positions of target 

molecules.

These single, 2-D images are still very noisy, however, and even large particles can seldom 

be recognized by eye because their surroundings are very crowded. Nevertheless, it has been 

shown (Rickgauer et al., 2017) that it is possible to use such images to read out atomically 

precise locations and orientations of searched-for particles. A “true” match is indicated by 

a peak in the cross-correlograms with a threshold SNR of 8 or higher, sufficient to suppress 

false positives (Rickgauer et al., 2017).

Since only a “forward transform” is used to convert the 3-D, atomic-resolution structure of 

a particle into a 2-D template, this approach is not subject to the depth-of-field (DOF) 

limitation that might occur when doing the inverse transform from many 2-D images 

recorded with different views. Other limitations on the sample thickness, however, such as 

loss of signal due to inelastic scattering, or the accumulation of excessive phase modulation, 

will still remain.

A major advantage of the template-matching approach is that it does not require that data 

be merged from many thousands of identical particles. Instead, it is possible to read out 

the locations and orientations of individual particles, even those that are present in cells 

at very low copy number. What is nevertheless required is that the particle size be large 

enough, as is further addressed below, and that sufficiently large portions of the structures 

of the template and the target match at atomic resolution. On the other hand, the range of 

templates used can include conformational states computed by molecular dynamics or by 
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fold-prediction methods (Baek et al., 2021; Jumper et al., 2021), and thus one is not limited 

to using templates that are already included in experimental data bases.

While an exhaustive search is guaranteed to find the optimal fit of a given template to the 

experimental data, that approach is also computationally intensive; indeed, for many it will 

be prohibitively so. Ten million or more templates may be needed to search one image of 

a thick sample for just one type of structure, without orientation restrictions, causing the 

number of cross-correlation values to approach 1015 (Rickgauer et al., 2020). Significant 

progress has been made to address this issue, however, by using Graphics Processing Units 

(GPUs) to accelerate the throughput (Lucas et al., 2021). Another alternative might be to use 

the high-performance computing infrastructure as a server, supported by dedicated funding 

as are synchrotron beamlines or cryo-EM National Service Centers.

High-resolution template matching has already been used to successfully read out the 

locations and orientations of the 350 kDa head region of ribosomal small subunits in thin 

regions at the margins of mouse embryonic fibroblast cells, cultured on EM grids (Rickgauer 

et al., 2020). Going even further, it has been shown that compositional differences as 

small as 24 kDa can be read out when the search is restricted to the possible location 

and orientation that is expected from prior information. Even further improvement can 

be expected when a phase plate is used to record images; when the DQE of cameras is 

improved significantly while retaining a large field of view; when recovering high-resolution 

information (currently lost due to beam-induced motion) more effectively; and when using 

a cold FEG (Nakane et al., 2020) or a gun monochromator (Yip et al., 2020) to improve the 

temporal coherence at very high resolution.

1.4. Deconvolution and focal series

Deconvolution techniques, in which an improved estimate of a 3-D object is obtained by 

deconvolving the point spread function (PSF) of the microscope from the raw image data, 

have been widely adopted in fluorescence microscopy. The goal of such techniques is 

to leverage knowledge about the optical system to computationally undo the blurring of 

the object by the microscope and thus enhance image contrast. Algorithms adopted from 

fluorescence microscopy have already been applied to (incoherent) scanning transmission 

electron microscopy (STEM) (Ramachandra and de Jonge, 2012) and, more recently, 

introduced to cryogenic STEM tomography (Waugh et al., 2020).

Volumetric deconvolution can be performed using either data obtained by tilting the 

specimen or, leveraging the shallow DOF of optical microscopes, data obtained by simply 

scanning the focal plane. While focal series do not, in general, contain enough information 

for a 3D reconstruction (Streibl, 1985), enough information can be obtained by using the 

extended-depth of field approach, a 2-D reconstruction method that shows all specimen 

features in focus (Forster et al., 2004; Hovden et al., 2011). Furthermore, it may even be 

possible that a focal series alone does allow for a 3D-reconstruction for single-scattering 

objects (Streibl, 1985).

Use of deconvolution techniques for coherent imaging schemes such as brightfield optical 

microscopy has proven more challenging than for incoherent imaging schemes, however, 
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because it requires characterization of both the phase and amplitude PSFs (Hernández 

Candia and Gutiérrez-Medina, 2014; Jenkins and Gaylord, 2015). However, cryo-EM 

operates in the weak-phase regime, for which image formation is well-approXimated as 

being linear in the phase of the wave function transmitted through the object. In light 

of this simplification, it may be reasonable to further investigate the adoption of tools 

that have proven to be so successful in the context of fluorescence microscopy. An entropy-

regularized approach to 3-D deconvolution, like that used by (CroXford et al., 2021) in an 

attempt to fill in the missing wedge associated with tilt-series electron tomography, seems a 

promising one to also try with focal series data. While a focal series has no “missing wedge 

problem” as such, it is expected that regularization will help to make its inverse transform 

more robust in the presence of low SNR.

The advent of aberration correctors for electron microscopes leads, in fact, to an opportunity 

for optical sectioning (Borisevich et al., 2006), which in turn could be leveraged when 

taking a deconvolution approach (Tang et al., 2006). Compared with that of a conventional 

cryo-EM (Fig. 2a), the DOF can be greatly reduced, even to less than 10 nm (Fig. 2b, 

Supplementary Material). The incorporation of recently-developed phase contrast techniques 

(Danev et al., 2014; Turnbaugh et al., 2021) into an aberration-corrected TEM would further 

improve the shape and limit the extent of the 3-D PSF (Fig. 2c).

For an in-focus object, the resulting contrast transfer function (CTF) might approach the 

ideal of having a value near to 1.0 over a large band of spatial frequencies, extending out to 

very high resolution, a situation that would provide the best possible SNR for deconvolution. 

Additionally, the possibility to quickly toggle a phase plate on and off may also facilitate the 

measurement of both the phase and amplitude PSFs, providing complete PSF information 

for the deconvolution of scattering samples that go even beyond the weak-phase or single-

scattering limits.

Sample thickness values often exceed the DOF in fluorescence microscopy experiments, 

where focal series can be used in place of tilt series in order to gain information in 3-D 

(Agard, 1984). As in fluorescence microscopy, it can be imagined that optical sectioning 

of cryo-EM specimens would enable significant background reduction when the sample 

thickness exceeds the DOF. Reduction of the background above and below the DOF might 

even enable one to look inside large macromolecules. The curvature of the Ewald sphere 

would then play a significant role in image formation, however, and that needs to be dealt 

with explicitly (Chen et al., 2021; DeRosier, 2000). It seems that a natural way to do so is 

to generalize the simple solution for the Ewald sphere problem, presented in Section 2.6 of 

(DeRosier, 2000), to include multiple values of defocus.

However, the radiation damage accrued while imaging a thick object in a focal series 

requires that the exposure per image must be reduced to approximately 20/N e/Å2, where N 
is the number of images in the data set. While the value of N is currently limited to about 

20 in tilt-series based cryo-ET, this might be increased significantly by the use of a phase 

plate, because the low-resolution signal is then very much greater, making the images easier 

to align. In addition, images in a focal series may be much easier to align at lower exposure 

levels than those in a tilt series, and thus the value of N may be increased even further.
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Finally, it is important to point out that Shannon sampling requires only 2D/d images in 

order to reconstruct an object of size D at a resolution of d, which is only 2/π the number 

needed to satisfy the Crowther criterion for uniaxial tomography (Crowther et al., 1970). 

We therefore consider it worthwhile to investigate whether focal series reconstruction can 

approach the Shannon sampling limit, in which images are recorded from 2D/d physical 

sections of an object.

Nevertheless, a hybrid imaging scheme involving both tilts and focal series may be more 

beneficial than using just a focal series of images, as was illustrated recently for aberration-

corrected STEM (Yalisove et al., 2021) and explored theoretically in TEM (Gureyev et al., 

2021; Ren et al., 2020). Such a hybrid approach could still benefit from reducing the number 

of tilts, and, by adding a known amount of parallax, it could better exploit the range of z 

positions and orientations of protein copies in a cryo-tomography sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Schematic illustration of proposed low-resolution background-subtraction strategy.
(a) X-Z view of a totally artificial phantom consisting of a 26S proteasome (PDB 5gjr), an 

RNA polymerase II (PDB 1i3q), and a eukaryotic ribosome (PDB 4v6X). The optical axis 

of the microscope is along Z. (b) Density map corresponding to (a) with the proteasome 

and ribosome shown at 40 Å resolution and the polymerase shown at 2 Å resolution. (c) 

X-Y projection of all three proteins at 2 Å resolution. (d) X-Y projection of the proteasome 

and ribosome at 40 Å resolution. (e) Difference between (c) and (d), which reveals the 

polymerase atop a high-frequency signature that necessarily remains after background 

subtraction. Note that a color scale, rather than a simple grey scale, is used for panel (e) 

in order to display both positive and negative values that are generated in the difference 

between intensities. (f) The X-Y projection of a lone polymerase at 2 Å resolution, for 

comparison with (e). Scale bar in (f) is 10 nm, and (c)-(f) are at the same scale. Color bar 

units are arbitrary. The effects of solvent, CTF, missing wedge, and noise were neglected 

here, as the goal is to illustrate just the concept of background subtraction.
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Fig. 2. Demonstration of potential improvements provided by aberration-corrected phase 
contrast TEM.
(Top row) The image of a single carbon atom is simulated with different amounts of defocus, 

and line scans through the corresponding X-Y views (images) are stacked in the vertical 

direction. The resulting image stack is shown for a microscope without aberration correction 

or phase plate (a), with aberration correction only (b), and with both aberration correction 

and a laser phase plate (c). Insets of the areas shown with dashed gray rectangles show the 

high-contrast region near the Scherzer defocus for each configuration. AXis labels are in 

units of ångstroms. (Bottom row) Panels (d-f) show simulated, X-Y images of a myoglobin 

molecule. The myoglobin molecule is simulated with its center of mass being at the highest-

contrast z plane in the panel above it (value indicated in the top right of each panel, indicated 

with a dashed gray line in (a)-(c)). In this simulation, the protein is not solvated (i.e. it is in 

vacuum), the intent being only to illustrate the potential benefit of combining a phase plate 

with an aberration corrector. Scale bar is 10 Å and applies to (d)-(f). Images omit noise and 

are normalized so that the background intensity is 1. Microscope parameters are listed in 

Table 1.
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Table 1
Parameters used in Fig. 2.

Comparison of parameters for uncorrected and Cs-corrected microscopes; in both cases it is assumed that a 

gun monochromator is used, so that the effect of the temporal coherence envelope will be the same. Laser 

phase plate parameters (last two rows) are added to the Cs-corrected microscope column for consistency with 

Fig. 2, but the laser phase plate can be used without a Cs corrector.

Uncorrected Cs-corrected

HT 300 kV 300 kV

Cs 2.7 mm 0

Cc 2.7 mm 8 mm

focal length 3.5 mm 19.8 mm

energy spread (FWHM) 0.1 eV 0.1 eV

beam divergence (FWHM) 2.5 μrad 2.5 μrad

cavity numerical aperture – 0.04

peak phase shift – 90 deg
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