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Polybutylene succinate (PBS) is a biodegradable polyester with better processability and different mechanical properties compared
to polylactides (PLAs), the most commonly used synthetic polymers in tissue engineering (TE). Since only few studies have
evaluated PBS-containing materials for bone TE, we prepared PLA-PBS blends and analyzed material properties as well as cell
attachment, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs) on scaffolds. In addition to
PLA, PBS, and PLA-PBS blends, PLA-polycaprolactone and PLA-poly(trimethylene carbonate) blends were evaluated. Polymer
fibers were prepared using melt spinning. Pure PBS was observed to have the highest crystallinity and strain at break compared
to the tougher PLA and PLA blends. No degradation occurred during the 4-week hydrolysis in either of the materials. Knitted
and rolled scaffolds were manufactured, seeded with hMSCs, and cultured for 27 days. Human MSC viability was good on all
the materials, but cell spreading along the fibers was only detected in PBS-containing scaffolds. They also induced the strongest
proliferative response and osteogenic differentiation, which diminished with decreasing PBS content. Based on these results, PBS
is superior to PLA with respect to hMSC attachment, proliferation, and osteogenesis. This encourages utilizing PBS-based
biomaterials more widely in bone TE applications.

1. Introduction

In search for an optimal biomaterial for bone tissue engineer-
ing (TE) applications, an increasing number of varying bio-
material formulations and structures have been evaluated
during the past decades. In order to be suitable for bone
regeneration, the material should fulfill a list of requirements
which includes biocompatibility, biodegradability, sufficient
mechanical strength, and ability to promote cell adhesion,
proliferation, and osteogenic differentiation [1, 2]. Although
not a single biomaterial is likely to fulfill all the criteria, cer-
tain polymers have been observed to perform with a satisfac-
tory fashion in the bone regeneration applications. Among

these are several synthetic polymers, such as aliphatic poly-
α-hydroxy esters polylactic acid (PLA), polyglycolic acid
(PGA), and their copolymer, poly(lactic-co-glycolic acid)
(PLGA) [2, 3]. However, despite their established position
in bone fixation and promising results in the field of bone
TE, these materials possess also drawbacks, such as problems
related to hydrophobicity, processability, and release of
acidic degradation products. This has increased the interest
in alternative polymers for bone regeneration applications.

Polybutylene succinate (PBS), a biodegradable aliphatic
polyester, has excellent mechanical and thermal properties,
good processability, and low cost, which have made it an
attractive material for various purposes [4]. From the
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beginning of the 1990s, PBS has been commercially produced
for biodegradable package material [4], but during recent
years, a question has been raised about its suitability for bio-
medical applications as well. Indeed, with respect to cell
attachment, viability, and proliferation, pure PBS as well as
PBS-chitosan and PBS-β-tricalcium phosphate composites
have shown promising results with mouse and rat fibroblastic
and osteoblastic cells as well as with human mesenchymal
stem cells (hMSCs) [5–10]. However, only few reports have
evaluated the cellular response of osteogenic differentiation
on PBS-containing materials. Specifically, Li et al. reported
a comparable alkaline phosphatase (ALP) activity in rat oste-
oblasts on PBS discs and on polystyrene control [8]. Wang
et al., on the other hand, observed increased osteogenesis
of rat osteoblasts on PBS surfaces modified by plasma
immersion ion implantation when compared to nontreated
surfaces, but no comparison was made between PBS and
other polymers [11]. Moreover, 3D porous compression-
moulded PBS-chitosan composites were reported to support
bone formation both in vitro and in vivo in a mouse critical-
sized calvarial defect model [12, 13]. This data suggests that
PBS might have potential for bone TE applications.

In order to tailor the properties of polymers to meet the
desired criteria, blending of different polymers is often
conducted [14]. In most cases, blending of two different poly-
mers results in material properties with an average of the
original polymers. This gives very interesting possibilities to
easily customize a material for certain applications. For
example, blending of PBS with chitosan has resulted in a
favorable outcome with respect to cell attachment, viability,
proliferation, and ALP activity [6, 12]. There is also evidence
that, upon subcutaneous implantation in rats, the fibrous
capsule thickness is smaller with discs of PLA-PBS (50/50
wt%) blend than with either pure PLA or pure PBS [15].
Therefore, blending of polymers is an attractive choice when
developing novel functional biomaterials for bone TE.

When considering the 3D architecture of the TE scaf-
folds, textile-based manufacturing strategies produce
inherently porous and interconnected structures with high
reproducibility and the possibility to easily scale up the
production [10]. However, despite these advantages, textile
technology is still a relatively new approach in the field of
TE and it offers plenty of unexplored possibilities. For
example, with respect to PBS, weft-knitted 2D constructs
have been shown to support the attachment of mouse
fibroblastic L929 cells [5], but the feasibility of PBS in
textile-based structures for supporting osteogenic differen-
tiation has not been evaluated.

In this study, human adipose stem cells (hASCs), multi-
potent hMSCs easily isolated from adipose tissue, were
cultured in knitted and rolled 3D scaffolds prepared from
PBS and PLA-PBS blends of 5 and 25 wt% PBS. Pure PLA
as well as PLA blends of 5 wt% polycaprolactone (PCL) or
poly(trimethylene carbonate) (PTMC) were used as refer-
ence materials. PCL is a FDA-approved material widely used
in the applications of regenerative medicine and bone TE
[16]. Also PTMC, a biocompatible and biodegradable poly-
mer with nonacidic degradation products, has recently
gained attention in bone regeneration, especially in the form

of membranes and as a drug carrier [17, 18]. The 5 wt% blend
composition was chosen because with this composition it was
possible to obtain the same mixture ratio in all the material
combinations and still be able to produce the fiber. PLA
scaffolds of the same architecture are commercially available
as joint implants (RegJoint™, Scaffdex, Tampere, Finland),
and as PLA-chitosan and PLA-bioactive glass composites,
these scaffolds have been also evaluated for chondrogenic dif-
ferentiation of rabbit ASCs [19]. However, the knitted and
rolled scaffolds have not been previously manufactured from
other polymers or assessed for the purpose of bone TE. After
characterizing the material properties (degradation and ther-
mal and mechanical properties), the viability, attachment,
and proliferation of hASCs in the scaffolds were evaluated.
Moreover, the osteogenic differentiation of hASCs within
the scaffolds was assessed by determining the ALP activity,
osteogenic marker gene expression (RUNX2a, OSTERIX,
and DLX5), and formation of CaP mineral. To our knowl-
edge, osteogenic differentiation has not been previously ana-
lyzed in 3D structures of pure PBS or PLA-PBS blends.

2. Materials and Methods

2.1. Ethics Statement. This study was conducted in accor-
dance with the Ethics Committee of the Pirkanmaa Hospital
District, Tampere, Finland (R15161). The hASCs were iso-
lated from adipose tissue samples obtained from surgical
procedures conducted in the Department of Plastic Surgery,
Tampere University Hospital. There were five women donors
of age 50± 17 years. All the donors gave a written informed
consent for the utilization of the adipose tissue samples in
research settings.

2.2. Scaffold Manufacturing. The materials used in this study
were poly(L/D)lactide 96/4 (PLA) copolymer (Purasorb
PLD 9620, Purac Biochem BV, Gorinchem, Netherlands),
poly-ε-caprolactone (PCL) polymer (Purasorb PC 12, Purac
Biochem BV), polybutylene succinate (PBS) copolymer (Bio-
nolle 1020 MD, Showa Denko Europe GmbH, Munich, Ger-
many), and poly (trimetylene carbonate) (PTMC) polymer.
PTMC was kindly provided by Professor Dirk Grijpma from
the University of Twente. The inherent viscosities of the raw
polymers used are presented in Table 1. The polymers were
blended and fiber spun in a two-stage process. Before both
stages, the polymers were dried in vacuum. First, the blend-
ing was done using a custom-made laboratory scale corotat-
ing twin-screw extruder in N2 atmosphere. The formed bar
was cut and grinded to approximately 2mm grain size in a
cutting mill (Fritsch Pulverisette, Fritsch GmbH, Idar-Ober-
stein, Germany). In the second stage, polymer fibers were
melt spun and knitted as previously [19] except for PBS
and PLA+5 wt% PTMC fibers, which were spinned using a
Fourné laboratory drawing line (Fourné Polymertechnik
GmbH, Alfter-Impekoven, Germany) due to the difficulties
with the fiber durability. The different methods and the dif-
ferences in the material properties caused some variation in
the filament thickness (ranging from 50 to 120μm). A repre-
sentative image of a knitted scaffold is presented in Figure 1.
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The scaffolds were gamma-sterilized with a 25 kGy dose. The
polymer proportions of the blends are presented in Table 2.

2.3. Material Characterization. Degradation of the fibers was
determined in hydrolysis at 37°C in phosphate buffer solu-
tion according to ISO 15814. The samples were collected at
0, 1, 2, 3, and 4 week time points. The inherent viscosities
of the samples were measured by viscometric analysis (Lauda
PSV1, Lauda-Königshofen, Germany), and the thermal
properties were studied with differential scanning calorime-
try (DSC) with 20°C/min heating rate (Q 1000, TA Instru-
ments, USA). For DSC, approximately 5mg samples were
placed into standard (not hermetic) aluminum DSC cups
and the heating range was −50…+200°C. Two heating cycles
were used, and the melt enthalpy was obtained from the first
heating round. The % crystallinity of the polymer materials
was calculated as follows: χ = 100∗ ΔHm / ΔHlit , where
ΔHm is the measured melt enthalpy of the sample material
and ΔHlit is the melting enthalpy of the 100% crystalline

polymer material [20]. The following ΔHlit values were used
in the calculations: PLA 96 J/g [21], PBS 110.3 J/g [20], and
PCL 139 J/g [22]. As PTMC is a fully amorphous material,
its melting peak could not be detected and thus its % crystal-
linity was considered 0. In case of the blends, the % crystallin-
ity of each component was summed up to give the
crystallinity of the blend, according to the following formula:

χtot =
ΔHm,component1
ΔH lit,component1

+
ΔHm,component2
ΔH lit,component2

× 100% 1

The tensile strength of the four-filament fiber was
determined using a universal testing machine with a
500N load cell (Instron 4411, Instron, Buckinghamshire,
UK). 50mm specimen gauge length was used with 30mm/
min testing speed. Before the testing, the fibers were rinsed
three times with distilled water and gently wiped dry with
cellulose paper.

Scaffold porosities were analyzed with X-ray microtomo-
graphy imaging device Zeiss Xradia MicroXCT-400 (Zeiss,
Pleasanton, USA). The field of view was cylindrical, 5.8mm
wide and high, from the center of the sample. The source
voltage was selected to 80 kV, source current to 125μA, and
the voxel size to 2.94μm. Porosities were calculated from
the reconstructed image stacks with Avizo 9.3.0 (FEI, Hills-
boro, Oregon, USA) by using manual thresholding in the
segmentation procedure.

2.4. Adipose Stem Cell Isolation, Expansion, and Culture. The
isolation of hASCs was conducted using a mechanical and
enzymatic procedure described previously [23, 24]. The iso-
lated hASCs were maintained in T-75 polystyrene flasks
(Nunc, Thermo Fisher Scientific, Waltham, MA, USA) in
DMEM/F-12 (Life Technologies, Thermo Fisher Scientific)
supplemented with 5% human serum (PAA Laboratories,
GE Healthcare, Little Chalfont, Buckinghamshire, United
Kingdom), 1% L-glutamine (GlutaMAX I, Life Technologies,
Thermo Fisher Scientific), and 1% antibiotics (100U/ml pen-
icillin and 0.1mg/ml streptomycin, BioWhittaker, Lonza,
Basel, Switzerland). The hASCs used in the experiments
had strong expression (>95%) for surface proteins CD73,
CD90, and CD105; low expression (<2%) of CD3, CD11a,
CD14, CD19, CD45, CD80, CD86, and HLA-DR; and mod-
erate expression (<20%) of CD34 and CD54, thus verifying
the mesenchymal origin of the cells. Human ASC donor lines
used were in passages 2–4.

For all the experiments, 100,000 cells/scaffold were
seeded in a volume of 100μl. After 3 h of attachment, 1.5ml
medium was added to each well (24-well plates, Nunc). The
following day, osteogenic medium (OM; maintenance
medium supplemented with 10mM β-glycerophosphate,
250μM L-ascorbic acid 2-phosphate, and 5nM dexametha-
sone; all from Sigma-Aldrich, St. Louis, MO, USA) was given
to the cells, and the rest of the culture was conducted in OM.
After 11 days of culture, the scaffolds were transferred to big-
ger wells (12-well plates, Nunc) and the culture was contin-
ued in a volume of 3ml/well in order to avoid excessive pH
rise and to provide enough nutrients for the increased

Table 1: Inherent viscosities of the polymers.

Polymer Inherent viscosity (dl/g)

PLA 2.18

PCL 1.06

PBS 1.07

PTMC 3.07

Figure 1: A representative image of a knitted 3D scaffold.

Table 2: Polymer proportions of the blends used in this study.

Material
PLA

(weight %)
Other component

(weight %)

PLA 100 0

PBS 0 100

PLA+ 25 wt% PBS 75 25

PLA+ 5 wt% PBS 95 5

PLA+ 5 wt% PCL 95 5

PLA+ 5 wt% PTMC 95 5
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amount of cells. During the experiments, the medium was
changed twice a week.

2.5. Cell Viability. Cell viability in the various culturing con-
ditions at 14 d was analyzed by Live/Dead staining (Invitro-
gen, Thermo Fisher Scientific) as described previously [24].
Briefly, cells were incubated in working solution containing
0.25μM EthD-1 and 0.5μM calcein-AM for 30min. After
the incubation, samples were imaged immediately with fluo-
rescence microscope (IX51, Olympus, Tokyo, Japan).

2.6. Cell Proliferation. Cell proliferation was studied by deter-
mining the DNA amount using a CyQUANT Cell Prolifera-
tion Assay kit (Invitrogen, Thermo Fisher Scientific),
according to the manufacturer’s protocol. Briefly, at 7 d and
14 d time points cells were lysed with 0.1% Triton-X 100
(Sigma-Aldrich) buffer. After two freeze-thaw cycles
(−70°C), three parallel 20μl samples of each lysate were
pipetted to a 96-well plate and mixed with 180μl working
solution. The fluorescence at 480/520 nm was measured with
a Victor 1420 Multilabel counter (Wallac, Turku, Finland).

2.7. Phalloidin Staining. In order to visualize the actin cyto-
skeleton of the hASCs grown on the different materials, actin
cytoskeleton was stained with phalloidin after 7 days of
culture. Briefly, the cells were fixed and permeabilized with
0.2% Triton-X 100 in 4% paraformaldehyde (PFA; Sigma-
Aldrich) for 15min at room temperature (RT). The sam-
ples were blocked with 1% bovine serum albumin for
1 h, and Alexa Fluor™ 488 Phalloidin (Molecular Probes,
Thermo Fisher Scientific; diluted in blocking solution
1 : 200) was incubated for 45min at RT. In order to stain
the nuclei, 4′,6-diamidino-2-phenylindole (DAPI; Molecu-
lar Probes, Thermo Fisher Scientific; dilution 1 : 2000)
was applied in the last washes. The samples were imaged
with a laser scanning confocal microscope Zeiss LSM 780
inverted Zeiss Cell Observer.Z1 body using a Zeiss LD
LCI Plan-Apochromat 25x (numerical aperture = 0 8)
water immersion objective (Zeiss, Oberkochen, Germany).
488 nm and 405nm laser lines were used to excite the
fluorophores. Image stacks of 100 slices/50μm in range
were captured with a voxel size of 119 nm in the x and
y dimensions and 500nm in the z dimension. The Alexa
Fluor 488 fluorescence was collected using a 410–495 nm
filter and DAPI with a 495–630 nm filter. The pinhole
was adjusted to 1 Airy unit. Image deconvolution was per-
formed with Huygens Essential (Scientific Volume Imag-
ing, Hilversum, Netherlands) with a signal-to-noise ratio
of 5, quality threshold of 0.001, and 200 as the maximum
number of iterations.

2.8. Alkaline Phosphatase Activity. ALP activity was deter-
mined quantitatively after 7 d and 14 d of culture, as previ-
ously described [24, 25]. The activity was analyzed from the
same Triton-X 100 lysates as the DNA amount. In short,
20μl of each lysate was pipetted in three parallel samples into
the wells of a MicroAmp™ Optical 96-well plate (Applied
Biosystems, Thermo Fisher Scientific). 90μl of working solu-
tion containing 1 : 1 stock substrate solution (p-nitrophenol
phosphate) (Sigma-Aldrich) and 1.5M alkaline buffer

solution (2-amino-2-methyl propanol) (Sigma-Aldrich) was
added to each well and, after 15min incubation at +37°C
50μl of 1M NaOH (Sigma-Aldrich), was added to the wells
to stop the reaction. Finally, the absorbances were measured
with a Victor 1420 Multilabel counter (Wallac) at 405nm.

2.9. Quantitative Real-Time PCR. The relative expression of
osteogenic marker genes was studied at 7 d and 14 d by quan-
titative real-time reverse transcription polymerase chain
reaction (qRT-PCR) as described previously [26]. In short,
the total messenger RNA (mRNA) was isolated from the
samples using NucleoSpin RNA II kit (Macherey-Nagel,
Düren, Germany) after which the isolated mRNAwas reverse
transcribed to cDNA with the High-Capacity cDNA Reverse
Transcriptase Kit (Applied Biosystems, Thermo Fisher Sci-
entific). The expressions of osteogenic marker genes DLX5,
OSTERIX, and RUNX2a were analyzed, and the data was
normalized to the expression of housekeeping gene RPLP0
(human acidic ribosomal phosphoprotein P0). In the calcula-
tion of relative expressions, a previously described mathe-
matical model was used [27]. The sequences of the primers
(Oligomer Oy, Helsinki, Finland) and the accession numbers
of the genes studied can be found from our previous publica-
tion [25]. The qRT-PCR mixture contained 50 ng cDNA,
300 nM forward and reverse primers, and Power SYBR®
Green PCRMaster Mix (Applied Biosystems, Thermo Fisher
Scientific). The reactions were conducted and monitored
with ABI Prism 7000 Sequence Detection System (Applied
Biosystems, Thermo Fisher Scientific) with initial enzyme
activation at 95°C for 10min, followed by 45 cycles at
95°C/15 s and 60°C/60 s.

2.10. Mineralization. Mineralization at 27 d was assessed by
Alizarin red S staining following a previously described pro-
tocol [26]. Briefly, cells were fixed with 4% PFA for 35min at
RT and stained with 2% Alizarin red S (pH4.1–4.3; Sigma-
Aldrich) solution for 10min at RT. The excess color was
washed away, and the dye was extracted with 100mM cetyl-
pyridinium chloride (Sigma-Aldrich). After 3.5 hhours of
extraction, the absorbances were measured with Victor
1420 Multilabel counter (Wallac) at 544nm.

2.11. Statistical Analyses. Statistical analyses were performed
with SPSS Statistics version 22 (IBM, Armonk, NY, USA). All
the quantitative data is presented as mean and standard devi-
ation (SD). The statistical significances were evaluated with
nonparametric statistics using the Mann–Whitney test. The
resulting p values were corrected using Bonferroni adjust-
ment based on the number of the planned comparisons.
The result was considered statistically significant when the
adjusted p value< 0.05. All the conducted comparisons and
the corresponding p values are presented in Supplementary
Tables 1S and 2S.

3. Results

3.1. Material Characterization. Melt enthalpy (the energy
needed to melt a material) can be used to compare the rate
of crystallinity of different materials. In this case, pure PBS
had the highest crystallinity (Figure 2(a)). The blending has
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also an effect on end material crystallinity depending on the
amounts of materials blended and the crystallinities of the
raw materials. PBS and PCL were more crystalline than
PLA whereas PTMC was amorphous. The crystallinities of
the polymer materials remained the same during the four-
week hydrolysis.

Inherent viscosity can be used to describe the degradation
behavior of a polymer material during hydrolysis. The more

the material degrades, the lower the inherent viscosity. Here,
the materials have started to degrade but since the four-week
period is so short, the viscosity values did not markedly
change (Figure 2(b)).

Young’s modulus describes the toughness of the material,
and the strain at break tells about the material’s ability to
deform under force. PLA-based blends excluding 5% PTMC
were tougher when compared to PBS (Figures 2(c) and 2(d)).
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Figure 2: Material characterization. (a) Crystallinity of the materials after 0, 1, 2, 3, and 4 weeks of hydrolysis. (b) Inherent viscosity after 0, 1,
2, 3, and 4 weeks of hydrolysis; n = 1‐2. (c) Toughness of the materials after 0, 1, 2, 3, and 4 weeks of hydrolysis; n = 3 – 5. (d) Strain at break
after 0, 1, 2, 3, and 4 weeks of hydrolysis; n = 4‐5. p < 0 05 between the indicated material (∗) and PLA at the same time point.
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Because of the low miscibility of the materials, 5% PTMC
had low Young’s modulus and strain at break. PTMC
formed low-strength bumps to the fiber during the fiber
spinning, making it fragile. The high strain of PBS can be
explained with the high crystallinity: when force is applied
on the material, the crystallites start to untangle enabling
the fibers to stretch.

Regarding the porosity of the knitted and rolled 3D scaf-
folds, all the scaffolds had open pores and a porosity ranging
from 55.5% to 76.3%. The porosities for each of the material
are presented in Table 3. The porosity increased slightly with
increasing PBS content, but otherwise, the differences in the
porosities were relatively small.

3.2. Cell Viability, Proliferation, and Attachment on the
Scaffolds. To assess the viability of the hASCs on the knitted
3D scaffolds, Live/Dead staining was conducted after 14 days
of culture. As seen from Figure 3(a), all the materials sup-
ported cell viability since no dead cells could be detected.
However, clear differences in the cell arrangement were
observed. On PLA, 5% PCL, and 5% PTMC, cells formed
large clusters, whereas on PBS-containing materials, cells
were able to align along the fibers. The ability to align was
the most prevalent with pure PBS and decreased with
decreasing PBS content. With respect to cell proliferation,
all the materials increased the proliferation significantly
at both time points when compared to the control PLA
(Figure 3(b)). Specifically, the strongest proliferative
response was detected on the PBS containing materials
and was not dependent on the PBS content.

The attachment of the hASCs on the scaffolds was evalu-
ated with phalloidin staining of the actin cytoskeleton after 7
days of culture. As seen from Figure 4, actin staining was well
in line with the observations made from the Live/Dead anal-
ysis. The actin cytoskeleton was oriented parallel to the fibers
on PBS and to some extent also on 25% and 5% PBS, but on
PLA, 5% PCL, and 5% PTMC, the cells formed large clusters
with no signs of proper alignment along the fibers.

In order to further assess the cell attachment and growth
inside the scaffolds, histological samples were prepared
and stained with HE staining after 27 days of culture (see
supplementary data). Even though no bone-like tissue was
detected yet at this time point, the cell ingrowth was still
evidently best in PBS materials, whereas in PLA, 5% PCL,
and 5% PTMC samples, only cell clusters, similar to those
observed in Live/Dead and phalloidin stainings, were
detected (Supplementary Figure 1S).

3.3. Alkaline Phosphatase Activity and the Expression of
Osteogenic Marker Genes. In order to evaluate the early stages
of osteogenic differentiation of hASCs cultured in the knitted
3D scaffolds, quantitative ALP activity and the expression of
osteogenic marker genes RUNX2a, OSTERIX, and DLX5
were assessed after 7 and 14 days of culture. Initially, at the
7 d time point, all the PBS materials as well as 5% PCL
induced significantly higher ALP activities than the control
PLA did (Figure 5(a)). At 14 d, however, the differences had
narrowed and only PBS and 25% PBS stimulated significantly
higher ALP activities than did PLA. PBS was clearly the
strongest inducer of ALP activity, and this ability declined
with the decreasing PBS content. In contrast to the ALP
activity results, the performance of the PBS materials in sup-
porting osteogenic marker gene expression was worst of all
the materials studied (Figures 5(b)–5(d)). Unexpectedly, the
highest gene expression levels were measured from the PLA
sample, followed by 5% PTMC and 5% PCL. In case of
RUNX2a expression (Figure 5(b)), the differences between
the samples were only moderate, but with OSTERIX and
DLX5, there was a considerable drop in the expression in
the PBS-containing samples (Figures 5(c) and 5(d)).

3.4. Mineralization. The later stages of osteogenic differenti-
ation were analyzed with Alizarin red S mineralization stain-
ing after 27 days of culture. As seen in Figure 6(a), a proper
mineralization, as evidenced by the red-stained CaP, was
detected only in the pure PBS sample. Moreover, traces of
mineral formation were also visible in 25% PBS and 5%
PBS samples, whereas with other materials no indications
of mineral deposition could be detected. These observations
were also reflected to the quantitative results (Figure 6(b)),
which show that PBS was significantly the strongest inducer
of mineralization. Furthermore, 25% PBS and 5% PBS sup-
ported mineral formation significantly better than the rest
of the materials.

4. Discussion

Since the 1990s, PBS has been widely exploited as biodegrad-
able packaging material, but only quite recently has it started
to raise interest in the field of regenerative medicine due to its
many favorable properties. The accumulating evidence about
the good performance of PBS in biomedical approaches
prompted us to utilize PBS and PBS-PLA blends in textile-
based manufacturing of knitted 3D scaffolds for the evalua-
tion of hASC attachment, proliferation, and osteogenic
differentiation in in vitro culture.

Our results demonstrate that cell attachment and spread-
ing were drastically improved on PBS-PLA blends and espe-
cially on pure PBS when compared to pure PLA. However,
the material characterizations conducted during the four-
week hydrolysis did not give any clear indications for why
cells seemed to prefer PBS. Specifically, no great changes in
the material properties were observed during this relatively
short hydrolysis time. Still, we were determined to restrict
the hydrolysis period to four weeks since this corresponded
to the duration of the cell culture and thus to the changes
in the material properties the cells experienced during the

Table 3: Scaffold porosities (n = 3).

Material Average porosity ± standard deviation (%)

PLA 62.6± 2.6
PBS 76.3± 4.3
25% PBS 65.3± 6.4
5% PBS 58.0± 3.0
5% PCL 55.5± 5.1
5% PTMC 57.9± 7.4
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in vitro experiment. Regarding differences between the differ-
ent materials, PBS was clearly the most crystalline material,
which in part explains the high elongation at break values,
but this cannot be directly linked to the cell behavior without
further research. It has been previously shown that PBS is
more hydrophilic than PDLLA [8], which might explain the
better cell attachment since it typically favors hydrophilic
surfaces over hydrophobic. The potentially too high hydro-
phobicity of PBS has caused some concern, which has led
many studies to implement different surface treatments
(hydrolysis, etching, plasma treatment, UV oxidation, etc.)
to increase the hydrophilicity and thus better facilitate the
cell attachment [9–11, 28]. However, our results suggest that
hydrophobicity is not a problem and no surface treatment of
PBS is needed for the cells to attach and spread on the mate-
rial surface. Interestingly, a distinctly patterned roughness
profile was observed on the surface of PBS fibers with SEM
(Supplementary Figure 2S), possibly reflecting a fiber
relaxation phenomenon. Such roughness, not detected on

the other materials, might also favor the cell attachment
and partially explain the good results obtained with PBS.
Overall, the superior cell attachment on PBS is a clear
advantage over PLA, which cannot support proper cell
attachment without additional surface manipulations.

Well in line with the cell spreading along the fibers, oste-
ogenic differentiation of hASCs was also clearly enhanced on
PBS and PLA-PBS blends compared to PLA, PLA-PCL, and
PLA-PTMC on which the cells retained a rounded morphol-
ogy. It has been frequently reported that the ability of cells to
spread or elongate is required for the commitment of osteo-
genic fate, whereas rounded morphology prohibits osteogen-
esis and guides stem cells towards other directions, such
as adipogenesis [29–32]. The significantly enhanced ALP
activity as well as mineralization on cell spreading pro-
moting PBS scaffolds clearly supports these observations.
Unexpectedly, the gene expression profiles of osteogenic
marker genes did not follow this scheme; the expression of
RUNX2a, OSTERIX, and DLX5 were constantly the lowest
on PBS and PLA-PBS blends, with pure PLA showing the
highest expression levels. It is possible that the time frame
of the qRT-PCR analysis did not reveal the expression peaks
of these genes on PBS materials. However, our preliminary
4 d gene expression data with a very similar pattern as in
the 7 d and 14 d data (data not shown) does not support this
conclusion. Recently, there has been some evidence that cul-
turing MSCs in spheroids might increase their differentiation
potential, including differentiation towards osteogenic fate
[33, 34]. Therefore, the cell cluster formation on PLA, PLA-
PCL, and PLA-PTMC, likely as a result of poor attachment,
might have triggered an osteogenic program in the hASCs.
However, based on negligible ALP activity and mineraliza-
tion on these materials, the osteogenesis did not proceed to
the later stages, which might be related to the small overall
cell amount. On PBS materials, on the other hand, the large
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Figure 3: Human ASC viability and proliferation on knitted 3D scaffolds. (a) Human ASC viability at 14 d analyzed by Live/dead staining.
Living cells are stained green and dead cells red. Scale bars: 1.0mm. (b) Human ASC proliferation at 7 d and 14 d as determined by
the CyQUANT cell proliferation assay; n = 12. p < 0 05 between the indicated material (∗) and PLA at the same time point (unless
otherwise indicated).
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Figure 4: Cytoskeletal organization of hASCs on knitted 3D
scaffolds. Phalloidin staining of the actin cytoskeleton (green).
Nuclei were stained with DAPI (blue). Scale bars: 50μm.
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cell density might have comprised undifferentiated areas
pulling down the normalized gene expression values. Still,
due to the high cell density, large areas were fully committed
towards bone as observed.

Mesenchymal stem cells have been widely accepted as an
excellent cell type for regenerative medicine applications due
to their various advantageous properties (e.g., ease of isola-
tion, multipotency, and immunomodulatory properties)
[35]. However, hMSC quality and characteristics are known
to be affected by several features, including donor age,
gender, body mass index, and, in case of hASCs, the adipose
tissue harvest site [36–40]. This donor-to-donor variation

was also reflected to our late osteogenic differentiation
results; out of the five donor hASC lines studied, three
showed excessive mineralization on PBS, whereas two donor
lines proved to be incapable of mineral production in all the
materials as indicated in Supplementary Figure 3S. We have
previously demonstrated that in response to BMP-2, hASCs
from some donors favor osteogenic fate whereas other
donor cell lines tend to commit towards adipocytes [41].
Moreover, hASCs from different donors showed variable
tendency for mineralization even in unsupplemented OM
culture. These observations are well in line with the results
of the present study, which further emphasizes the MSC
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Figure 5: Alkaline phosphatase activity and the expression of osteogenic marker genes on knitted 3D scaffolds. (a) Alkaline phosphatase
activity normalized with CyQUANT cell proliferation results at 7 d and 14 d; n = 12. p < 0 05 between the indicated material (∗) and PLA
at the same time point (unless otherwise indicated). The results are relative to the 7 d PLA sample. (b) RUNX2a expression at 7 d and 14 d;
n = 4. The results are relative to the 7 d PLA sample. (c) OSTERIX expression at 7 d and 14 d; n = 4. The results are relative to the 7 d PLA
sample. (d) DLX5 expression at 7 d and 14 d; n = 4. The results are relative to the 7 d PLA sample.
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donor-to-donor variability as a critical factor to take into
account when evaluating the therapeutic potential of TE
structures.

It has been previously demonstrated that upon subcuta-
neous implantation in rats, discs of PBS and PLA-PBS blend
(50/50 wt%) induce only a mild inflammation and foreign
body reaction, and the fibrous capsule thickness was the
smallest with PLA-PBS blend when compared to PBS and
PLA [15]. Moreover, in mouse, critical-sized calvarial defect
model 3D porous PBS-chitosan blend (50/50 wt%) scaffolds
demonstrated good integration with the surrounding tissues
and enhanced bone formation, which was even more evident
with hBMSC-seeded scaffolds [13]. These studies demon-
strate that PBS is well tolerated in vivo and combined with
chitosan is able to support bone formation. However, in
future more evidence is needed about the in vivo perfor-
mance of PBS as such and in comparison with PLA and other
similar polymers.

5. Conclusions

In conclusion, pure PBS was observed to have the highest
crystallinity and strain at break compared to the tougher
PLA and PLA blends. However, no degradation occurred
during the 4-week hydrolysis period in either of the mate-
rials. Our results revealed clearly enhanced cell attachment,
proliferation, and osteogenic differentiation of hASCs on
knitted 3D scaffolds of PBS and PLA-PBS blends when
compared to scaffolds of PLA, as well as PLA-PCL and

PLA-PTMC blends. The beneficial effects of PBS were
observed to be dependent on the PBS content, with pure
PBS eliciting the most favorable cell responses. Being a
cheap, easily processable, biodegradable, and biocompati-
ble cell growth and differentiation supporting material,
PBS possesses great promise to be more widely used as a
scaffolding material in TE applications. Remarkably, it out-
performed the traditionally used PLA, which further
encourages a more thorough evaluation and characterization
of PBS as well as PBS-based blends and composites for the
purposes of regenerative medicine.
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