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Abstract

With the ever-increasing quality and quantity of imaging data in biomedical research comes

the demand for computational methodologies that enable efficient and reliable automated

extraction of the quantitative information contained within these images. One of the chal-

lenges in providing such methodology is the need for tailoring algorithms to the specifics of

the data, limiting their areas of application. Here we present a broadly applicable approach

to quantification and classification of complex shapes and patterns in biological or other

multi-component formations. This approach integrates the mapping of all shape boundaries

within an image onto a global information-rich graph and machine learning on the multidi-

mensional measures of the graph. We demonstrated the power of this method by (1)

extracting subtle structural differences from visually indistinguishable images in our pheno-

type rescue experiments using the endothelial tube formations assay, (2) training the algo-

rithm to identify biophysical parameters underlying the formation of different multicellular

networks in our simulation model of collective cell behavior, and (3) analyzing the response

of U2OS cell cultures to a broad array of small molecule perturbations.

Author summary

In this paper, we present a methodology that is based on mapping an arbitrary set of out-

lines onto a complete, strictly defined structure, in which every point representing the

shape becomes a terminal point of a global graph. Because this mapping preserves the

whole complexity of the shape, it allows for extracting the full scope of geometric features

of any scale. Importantly, an extensive set of graph-based metrics in each image makes

integration with machine learning routines highly efficient even for a small data sets and

provide an opportunity to backtrack the subtle morphological features responsible for the

automated distinction into image classes. The resulting tool provides efficient, versatile,

and robust quantification of complex shapes and patterns in experimental images.
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Introduction

Quantitative characterization of cell shapes and their organization within multicellular forma-

tions is critically important for many biomedical applications, including tissue engineering

[1], phenotypic cell-based screening [2,3], and testing platforms for drug discovery [4,5]. How-

ever, broadly applicable and comprehensive morphometric analysis of complex geometries in

imaging data remains a challenging task. Here we present an approach that allows for an effi-

cient and precise extraction and classification of structural features in arbitrarily complex cel-

lular patterns, including subtle variations that are difficult to decipher using visual inspection

or a set of standard geometric measures.

Currently, a number of software tools have been developed for the analysis of morphologi-

cal changes among individual cells, such as CellProfiler for quantification of cell phenotypes

[6], CellC for counting cell numbers and quantifying cell characteristics [7], and CellGeo for

identifying, tracking, and characterizing cell protrusions [8]. However, there is still a need for

a general methodology allowing for automated comparative analysis of complex multicellular

formations. Indeed, standard morphological features, such as compactness, eccentricity, solid-

ity, Zernike polynomials, etc. are very informative when it comes to characterizing the overall

shape of a cell or a compact cell cluster, but become impractical for complex shapes, such as an

interconnected mesh. The graph-based method that we presented here goes beyond the char-

acterization of individual objects and is applicable to a set of images that include compact

objects, branching and mesh-like structures, or any combination of such shapes and struc-

tures. For specific applications, standard geometric and textural features can be combined

with our graph features, which might further improve the classification pipeline. For example,

the performance of our method is limited by the quality of image segmentation that defines

the borders between structures in the foreground and the background. Thus, textural features

that are extracted from original, unsegmented images can potentially compensate for some

possible pre-processing artifacts associated with the segmentation process.

For capillary-like patterns, some targeted approaches to extract and quantify structural fea-

tures have been previously reported in studies such as angiostatic activity under docetaxel

treatment [9], vertical growth of new blood vessels into a collagen [10], and quantification of

neurovascular units in 3D [11] (for a comparative review of angiogenesis quantification meth-

ods see [12]). A typical approach in such applications is to use morphological thinning [13,14]

and pruning [15–20] to extract a simplified skeleton, branching points, and additional associa-

tive metrics for these simplified elements. However, in such irreversible processing, a signifi-

cant amount of geometric information is lost. The graph resulted in our mathematical

mapping does include the medial skeleton as its small subset, but all the other information is

preserved, which allows us to encode and extract both large-scale associative features and local

edge variations (as small as a pixel-wide protrusion on an image-long multicellular branch).

This is particularly important when studying the effects of a small perturbation in the extracel-

lular environment on the collective behavior of many cells and the patterns resulting from their

complex interactions [21]. This problem is exacerbated when working with experimental systems

that allow for precise control of different physical conditions generating large and diverse sets of

imaging data. Thus, to address this issue, we have developed a general approach, which automati-

cally generates a rich set of interpretable features from images of cellular structures. These features

are computed using a mathematically precise mapping of the boundaries outlining all shapes in

an image onto a global graphical structure. This graphical structure captures multiple features

relating to the width of the cellular objects, the shapes and roughness of the boundaries, as well as

the connectivity and density of the cell clusters across the image. Using these features, we can

identify images with similar structures, cluster images into groups based on structural patterns,
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and use the image-level characteristics for regression tasks. With this approach, one can cluster

and visualize the differences between multicellular patterns based on high-level features, while still

retaining the ability to interpret and understand the features defining each image type.

As a testing system for our methodology, we first used an endothelial tube formation assay

along with a computational model that simulates the formation of cellular patterns under con-

trolled perturbations of the biomechanical properties of the cells. The tube formation assay is a

useful in-vitro tool to screen for treatments that affect early stages of vasculogenesis. Healthy

vascular endothelial cells cultured on Matrigel form dense cellular networks across the dish.

Environmental or genetic perturbations can alter the resulting structure, leading to more irreg-

ular networks or completely isolated cell clusters. The standard approach to quantify these

assays is to count the number of tubules (connections between cell clusters) or measure the

percent coverage of a cellular network within a certain field of view [22]. While these

approaches can be used to screen for treatments that are strongly pro- or anti-angiogenic, they

are not precise enough to distinguish between more similar patterns.

For experimental perturbation of collective cell behavior, we used knockdowns (KD) of the

three CCM proteins, with and without treatment by a Rho-associated protein kinase (ROCK)

inhibitor, H1152 [21]. In this experiment, we kept a consistent density of wildtype and all KD

cells. These knockdowns all negatively affect tube formation and lead to either small isolated

cell clusters or sparse patterns with large tubules depending on the targeted protein. Inhibition

of ROCK partially rescues tube formation, increasing both tubule count and coverage, although

the resulting cellular networks appear much more disorganized compared to wildtype. Here we

show that features from the shape-to-graph mapping can differentiate images from these experi-

ments, including the cases when images do not seem to be distinguishable and explain the dif-

ferences between these visually similar groups using the features extracted from the mapping.

In addition to in-vitro assays, we utilized a simulated model that allowed us to generate a

range of different multicellular patterns depending on two biomechanical characteristics: the

stability of cell-cell contacts and the strength of cell-matrix adhesion [21]. Altering these prop-

erties can create structures ranging from completely isolated cellular clusters to interconnected

networks, all with varying densities. We apply our approach to predict the model parameters

used to generate each in-silico image, demonstrating that these features can capture the trends

in the way cellular structures progressively change due to the controlled modulation of the bio-

mechanical properties of the system.

Finally, to show that our methodology is not limited to mesh-like cell formations characteristic

to specific cell types, we applied it to completely different type of data from a large imaging set pub-

licly available at the Broad Bioimage Benchmark Collection (BBBC022v1) [23,24]. Specifically, we

analyzed confluent cultures of U2OS cells subjected to an extensive set of small molecule treat-

ments. The global (image-scale) nature of our graph structure, which captures both the shapes of all

individual cells and their relative spatial positioning in the field of view, allowed us to outperform

the conventional shape metrics in terms of precision and sensitivity of the phenotypic classification.

Collectively, the performed data analysis illustrated the power of our approach for both sin-

gle cell and multicellular pattern characterization, capturing apparent and subtle geometric

variations using a small set of images or a large high throughput scans, while providing a way

to backtrack and interpret geometric features responsible for the classification outcome.

Results

Computational methodology

Shape-to-graph mapping. Our shape-to-graph mapping is a generalization of the Voro-

noi Diagram to accept the edges outlining a shape as inputs. The traditional Voronoi Diagrams
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only operate discrete sets of points such as in the default MATLAB algorithm [25]. Our algo-

rithm is based on a sweep-circle method [26] modified to work with line inputs. The algorithm

has O(n log n) complexity, where n is the number of inputs, which scales linearly with image

resolution provided the same image content. Thus, the first step in the processing pipeline is to

take any binary images as an input, and output a graphical structure, which maps all piecewise

linear boundaries in the image to a unique image-scale graph spanning both the foreground

and background of the image (Fig 1).

Graph construction process. A Voronoi diagram consists of vertices, which are the cen-

ters of the largest circles that can be packed within a given set of inputs, such that no input ele-

ment lies within the circles. Thus, each graph vertex is the center of a circle tangent to three or

more input elements, while the graph edges are bisectors between two inputs. Our graph satis-

fies these definitions but presents a generalized version of the Voronoi Diagram, which is

derived from inputs that can include both a set of points and a set of line segments. However,

our main interest is an input of pixel-scale line segments forming the boundaries in a binary

image.

This graph can be constructed by searching through all circles that are tangent to any com-

bination of three inputs and removing circles which contain an input within it. However, this

approach would have O(n3) complexity, where n is the input size. Instead, we use a sweep-cir-

cle method, in which we compute the Voronoi diagram within an expanding circle centered at

the origin. Each input generates a bisector with the sweep circle [26]. Such bisector can be an

ellipse for a point input or a parabola for a line input. When a new input enters the sweep cir-

cle, it’s bisector will intercept with another bisector within the sweep circle. The set of all bisec-

tor segments that are not contained within another bisector is referred to as the beachfront

Fig 1. An illustration of the shape-to-graph mapping. Algorithm input is a binary image with the foreground (value 1) shown in

white and the background (value 0) shown in black. Algorithm output is an image-scale graph structure. The part of the graph in

the foreground (defined later in the text as in-graph) is shown in blue, while the part in the background (out-graph) is shown in

orange.

https://doi.org/10.1371/journal.pcbi.1007758.g001
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(Fig 2). The interceptions between two arcs of the beachfront always lie on bisectors between

the inputs, which trace out edges in the Voronoi diagram. To find the graph vertices, we only

need to test inputs which have adjacent arcs on the beachfront. The ordering of arcs on the

beachfront are stored within a red-black balanced binary tree [26], therefore the position of a

new point within the beachfront can be found with a binary search. Thus, the complexity with

this approach scales as O(n log n) with the number of inputs. For a more detailed, formal

description of the sweep-circle algorithm, see [26]. Constricted this way, each Voronoi vertex

has three Voronoi edges. Even in cases when the Voronoi vertex is equidistant to four or more

inputs, such as the center of a regular polygon, multiple Voronoi vertices are created at the

same position, each with a degree of three and a zero-length edge connecting them.

To extract the algorithm input from a binary image, we trace the boundaries along the half-

pixel border separating the background and foreground pixels. This is different from the con-

ventional tracing of boundaries along the pixel centers but ensures that a horizontal or vertical

line of pixels will have the width of one, rather than zero, which allows us to include pixel-size

features to the image analysis. (Fig 3A–3C)

Fig 2. Sweep-circle Voronoi algorithm for graph construction. In this algorithm, a sweep circle (grey circle) expands from the center of the image (purple dot). Each

input point (red, green, and cyan dots) forms a bisector (red, green, and cyan ellipses) with the expanding sweep circle. The beachfront is a set of all outermost portions

(solid elliptical arcs) of these bisectors. The intersections between the ellipses (black dots) trace out Voronoi edges (blue lines). When two intersection points merge,

pinching out a beachfront arc, a new Voronoi vertex is formed.

https://doi.org/10.1371/journal.pcbi.1007758.g002
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If two boundary points overlap, such as when two foreground pixels are connected diago-

nally, these points are separated in the off-diagonal direction by a very small distance (we used

1/20 of the pixel size) to ensure that boundaries in the image never intersect or self-cross but

unambiguously enclose the corresponding objects and holes (Fig 3D).

Graph annotation. All connected components in the foreground (objects) and back-

ground (holes) of the binary image are identified and assigned a unique numerical label.

Boundaries are additionally categorized into two types: exterior boundaries that completely

enclose a foreground object and interior boundaries that enclose a hole and, in turn, are

enclosed by an object (Fig 4A). Once the complete graph is contracted, we will refer to the part

of the graph situated in the image foreground as in-graph and the part in the image back-

ground as out-graph (Fig 4B).

Graph vertices that are equidistant to exactly two different boundaries form a sequence of

vertices that we call bridges. Different bridges come together at graph vertices that are equidis-

tant to three or more different boundaries and identified here as hubs (Fig 5A). Additionally, a

sequence of vertices that connect two looped bridges associated with the same boundary,

which may occur when there is a hole within an extended protrusion of an object, is referred

Fig 3. Boundary tracing. A. A simplified example of an input image. B. The conventional tracing of the boundary

(implemented in MATLAB) along the centers of the pixels at the edge of a foreground object. C. Our algorithm traces

the boundary directly along the lines separating the foreground and background pixels. D. An illustration of how the

algorithm eliminates all boundary self-crossings by a small non-disruptive off-diagonal shift (here the shift was

exaggerated for the illustration purposes).

https://doi.org/10.1371/journal.pcbi.1007758.g003
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here as a connector. Identifying all bridges, hubs, and connectors allows us to partition the

whole graph into non-overlapping subgraphs uniquely associated with each interior or exterior

boundary (Fig 5B). Extracting features from the subgraphs is central to our methodology.

Graph-based feature extraction. Each vertex in the constructed graph represents the cen-

ter of a circle inscribed within the object. A subgraph with no bridges, such as the graph within

a single-boundary object with no holes or a hole with no objects inside, is a single tree with the

root node being the center of the largest inscribed circle. Otherwise, a subset of vertices located

on the graph bridges and connectors of the associated subgraph acts as a set of the roots, from

which graph edges branch out towards the corresponding boundary (Fig 6A and 6B). Con-

structed this way, each subgraph is outlined by the boundary on one side and by a continuous

sequence of bridges and connectors on the other side. We will call this sequence of bridges and

connectors the root path. Again, in case of objects with no holes, there are no bridges, and the

root path is defined as the longest path to the boundary which passes through the single root

node. Based on this construction, we derive two primary metrics for each subgraph, which we

call the width profile and the boundary profile.

Fig 4. A. Boundary annotation: exterior boundaries are shown in red, while interior boundaries are should blue. B. Overall graph annotation:

in-graph is shown in red, while the out-graph is shown in cyan.

https://doi.org/10.1371/journal.pcbi.1007758.g004

Fig 5. The key elements of the graph. A. All bridges (red), hubs (green), and connectors (blue) of the in-graph. B. Partitioning of the in-graph

into subgraphs (shown with unique colors). Each non-overlapping subgraph is associated with exactly one interior or exterior boundary.

https://doi.org/10.1371/journal.pcbi.1007758.g005
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The width profile describes coarse variations in the subgraph’s width defined as the radii of the

inscribed circles with the centers located at the vertices of the root path (Fig 6C). When computed

in background regions, this captures local variations in density. The boundary profile captures the

size of any protrusion or bump which lies along the boundary. The boundary profile is computed

by measuring the shortest distance along the subgraph edges from all points along the boundary

to the corresponding root nodes. By using distances along the subgraph edges, we accurately char-

acterize the size of these features even if the boundary is highly curved. To ensure that the bound-

ary profile is not sensitive to the same variations in object size as the width profile, the boundary

profile is normalized at each point by subtracting the radius on the inscribed circle with the center

at the root node where the path to that boundary point begins (Fig 6D).

Because each boundary has a corresponding subgraph in both the in-graph and out-graph

parts of the full graph, each boundary has a foreground and background width profile along

with a foreground and background boundary profile. The only exception would be the most

outward boundaries, for which out-graphs extend to infinity. To resolve this issue, we con-

strain the graph within the image by using the image boundary as the most outward boundary.

Fig 6. The primary graph metrics. A. An example of paths along the graph edges from the root path (magenta) to the tips of object protrusions.

The inscribed circles (green) provide a measure for the width profile. The parts of the paths (blue) outside the circles provide a measure for the

normalized boundary profile. B. An illustration of path (blue) branching from a root (green) to the boundary, so that each boundary point has

an associated root node and a shortest path to this node along the graph edges. C. The resulting width profile showing the inscribed circle radii

for every node on the root path. D. The resulting boundary profile before subtracting the radii of the corresponding root nodes (red) and after

subtracting (blue). The colored points at the local maxima of the boundary profile correspond to the protrusion tips in A.

https://doi.org/10.1371/journal.pcbi.1007758.g006
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Per-image structural features. In order to characterize or compare complex geometric

structures such as multicellular patterns, per-boundary classification would be insufficient as

we must consider the features of all boundaries to account for the overall structure of a pattern

in an image. Thus, we construct a set of per-image features derived from our graph-based per-

boundary features.

To this end, we start with associating each boundary with 40 features, including distribution

metrics for the width profile and boundary profile, along with the area and perimeter of each

boundary. Half of the features computed for each boundary come from the corresponding in-

graph and half from the out-graph. The full list of features is provided in the Table 1. Next, we

perform k-means clustering on the list of all boundaries across all provided images (Fig 7).

This process creates a histogram of N boundary types within each image. The goal of this clus-

tering is to automatically differentiate boundaries based on a combination of their roughness,

the size and shape of the enclosed objects and holes, and the relative separation of these objects

and holes. This means that holes or objects with the same shape may lie in different clusters if

the cellular structure around the hole is thicker or thinner, or if the object lies in a more or less

dense region. The count or frequency of the boundary types in each image then serves as a

Table 1. Graph-based metrics used for creating boundary type classes. The same 20 features were measured for the

in-graphs (representing the cellular structure associated with each boundary) and for the out-graphs (representing the

corresponding areas in the background), giving 40 metrics in total.

Width Profile Measurements derived from the radius at each point on the root cycle.

1 Mean The mean radius along the root cycle

2 STD Standard Deviation of the radius along the root cycle

3 Third Moment Third Moment of the radius along the root cycle

4 Fourth Moment Fourth Moment of the radius along the root cycle

5 Min Minimum radius on the root cycle

6 Max Maximum radius on the root cycle

Boundary Profile Measurements derived from path length from a boundary point from the root

node along the graph edges minus the radius at the root node of this path. See Fig

6A and 6D.

7 Mean Mean of the boundary profile measure across all points on the boundary

8 STD Standard deviation of the boundary profile measure across all points

9 Max Maximum boundary profile measure across all points on the boundary

10 AUC 0th Quartile Area under the boundary profile curve (Boundary path to the root—radius vs

boundary arc length)

11 Number of Crossings 0th

Quartile

Number of times the boundary profile reaches its minimum value.

12 AUC 25th Quartile Area under the boundary profile curve above the 25th quantile

13 Number of Crossings 25th

Quartile

Number of times the boundary profile goes above its 25th quantile.

14 AUC 50th Quartile Area under the boundary profile curve above the 50th quantile

15 Number of Crossings 50th

Quartile

Number of times the boundary profile goes above its 50th quantile.

16 AUC 75th Quartile Area under the boundary profile curve above the 75th quantile

17 Number of Crossings 75th

Quartile

Number of times the boundary profile goes above its 75th quantile.

General

18 Boundary Area Area enclosed by the boundary

19 Boundary Perimeter Perimeter of the boundary

20 Exterior or Interior

Boundary

Flag indicating if this is an outer boundary for an object (or a hole). See Fig 4A.

https://doi.org/10.1371/journal.pcbi.1007758.t001
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per-image feature (Fig 8). The specific interpretation of each boundary type depends on the

nature of data presented in the images under investigation, but this is what ultimately allows

us to understand differences in the structural organization of the patterns in imaging data sets,

as we show in the next section.

Application of the method

Analysis of in-vitro tube formations. In this section we test the ability of our method to

identify subtle structural difference in a small set of images from an in-vitro endothelial tube

formation assay (the experimental data has been previously published in [21] and also available

at http://dx.doi.org/10.17632/77wmwpznx9.1). The set includes images of the control cells

Fig 7. Boundary type identification. We use 40 metrics extracted for each boundary from all the images in a given set

and use k-means to associate each boundary with one of the N classes (here N = 12).

https://doi.org/10.1371/journal.pcbi.1007758.g007

Fig 8. Per-image characterization. For each image, we extract the counts of boundaries that belong to each of 12

boundary types, which were determined using k-means clustering on the 40 graph features.

https://doi.org/10.1371/journal.pcbi.1007758.g008
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(wild-type HUVEC) and cells with knockdown (KD) of the three Cerebral Cavernous Malfor-

mation (CCM) proteins, CCM1 (or KRIT1), CCM2, and CCM3 (or PDCD10), which disrupts

the integrity of multicellular mesh. In addition, the control and KD cells were treated with an

inhibitor of Rho-associated protein kinase (ROCK), which was shown to be over-activated in

CCM KD cultures [21]. The treatment with the ROCK inhibitor H1152 partially rescues the

wild-type (WT) phenotype, although the resulting cellular patterns in the tube formation assay

do not closely match the WT patterns. All treated and untreated cells were plated on the sub-

strate at a consistent density. Previously, we showed that although the diseased and the H1152

treated phenotypes are clearly different from the untreated WT phenotype, some treated cul-

tures are indistinguishable from the treated WT cells both visually and based on the traditional

geometric measures[21]. Here we show that our shape-to-graph approach allows us to identify

the distinguishing features in all the phenotypes, including the ones with subtle disparities that

are not apparent upon visual inspection. The latter are of the main interest from the methodol-

ogy testing perspective.

For each of eight phenotypes (WT, CCM1, CCM2, CCM3, WTH1152, CCM1H1152,

CCM2H1152, CCM3H1152), we used five representative fields of view (Fig 9A). The boundaries

were clustered into 12 boundary types using k-means clustering. The optimal number of

boundary types was selected by performing 3-nearest neighbor classification on each image,

where the class of each image was determined by the class corresponding to the three most

similar boundary type histograms in the image set. Twelve clusters had a 90% classification

accuracy (S1 Fig).

Principal component analysis (PCA) was performed on the matrix of per-image boundary

histograms. Generally, images of the same class group together and exist in space near images

Fig 9. Comparison of in-vitro tube formation assay structures with eight different phenotypes. A. The eight

phenotypes resulted from WT and the knockdown of three CCM proteins, all with and without treatment by the

ROCK inhibitor. Knockdown of the CCM proteins is associated with the disruption of the otherwise connected mesh.

ROCK inhibitor leads to a more connected but still noticeably disorganized network. The scale bar is 200 μm. B. The

first two principal components of each image’s boundary type histogram. Images of a similar type and appearance tend

to have similar histograms. Here, the markers indicate the corresponding images in A. C. Two images from WTH1152

and CCM1H1152 that appear visually similar but have significantly different boundary type counts. Boundaries that are

responsible for the difference are highlighted in blue and cyan. The scale bar is 200 μm. D. The difference in the

normalized counts of boundaries of 12 types between CCM1H1152 and WTH1152 images shown in C. Boundary types 2

and 3 (indicated with blue and orange arrows in D and highlighted with the corresponding colors in C) represent

small, isolated objects and small holes in wider locations in the network and appear significantly more often in

CCM1H1152 formations as compared to otherwise similar WTH1152 structures. In contrast, WTH1152 structures tend to

have more boundaries of type 10 (indicated with green arrow in D and highlighted with the same color in C), which

represent medium sized holes with frequent bumps and protrusions extending into the hole.

https://doi.org/10.1371/journal.pcbi.1007758.g009
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with similar structural features (Fig 9B). Groups that are visually distinct, such as CCM3 cul-

tures, which have several small cellular clusters, appear far from H1152-treated cultures with

fully connected cell networks. Similarly, images with thicker structures, such as in CCM2H1152

cultures, appear further in principal component space from images with thinner structures,

such as in CCM1H1152 and WTH1152 cultures. Visually similar structures of CCM1H1152 and

WTH1152 (Fig 9C), which both have many thin, disorganized connections, appear nearer to

each other in principal component space. Significantly different boundary types between sets

of images can be identified from the difference of boundary frequency histograms (Fig 9D).

This difference corresponds to an increased frequency of three boundary types: type 2 consists

of the small isolated objects in regions of high density which appear more often in CCM1H1152

cultures (blue boundaries in Fig 9C); type 3 includes small holes in thick regions of the cellular

structure, which also occur more frequently in CCM1H1152 (orange boundaries in Fig 9C);

type 10 includes medium size holes, typically with more bumps or protrusions from the cellu-

lar network extending into the hole, which occurs more frequently in WTH1152 samples (green

boundaries in Fig 9C). Descriptions of the boundary types can be determined by analyzing the

distribution of the original boundary metrics within each type (S2 Fig).

Analysis of simulated data. We used a previously developed computational model of

endothelial tube formation [21] to simulate 100 images of different cellular patterns corre-

sponding to changes in two biomechanical characteristics of cell interaction (all the images are

available at http://dx.doi.org/10.17632/mbh97cgss3.1).

In this simulation model, each individual cell from a large group (hundreds to thousands)

of cells sparsely distributed over the substrate surface is represented as an extendable half-ellip-

soid with stochastically extending and retracting protrusions. Protrusions that extend down-

wards are responsible for cell-substrate interactions, while protrusions that extend sideways

along the surface are responsible for cell-cell interactions. Cells form attachments when pro-

trusions either reach deep enough into the substrate, or when it reaches another cell. Retrac-

tion of the attached protrusions leads to the cell movement, changes in cell shapes, and the

buildup of the mechanical stress that can lead to the contact breakage. Ultimately, because of

these cell-cell and cell-substrate interactions, the multicellular system evolves to form different

patterns depending on the model parameters at the cell level. Two key parameters of interest

here are the stability of cell-cell and cell-ECM adhesions. With properly selected values of the

parameters, the model produces a dense cellular network closely resembling wild-type endo-

thelial cells in our in-vitro tube formation assay. Reducing the values of each parameter leads

to either a sparser network or a number of isolated cell clusters, similar to the behavior of cell

with the knockdown of CCM1 and CCM3. It is important to note here that even with a fixed

set of parameters, the stochastic nature of protrusion dynamics and a random initial distribu-

tion of cells make the structures resulted in simulations vary; so that multiple patterns can be

generated for the same phenotype similar to the experimental data.

As we vary the two parameters representing the stability of cell contacts, while maintaining

the same cell number, our simulations allow us to generate a sequence of cell formations with

progressively changing structures (Fig 10A). Variation in the stability of cell-cell contact, the

parameter κlat in the probability of contact breakage Pcell� cell ¼ 1 � expð� l2=k2
latÞ, where l is the

extension of the contact spring in the model, has a strong impact on the boundary metrics. As

this parameter is increased, cells go from forming completely isolated cell clusters to a

completely interconnected network. This leads to an overall reduction in boundary types cor-

responding to isolated cell clusters, and a shift towards networked structures with medium to

large sized holes. The other parameter, κbott in the probability of cell-substrate contact break-

age Pcell� ECM ¼ 1 � expð� l2=k2
bottÞ, primarily affects the velocity of cell movement and the
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resulting density of the cell clusters. The way this parameter impacts the resulting structure

depends on the network connectivity in the multicellular pattern, but generally controls the

density of the structure, with low values causing cells to form larger and more sparse clusters.

Fig 10. A. Nine representative images of multicellular formations out of 100 that were generated by varying two

parameters: the strength of cell-ECM adhesion (vertical axis) and the stability of cell-cell contacts (horizontal axis). B.

Variations of the two parameters result in visible changes in the boundary type histograms (normalized counts of

boundaries of each of 12 types).

https://doi.org/10.1371/journal.pcbi.1007758.g010
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We applied our shape-to-graph mapping to the 100 generated images, extracted the bound-

ary features, and clustered boundaries to create a histogram of boundary types for each image.

By plotting the boundary type histograms, we can see the trends in the boundary type distribu-

tion when the two parameters are varied (Fig 10B) as described above. A multi-regression

model was used to predict the log-transformed values of the two model parameters based on

the count of each boundary type in each image (Fig 11). If these parameters have a predictable

impact on the resulting multicellular pattern, and if the shape-to-graph mapping captures fea-

tures that properly reflect these changes, then this multi-regression model should be able to

reproduce trends in the two model parameters purely from the structural aspects of the cell

patterns in the resulting images. Indeed, our approach allowed us to predict the parameter val-

ues with high accuracy: log-transformed cell-cell adhesion had a mean average error of 0.2392

with values ranging from 5 to 8 and a correlation coefficient of 0.9977, while log-transformed

cell-ECM adhesion had a mean average error of 0.2782 and a correlation coefficient of

0.86695. Twelve boundary clusters were used based on cross validation performance.

Analysis of individual cells in a high throughput assay profiling small-molecules-

induced cell cultures. In the previous sections we have focused on the analysis of complex

multicellular formation with a mesh-like structures. However, our methodology is not limited

to that particular type of data and can be adapted for the analysis of any images that can be seg-

mented into the object(s) of interest and the background. To illustrate this statement, we

applied our method to analyze individually segmented cells in a large publicly available image

set with cell cultures subjected to phenotype perturbations by a variety of small molecules. We

used image set BBBC022v1, available from the Broad Bioimage Benchmark Collection [27].

The original dataset consists of fluorescent microscopy images of U2OS cells treated with one

Fig 11. A linear regression model was trained to predict log-transformed model parameters from the boundary

type histograms. The mean average error in predicting cell-cell adhesion was 0.2392, while predicting the strength of

cell-ECM adhesion had the mean average error of 0.2782.

https://doi.org/10.1371/journal.pcbi.1007758.g011
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of over 1600 compounds. Five fluorescent channels were captured for each field of view. The

dyes used for visualization included Hoechst 33342 (nuclei), concanavalin A (endoplasmic

reticulum), SYTO 14 (nucleoli), phalloidin (actin), and WGA (Golgi complex). A CellProfiler

[6] pipeline provided with the dataset was used to segment individual cells in each field of view

via the watershed algorithm. The samples were split into 20 plates with 384 wells each. Nine

fields of view were obtained for each well.

In the previous sections, our analysis relied on the input images for the shape-to-graph

algorithm in the form of binary masks, in which the extracted boundaries separated the cellular

structure from the background. However, in the imaging data we use here, each cell is treated

as an individual object, and therefore may share a boundary with either the background or

other cells. This can cause some cell boundaries to overlap (Fig 12A). To ensure cell bound-

aries do not overlap, we added a subpixel separation of the boundaries by shifting boundary

points half-way from the previously defined half-pixel boundaries towards the corresponding

pixel center (Fig 12B). This means one-pixel wide objects are thinned to have a width of half a

pixel, and a half-pixel size gap is enforced to appear between two touching objects.

With this processing approach, the cells are presented as individual objects embedded in an

image-scale mesh-like background (Fig 12C), so that the graph representation of the back-

ground (out-graph) encodes the information about the positional organization of all the cells

and degree of confluency of the whole cell culture.

For our analysis, we selected 11 compounds which the authors identified as forming strong

clusters based on their known mechanism of action and the 824 textural and morphological

features they extracted for each image (see S1 Table). These compound clusters include tubulin

modulators (fenbendazole, oxibendazole, taxol) (Fig 13A), modulators of neuronal receptors

(fluphenazine, metoclopramide, procaine) (Fig 13B), and structurally related cardenolide gly-

cosides (digoxin, lanatoside C, peruvoside, neriifolin, digitoxin) (Fig 13C). We also included

control samples from the same assays (Fig 13D). We investigated if we could predict these

mechanisms of action utilizing the shape metrics derived from our shape-to-graph mapping.

To this end, we extract the previously described set of measures for each object in each image.

The mean and standard deviation of these per-cell metrics are computed across each well (see

S2 Table). To account for variance between plates, we subtracted the feature vector of each

well by the median feature vector of the control wells in the same plate. In the end, this resulted

Fig 12. A modified boundary tracing for individual cells in a tight cluster. A. With the previously described boundary tracing, boundaries of

contacting cells will overlap. B. The tracing routine is modified to place boundary points halfway between the pixel center and our original half-

pixel type tracing. This creates a half-pixel gap between bordering cells. C. Parts of the out-graph for each cell (orange) lies within this gap.

Thus, the image out-graphs will include the out-graph nodes between all the contacting cells, effectively encoding the spatial distribution of the

cells in the image.

https://doi.org/10.1371/journal.pcbi.1007758.g012
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in 208 control wells, 12 samples of tubulin modulators, 12 samples of neuronal receptor modu-

lators, and 24 samples of structurally related cardenolides.

Once the metrics were extracted, each plate was individually held-out, and a decision tree

trained on the wells in the remaining 19 plates was used to predict the held-out well labels.

Shape-to-graph features had a mean F1 score of 0.916 (defined as 2 �
precision�recall
precisionþrecall, where

recall ¼ true positive
true positiveþfalse negative, and precision ¼ true positive

true positiveþfalse positive), while the original published shape

features [23] had an F1 score of 0.826. Notably, the shape-to-graph mapping had much better

performance on the ‘Modulators of Neuronal Receptors’ category, with a class F1 score of 0.769

versus 0.455 for the original shape features (Fig 14) and each class appears to form tighter, more

distinct clusters with the new features (S3 Fig). This treatment is the one which most strongly

resembles the control dataset, but the cells tend to be much less dense relative to the control

wells. This reduced density is captured in the out-graph radius metrics for each cell (S4 Fig).

Pipeline stability analysis. Since our image analysis pipeline includes a number of pre-

processing steps, it is important to investigate the sensitivity of the method’s performance to

the parameter choices. First, we re-analyzed our in-vitro tube formation data with different

maximal sizes of the holes that we fill and debris that we remove. Originally, we filled holes

smaller than 21 pixels and removed objects smaller than 101 pixels. For these values, the mean

Fig 13. Images from the U2OS dataset. Red channel is phalloidin, blue is Hoechst 33342, and green is WGA. A. Example image from the

untreated group. B. Image of cells treated with taxol from the tubulin modulators group. C. Image of cells treated with metoclopramide from the

modulator of neuronal receptors group. D. Image of cells treated with digoxin from the structurally related cardenolide glycosides group.

https://doi.org/10.1371/journal.pcbi.1007758.g013

PLOS COMPUTATIONAL BIOLOGY Morphometric analysis of cell formations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007758 September 3, 2020 16 / 25

https://doi.org/10.1371/journal.pcbi.1007758.g013
https://doi.org/10.1371/journal.pcbi.1007758


F1 score is 0.901. We created six additional sets of images in which the hole and object filtering

thresholds were changed simultaneously in the range from 25% to 175% of their original

value. Our results show that a 50% reduction or increase in the parameter values still gives us

mean F1 scores over 0.84. A 75% reduction gives the worst mean F1 score of 0.77 (Fig 15A).

Next, we explored the impact of changing the image resolution on the method’s ability to pre-

dict parameters of the simulation model that we used to generate various multicellular pat-

terns. Potentially, a reduced resolution can alter the pipeline performance due to the loss of

fine (pixel size) structures such as thin cell protrusions. However, it depends on the overall

contribution of fine structures to the characteristic differences between the patterns in the

image set. We generated four additional sets of images with up to a 50% reduction in the reso-

lution of the original image. For our simulated data, we see variations in the mean average

errors of the parameter predictions of up to 10%, though there is no clear trend between reso-

lution and performance. (Fig 15B).

One important aspect of our method is that we use shape features from both image fore-

ground (in-graph) and background (out-graph). Because out-graph features capture the rela-

tive spacing of the foreground objects, these features may become particularly useful for

differentiating images with variable densities of the isolated object. In our simulated data, the

number of cell clusters is sensitive to the stability of cell contacts. Therefore, we could expect

that out-graph features improve the accuracy of image-based prediction of the underlying

model parameters. Indeed, Fig 15C shows that excluding out-graph features increases the

mean average error of predicting the cell-cell stability in the simulation model from 0.2392 to

0.2742 and the cell-ECM stability from 0.2779 to 0.3668. Interestingly, for the U2OS data set,

out-graph features also significantly vary between differently treated cell cultures (as illustrated

in the S4 Fig), but the overall classification performance still mainly depends on the in-graph

features. Fig 15D shows that the confusion chart for the classification based only on the in-

graph features is almost identical to the confusion chart for the classification based on the

whole set of features (compare with Fig 14A).

Collectively, these results suggest that our shape-to-graph method is not ultra-sensitive to

the pre-processing steps as long as these steps preserve the relevant shapes and structural orga-

nization of the objects in the images. One example of corrupting the structural information in

an image would be over- or under-thresholding at the segmentation step. Fig 16 shows that

Fig 14. Held-out plates were classified with a decision tree trained on the remainder of the dataset. The new metrics derived with our

approach tends to have better classification accuracies, especially for the control class (DMSO) and the modulator of neuronal receptors

(NRM). Mean F1 score is 0.916 with the graph derived metrics, and 0.826 with the CellProfiler shape metrics.

https://doi.org/10.1371/journal.pcbi.1007758.g014
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improperly chosen threshold values can drastically change the biological meaning of the image

content (turning an interconnected cell mesh into a number of isolated cell clusters). Such

binary images will be processed by our pipeline just fine, but the results of the classification

will likely be as distorted as the input images.

Graphical user interface. We have created a graphical user interface (GUI) to provide read-

ers with a quick and easy way to try our shape-to-graph mapping on their own data (Fig 17A).

The GUI can be used to generate and display the shape-to-graph mapping for individual images.

The user can cycle through all the boundaries in the image and visualize their width and boundary

profiles. A table of values of the forty measures for each boundary is also displayed.

Additionally, a graphical user interface is provided to generate boundary types from multi-

ple images (Fig 17B). The user can choose a number of boundary classes and inspect each

image from the imported set with its boundaries colored according to the class they were auto-

matically assigned based on the features from the shape-to-graph mapping (which can also be

displayed). These visualizations are accompanied with (1) a color-coded histogram showing

Fig 15. Sensitivity to image resolution, filtering of small imaging artifacts, and cell density. A. Mean F1 score for classification of in-

vitro tube formation images using smaller (down to 25%) and higher (up to 175%) threshold values for filtering out small holes and

debris. B. Mean Average Error in predicting cell-cell (red) and cell-ECM (blue) stability using the same set of simulated images but re-

rendered at lower resolutions (down to 50% of the original). C. Errors in parameter prediction increases if only in-graph features are

utilized (compare with Fig 11). Using the features from both in-graphs and out-graphs increases the pipeline accuracy when cell/object

density is an important characteristic of the image content. D. Confusion chart for the classification of U2OS data without out-graph

features. If in-graph features are sufficient to capture an image content, the pipeline becomes insensitive to the removal of out-graph

features (compare with Fig 14A).

https://doi.org/10.1371/journal.pcbi.1007758.g015
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the boundary type distribution in the current image, (2) a t-SNE plot of the boundaries across

all images, and (3) a plot of two user-selected principal components calculated based on the

boundary type histograms across all the images. The point corresponding to the current image

is highlighted in the PCA plot.

Fig 16. Sensitivity to over- and under-thresholding. The features of the graph capture the variations in the pattern resulted due to a suboptimal segmentation

process, which emphasizes the importance of preserving the proper image content at the pre-processing steps. A. A gray-scale image of endothelial cells forming an

interconnected mesh. B. Boundary and width profiles for the subgraph associated with the boundary of the large hole in the middle of the image. C. All in-graphs of

the pattern (top row) and a single subgraph associated with the hole boundary (bottom row) for the threshold values that are too low (left), optimal (middle), and too

high (right). Under-thresholding can expand the pattern and create artificial (non-existing) connections between cells or cell clusters, while over-thresholding can

shrink the pattern and create artificial (non-existing) holes or break the existing contacts.

https://doi.org/10.1371/journal.pcbi.1007758.g016
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Discussion

In this paper we introduced a methodology for extracting, quantifying, and classifying struc-

tural features of an arbitrarily complex pattern in a segmented image. The methodology is

based on a mathematically defined mapping of all boundaries in the binary image onto a global

graph. The graph preserves all the information specified by the boundaries but also provides

Fig 17. Two Graphical User Interfaces for demonstrating the graph construction and analysis. A. GUI for

illustrating the shape-to-graph approach and the key concepts such as subgraph, in- and out-graphs, and the width and

boundary profiles. The user can cycle through the boundaries and see the 40 metrics extracted for each boundary. B.

GUI for processing multiple images. Boundaries are automatically clustered and colored according to a user-specified

number of boundary types. The bottom graphs are the frequency of boundary types in the current image, a t-SNE of all

the boundaries calculated by their features and colored by their resulting class, and a PCA plot of all the images derived

from their boundary type histograms.

https://doi.org/10.1371/journal.pcbi.1007758.g017
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an efficient and precise way of defining meaningful metrics for further processing (all the

scripts used in this work are available at https://github.com/tsygankov-lab/

ShapeToGraphMapping). We illustrated the power of this approach by analyzing experimental

images of human umbilical vein endothelial cells forming multicellular patterns with different

levels of connectivity depending on genetic (ccm1, ccm2, ccm3 knockdowns) and biochemical

(Rho kinase inhibition) perturbations. We showed that all the visually distinguishable patterns

could be reliably grouped in different classes using principal component analyses of boundary

types that were defined based on a large set of graph measures. We also showed that our

method is sensitive enough to identify subtle differences in visually similar patterns. More

importantly, after classification, the geometric features that made such differentiation possible

can be backtracked for further analysis or verification. Thus, our method allows not only for

statistical quantification of pattern characteristics but also for the discovery of structural fea-

tures that are not apparent from visual inspection. This is particularly important for research

projects that aim to determine not only ‘which’ class of patterns a particular image belongs to,

but also ‘why’ it is so in term of intuitively understandable geometric features.

As another illustration of the strength of our method, we analyzed a set of images generated

with a simulation model with two control parameters responsible for the structural organiza-

tion of the multicellular patterns. We showed that after training the algorithm with a subset of

images, it could accurately predict the parameters used for the image generation. It is impor-

tant to notice that the stochastic nature of cell-cell interactions in the model creates a variabil-

ity of patterns in different simulations even with the same parameters, which can be

interpreted as a noise in the data. Despite this variability, we achieved the correlation coeffi-

cients between the predicted and the actual values of the two control parameters as high as

0.9977 and 0.86695. This result shows that a biological characteristic influencing the geometry

of an observed structure or pattern can be accurately quantified/predicted directly from the

images once the algorithm is trained with a few images for which this characteristic was mea-

sured. One of the applications of such quantification would be an investigation of the transi-

tion dynamics between the known biological states (e.g. predicting the onset of a diseased

phenotype).

Our methodology works for any binary images. Because we construct the graph for both

foreground and background, the extracted features characterize the geometry of individual

objects, connectivity in networked structures, as well as the relative organization of isolated

objects. This fact makes our method highly versatile and generally applicable. We illustrated

this statement reanalyzing a subset of previously published data set from a high throughput

assay profiling small-molecule-induced U2OS cell cultures [23]. We used the same processing

pipeline as in the original study but apply the geometric features from our shape-to-graph

mapping. By comparing a combined metric of precision and sensitivity, the F1 score, we

showed that our graph representation of the image content provides an improvement in classi-

fication performance of 10% for the three major mechanisms-of-action clusters and 40% for

the cluster that differs the least from the wild type cultures. Saying that, it is important to notice

that the initial, pre-processing step of segmentation is critical, and the presented method can

be only as accurate as allowed by the quality of microscopy and the segmentation routine.

Materials and methods

Cell culture

Human umbilical cord endothelial cells HUVEC (Lonza, Walkersville, MD) were maintained

in EGM-2 medium (Lonza) at 37˚C/5% CO2 and passaged every 3 to 4 days for up to 6 pas-

sages at a 1:5 sub-culturing ratio. For tube formation experiments, 4.5-5x103 cells were plated
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into each well of angiogenesis μ-slides (ibidi, Fitchburg, WI) coated with 10 μl of growth factor

reduced phenol red-free Matrigel (Corning, Corning, NY), and incubated for up to 18 hrs.

Microscopy

For endothelial tubule formation imaging, cells plated on Matrigel were incubated with Cell-

Mask Green Plasma Membrane Stain (Invitrogen, Carlsbad, CA) for 15 min at 37˚C. The

media was changed to phenol-free EGM-2 supplemented with 2% FBS and growth factors

(PromoCell GmbH). Images were acquired using PerkinElmer UltraVIEW VoX spinning disk

confocal microscope (PerkinElmer, Waltham, MA). Image processing and analysis were per-

formed using ImageJ software (NIH). Images in Fig 9 represent a 1.2 mm by 1.2 mm areas.

With the plating density of ~ 400 cells per mm2, there is ~600 cells in each image.

Gene expression knockdown

To achieve knockdown of CCM protein expression, cells were infected with PLKO.1 vector-

based lentiviruses carrying shRNAs for human krit1 (RHS4533-EG889), ccm2 (RMM4534-

EG216527), and pdcd10 (RHS4533-EG11235) genes (Dharmacon, Lafayette, CO). Lentiviral

particles, prepared and purified by VectorBuilder technical service group (VectorBuilder,

Santa Clara, CA) were added to EGM-2 media supplemented with 8μ/mL polybrene for 48

hrs. Transduced cells were selected through their resistance to puromycin added to the growth

media in the concentration of 2.5 μg/ml. Expression knockdown was measured by real-time

PCR with TaqMan gene expression assays. Phenotypic experiments were conducted between 6

and 10 days after infection.

Image Preprocessing

Simulated images in vector format were rendered at 1024x1024 resolution. By design, the

model generates binary images with all interacting cells and their protrusions being the fore-

ground of the image. All holes smaller than 100 pixels were automatically filled. Multiple fields

of view were sampled from experimental images of tube formation at a fixed resolution of

690x690 pixels. The images were segmented with a simple threshold followed by manual cor-

rections to under segmented tubules. Cellular debris below 50 pixels in size were automatically

removed.

Boundaries were extracted from each binary image. Linear pixel-size segments that connect

boundary points serve as the input to the shape-to-graph mapping algorithm. Rather than

defining boundary points at the center of each pixel at the edge of an object, points on the

boundary were placed on the half-pixel border between an object and the background. This

ensures that any object within the boundary has a non-zero area and any protruding part of an

object has a non-zero width.

When operating on label images, boundaries are extracted from the largest four-connected

components for each label. Boundary points are placed half-way between the center of the

pixel and the half-pixel edge used for binary images. This creates a half-pixel sized gap between

objects which share a boundary, and any objects which are one pixel wide will have a width in

the Voronoi diagram of 0.5px.

Supporting information

S1 Fig. Confusion Chart. The results of 3-Nearest Neighbor classification on the CCM dataset

using the shape-to-graph features. With 12 clusters, a 90% classification accuracy was achieved.

Misclassifications occurred between the similar CCM1H1152 and WTH1152 structures, along
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with the CCM1 and CCM2 and WT and CCM2 structures, which have relatively few bound-

aries in each image.

(TIF)

S2 Fig. Feature Distribution. The distribution of each of the boundary metrics within a

boundary type can be used to determine the characteristics of given boundary. Each boundary

type accounts for information in the in-graph and out-graph surrounding the boundary. This

means, for example, holes of similar size surrounded cell structure of different thickness may

result in different boundary types.

(TIF)

S3 Fig. PCA Comparison. The first 2 principal components of the U2OS dataset with our new

shape-to-graph metrics and the metrics in the original analysis. The metrics derived from our

method creates tighter distributions with fewer overlaps between the chemical classes.

(TIF)

S4 Fig. Feature Differences. The difference of the average feature vectors between the control

wells and the modulator of neuronal receptor wells can be used to see which features distin-

guish the classes. See S2 Table for descriptions of these features. Generally, features corre-

sponding to the background radius, features 20–25 and 61–65, tend to be much larger in the

modulators of neuronal receptors relative to control, indicating that the cells in this image are

in a much less dense environment.

(TIF)

S1 Table. Morphological CellProfiler metrics used in the original classification [23]. http://

cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.0.0/modules/measurement.html.

(DOCX)

S2 Table. Graph-based metrics used for the analysis of the U2OS dataset. These metrics

are derived from the mean and standard deviation of the per-cell metrics described in

Table 1, except for the dropped-off inner/outer boundary flags, giving the total of 4�19 = 76

metrics.

(DOCX)

S1 File. All Scripts and GUIs in a single ZIP file.

(ZIP)
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