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Abstract

Background

22q11.2 Deletion Syndrome (22q11DS) represents one of the greatest known genetic risk
factors for the development of psychotic illness, and is also associated with high rates of
autistic spectrum disorders (ASD) in childhood. We performed integrated genomic analyses
of 22q11DS to identify genes and pathways related to specific phenotypes.

Methods

We used a high-resolution aCGH array to precisely characterize deletion breakpoints.
Using peripheral blood, we examined differential expression (DE) and networks of co-
expressed genes related to phenotypic variation within 22q11DS patients. Whole-genome
transcriptional profiling was performed using lllumina Human HT-12 microarrays. Data min-
ing techniques were used to validate our results against independent samples of both
peripheral blood and brain tissue from idiopathic psychosis and ASD cases.

Results

Eighty-five percent of 22q11DS individuals (N = 39) carried the typical 3 Mb deletion,

with significant variability in deletion characteristics in the remainder of the sample (N =7).
DE analysis and weighted gene co-expression network analysis (WGCNA) identified
expression changes related to psychotic symptoms in patients, including a module of
co-expressed genes which was associated with psychosis in 22q11DS and involved in
pathways associated with transcriptional regulation. This module was enriched for brain-
expressed genes, was not related to antipsychotic medication use, and significantly
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overlapped with transcriptional changes in idiopathic schizophrenia. In 22q11DS-ASD, both
DE and WGCNA analyses implicated dysregulation of immune response pathways. The
ASD-associated module showed significant overlap with genes previously associated with
idiopathic ASD.

Conclusion

These findings further support the use of peripheral tissue in the study of major mutational
models of diseases affecting the brain, and point towards specific pathways dysregulated in
22q11DS carriers with psychosis and ASD.

Introduction

Identification of replicable risk genes for developmental neuropsychiatric disorders such as
autism and schizophrenia has been hampered by the substantial complexity and heterogeneity
of these disorders. Although the majority of cases are of unknown etiology (idiopathic),
increasing evidence suggests that rare copy number variants have robust and reproducible
impacts on disease risk [1-3]. Investigation of highly penetrant genetic subtypes of these disor-
ders offers a complementary strategy that may elucidate more homogeneous biological path-
ways [4,5]. The 22q11.2 Microdeletion Syndrome (Velocardiofacial/DiGeorge syndrome;
OMIM #192430; 22q11DS) is a particularly compelling model, as it represents one of the most
common known recurrent genetic risk factors for the development of these disorders[6]. Multi-
ple studies have found that 23-41% of adolescents and adults with 22q11DS meet criteria for a
psychotic disorder [7-13]. Furthermore, 14-50% meet criteria for an autism spectrum disorder
(ASD) in childhood [14-17]. Genes within the 22q11.2 locus have been implicated in the etiol-
ogy of idiopathic psychosis and ASD, providing support for the notion that genes within this
region may make a broader contribution to disease susceptibility and/or associated intermedi-
ate phenotypes [18-24].

In addition to the elevated rates of psychotic disorder and ASD seen in 22q11DS, there are a
diverse range of neuropsychiatric conditions observed in this population, including attention-
deficit/hyperactivity disorder (ADHD), anxiety disorders, and mood disorders [7,13]. In fact,
at any age, 60% of individuals with 22q11DS meet criteria for a psychiatric disorder of some
kind [7,12,13,25] and it is common for an individual with 22q11DS to meet criteria for multiple
psychiatric diagnoses concurrently [26]. However, the schizophrenia phenotype in 22q11DS is
the most specific psychiatric phenotype identified, as it is the only psychiatric disorder found at
a greater rate in 22q11DS than in other neurodevelopmental disorders [6,27], While idiopathic
forms of ASD and schizophrenia are both characterized by social cognitive deficits [28] and
abnormalities in associated neural circuitry [29], preliminary data in 22q11DS suggests that
schizophrenia and ASD are two distinct phenotypes in 22q11DS, as ASD symptoms in child-
hood did not predict psychosis in adulthood [30]. Thus, a logical next step would be to interro-
gate these two phenotypes further in 22q11DS, to explore whether gene expression profiles
differ amongst these two conditions and possibly identify genes uniquely associated with each
disorder.

All 22q11DS patients share a 1.5 Mb deletion at the 22q11.2 locus, encompassing approxi-
mately 28 genes; in 85% of the carriers the deletion spans 3 Mb, including 90 known genes
[31]. Several CNS-relevant genes are encoded in the 1.5 Mb critical region, including genes
involved in neuronal migration, myelination and brain development [32,33]. This region is
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flanked by proximal and distal low-copy-number repeats (LCRs) or segmental duplications,
making this region vulnerable to errors in chromosomal recombination [34,35]. Two previous
studies using high-resolution comparative genomic hybridization (aCGH) arrays showed sig-
nificant breakpoint variability within these LCRs in 22q11DS individuals, suggesting that vari-
ability of deletion breakpoints may contribute to the variable clinical presentation observed in
22q11DS [36,37]; however, the pathogenetic mechanisms underlying the development of neu-
ropsychiatric disorders in 22q11DS have yet to be elucidated.

The sole prior publication to date to examine blood-based gene expression profiles in
22q11DS confirmed significantly reduced expression of genes within the 22q11.2 locus in
22q11DS patients relative to controls, and found that a number of functional pathways, includ-
ing some previously associated with idiopathic schizophrenia, were involved [38]. However,
due its small sample size (N = 16) the study was unable to evaluate differential expression
related to phenotypic variability in 22q11DS.

Additionally, multiple testing presents a challenge for expression microarray studies, which
test thousands of transcripts simultaneously. Gene co-expression network analysis offers an
alternative approach, allowing the identification of groups of functionally related genes or
‘modules’, whose expression patterns are highly correlated. These modules can then be com-
pared between cases and controls, and analyzed in relation to both categorical and quantitative
phenotypes [39,40].

To better characterize how the 22q11DS genotype gives rise to such varied phenotypes, we
sought to answer the following questions: 1) Is there variation in deletion breakpoints in
22q11DSg?; 2) are there differences in gene expression between 22q11DS patients and controls?;
3) are there networks of co-expressed genes associated with psychotic illness or ASD diagnosis
in 22q11DS?;, and 4) can we validate our results against published datasets available from other
samples of both peripheral blood and brain tissue from idiopathic psychosis and ASD cases?

Methods and Materials
Subjects

Forty-six patients with a molecularly confirmed diagnosis of a 22q11.2 deletion and 66 unaf-
fected healthy controls were recruited from an ongoing longitudinal study at the University
of California, Los Angeles. 22q11DS participants were recruited from posts to 22q11DS/Velo-
cardiofacial online foundations and flyers through contacts with local craniofacial or genetics
clinics. Controls were recruited from flyers posted at local schools and community centers.
Demographic information is reported in Table 1. Psychotropic medication usage for 22q11DS
participants is reported in S1 Table.

This study was approved by the UCLA Institutional Review Board and performed in accor-
dance with the Declaration of Helsinki. All subjects or their legal guardians provided written
informed consent, after study procedures were fully explained.

Whole-genome Microarrays

RNA was extracted from whole blood using the PAXgene extraction kit (Qiagen), then stored
at -80C for subsequent analysis. RNA quantity was assessed with Nanodrop (Nanodrop Tech-
nologies) and quality with the Agilent Bioanalyzer (Agilent Technologies). Whole-genome
transcriptional profiling was performed using Illumina Human HT-12 microarrays. 200 ng of
total RNA were amplified, biotinylated and hybridized to Illumina Human V4-HT-12 Bead-
chips, including approximately 47,000 probes, following the manufacturer’s recommendations.
Slides were scanned using Illumina BeadStation, and the signal was extracted by using Illumina
BeadStudio software.
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Table 1. Demographic information for 22q11DS participants and controls.

Age (+/-SD)

Gender (N, % female)
Psychotic Disorder

Autism Spectrum Disorder
WASI 1Q (mean, +/-SD)
SRS T Score (mean, +/-SD)

%assessed in 40 participants

22qDS (N = 46) Unrelated Controls (N = 24) Family Member Controls (N = 42) p-value
17.3 (11.9) 15.4 (5.2) 41.7 (12.9) p < .001
23 (50%) 8 (33%) 14 (33%) p=.21
6 (13%) NA NA

16 (40%)>° NA NA

76.6 (13.4)° 112.3 (20.9)° NA p < .001
69.7 (16.0) 52.7 (14.8) NA p < .001

b3 22q11DS participants had comorbid diagnoses of ASD and psychotic disorder

Cassessed in 43 participants
9assessed in 23 participants.

doi:10.1371/journal.pone.0132542.1001

Comparative Genomic Hybridization Arrays

To characterize the boundaries of the 22q11.2 deletion, we used a custom NimbleGen 12¥135
HX12 array (see S1 Text).

Outcome Measurements

Master’s or PhD-level clinicians conducted all assessments. Prior to conducting diagnostic
interviews, clinicians had to achieve good to excellent reliability with a set of gold standard rat-
ings (kappa coefficients of .90 or greater for categorical diagnoses and intra-class correlations
coefficients (ICC’s) ranging from 0.85 to 1.00 for quantitative symptom ratings).

For all participants, DSM-IV psychotic disorder diagnosis was determined through a paren-
tal interview using the Computerized Diagnostic Interview Schedule for Children (C-DISC,
[41] 6-9 years) and/or the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID)
[42,43], with an additional developmental disorders module, administered to the proband and
parent (10 years and up). 22q11DS participants were also administered the SIPS/Scale of Pro-
dromal Syndromes (SOPS), a dimensional measure of psychotic symptom severity, including
sub-threshold (prodromal) and fully psychotic symptoms [44]. Symptoms on this scale are
rated from 0-6, with zero representing an absence of symptoms and six referring to a severe
and psychotic level of symptoms. Diagnostic formulations and SIPS symptom ratings for all
cases were additionally reviewed in consensus diagnosis meetings led by the study director, a
board-certified psychologist (CEB).

Diagnoses of autism and/or ASD were determined using the Autism Diagnostic Observa-
tion Schedule (ADOS)[45], administered to the child, and the Autism Diagnostic Interview-
Revised (ADI-R)[46], administered to the subject’s parent/primary caretaker. Participants were
classified as having ASD, based on the ADI-R, if scores were above threshold for the Reciprocal
Social Interaction domain, as well as either Communication Impairment or Repetitive Behav-
iors and Stereotyped Patterns. Scores from the ADOS and ADI-R were used to determine a
consensus diagnosis of ASD, as described in a prior publication [47]. Seven subjects in the
22q11DS group were over the age of 18 and thus were not administered the ADI-R/ ADOS;
these subjects and their parents/primary caretakers were administered a SCID interview, with
an additional developmental disorders module as described above, in order to determine ASD
diagnostic status according to DSM-IV diagnostic criteria. Six adult 22q11DS patients (ages
34-61) did not receive the additional developmental disorders module; thus, they were omitted
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from the ASD analyses due to the difficulty of making such a diagnosis retrospectively, in the
absence of parental information.

Statistical Analyses

Microarray-based gene expression analysis. Raw data were analyzed by using Bioconduc-
tor packages in the R statistical environment as previously described. [48] Only samples with
an RNA integrity number (RIN) of 7 or greater were included in the analyses [49]. Quality
assessment was performed by examining the inter-array Pearson correlation and clustering
based on the top variant genes was assessed. We directly removed batch effects using ComBat,
which is part of the Bioconductor package in R [46]. Prior to running any analyses, we cor-
rected for age by using a linear model to regress out the participant’s age from each transcript
and calculate a residual value.

We then performed the following contrast analyses separately: 1) Controls vs. 22q11DS, 2)
22q11Ds-PSY+ vs 22q11DS-PSY-, and 3) 22q11DS-ASD = vs 22q11DS-ASD-. Analyses of
22q11DS-PSY+ vs. controls and 22q11Ds-PSY- vs. controls are reported in the Supplementary
Text. Contrast analysis of differential expression was performed by using the LIMMA package
[50]. After linear model fitting, a Bayesian estimate of differential expression was calculated.
Similar to previous publications examining differential gene expression [51], transcripts were
considered significantly DE at p < .005 (uncorrected).

Similar to previous publications which have investigated the statistical significance of the
overlap between gene lists[51,52], we then conducted hypergeometric distribution tests [53]
using the phyper function in R to determine whether the DE transcripts were significantly
enriched for brain-expressed genes. This method tests for significance of over-representation
of genes within two comparative samples. Unique gene transcripts examined (28,503) were
considered the background list. We identified the overlap between unique names of genes
identified as brain-expressed [42] and the DE genes obtained from each of our contrasts
and calculated the probability of drawing randomly drawing this many overlapping genes
from the background list. For DE genes identified in the 22q11DS vs. control contrast, we
also conducted a hypergeometric distribution test to identify whether genes in the TDR were
over-represented. Bonferroni correction was used to correct for multiple comparisons (N = 4;
p=.013).

For these analyses, Gene ontology (GO) annotation was performed using DAVID (http://
david.abcc.nciferf.gov/) and terms that remained significant after correction for False Discov-
ery Rate (g < .05) [54] were considered relevant to the analysis of interest. Pathway analysis
was performed using the Functional Analysis Annotation tool in the Ingenuity Pathways Anal-
ysis (IPA) software (Ingenuity Systems, www.ingenuity.com). IPA uses literature-based data
(scientific publications) to detect over-representation of biologically relevant networks and
canonical pathways within the respective set of genes. The algorithm used to determine gene
networks and pathways is described in detail in Calvano et al., 2005 [55] and at the following
web link: www.ingenuity.com/wp-content/themes/ingenuitytheme/pdf/ipa/IPA-netgen-
algorithm-whitepaper.pdf. Once networks are assigned, a right-tailed Fisher’s exact test is used
to calculate a p-value that determines the probability that the biological functions/terms
assigned to that network was due to chance. A score is computed for each network (-log10 of
the p-value). A score of 2 (p-value = .01) indicates that there is a 1 in 100 chance that the genes
found together in the identified network occur due to random chance. Thus, scores greater
than 2 have at least 99% confidence of not being due to random chance. For all analyses, we
report on the top network identified. Microarray data have been deposited in the NCBI Gene
Expression Omnibus database (www.ncbi.nlm.nih.gov/ geo, Accession number: GSE59216).
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Analysis of Age Effects. In order to identify age-related transcripts, Pearson correlations
were used to examine the relationship between gene expression levels with age in both
22q11DS patients and controls.

Secondary Gene Expression Analyses. Since a subset of our controls were biological rela-
tives of 22q11DS patients, we conducted a secondary DE analysis comparing 22q11DS patients
vs. their unaffected family members in a paired design. To ensure that age differences and rela-
tionships between patients and their unaffected relatives were not driving our results, we re-
ran the DE analysis including only a subset of age-matched, unrelated controls (N = 39) from
our overall control sample. To ensure that possible confounding factors, such as RNA Integrity
Number and gender, were not affecting our analyses, we re-ran the DE analysis after covarying
for these factors. We then separately calculated Pearson correlations between the fold change
scores in the original DE analysis and the fold change scores obtained in these separate
analyses.

Weighted Gene Co-expression Network Analysis (WGCNA). We conducted WGCNA,
a systems biology approach used to identify networks of co-expressed genes in relation to phe-
notypic data [56], using R software [39,40]. Correlation coefficients were constructed between
expression levels of genes, and a connectivity measure (topological overlap) was calculated for
each gene by summing the connection strength with other genes. Genes were then clustered
based on their topological overlap, and groups of co-expressed genes (modules) were identified.
Each module is assigned a color, and the first principal component (eigengene) of a module is
extracted from the module and considered to be representative of the gene expression profiles
in a module. The phenotypic trait of interest is then regressed on the eigengene to determine
whether there is a significant relationship between the module and the trait. Phenotypic traits
examined within 22q11DS participants included: categorical and dimensional indicators of
psychosis (i.e. psychosis diagnosis and total SIPS positive symptoms), ASD, IQ, and gender.
Age was not included as a phenotypic trait as it was regressed out prior to conducting
WGCNA analyses. For modules that showed a statistically significant relationship with a phe-
notypic trait of interest (p < .05, uncorrected), GO analyses and IPA were conducted. We
chose to examine modules with a significant association of p < .05 since this was the first inves-
tigation linking gene expression modules to clinical phenotypes in 22q11DS. For a more
detailed explanation of the WGCNA analysis, see S1 Text. R code used to conduct the analysis
can be found in the Supporting Information.

Because 3 of our 22q11DS participants had co-morbid diagnoses of ASD and psychosis, we
conducted a post-hoc WGCNA module preservation analysis, examining whether our gene
expression modules were preserved in the remaining dataset. We re-ran the WGCNA analysis,
using the module assignment of the original dataset. To determine whether the original
modules remained preserved when these samples were omitted, we calculated a module preser-
vation Z statistic with modulePreservation function of the WGCNA R Library [40,57]. A Z-sta-
tistic greater than 5 reflects significant module preservation in the second dataset.

Validation with published datasets. To validate our gene expression and WGCNA
results, we conducted hypergeometric probability tests (phyper function in R) between our
results and publicly available datasets related to idiopathic psychosis [58] and ASD [59]. Using
gene lists obtained from the two DE analyses (22q11DS patients with psychosis (22q11DS-PSY
+) versus those without a psychotic disorder diagnosis (22q11DS-PSY-), 22q11DS patients
with (22q11DS-ASD+) versus those without an ASD diagnosis (22q11DS-ASD-)), we ran sepa-
rate hypergeometric tests to determine whether there was enrichment of genes associated with
idiopathic psychosis and ASD in each analysis, respectively. Additionally, using gene lists
obtained from the psychosis and ASD WGCNA modules, we ran separate hypergeometric tests
to determine whether these modules showed enrichment of genes associated with idiopathic
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psychosis and ASD, respectively. We also ran hypergeometric tests between the DE genes and
genes identified as brain-expressed [42], as well as between the psychosis and ASD gene mod-
ule lists and brain-expressed genes[42], to test for enrichment of brain-expressed genes. Bon-
ferroni correction was used to correct for multiple comparisons (N = 9; p = .006).

Results
CGH analysis

Inspection of the intensity plots yielded four distinct subgroups of deletion events in our cohort
(Fig 1). Fig 1A shows a characteristic aCGH intensity plot for a first-degree relative. The most
frequent aberration observed was the 3MB typical deletion region spanning chr21:18.8-21.5
(N =37; 80%, Fig 1B). Two individuals (4%) with the 3 MB deletion carried an additional
copy-number gain in the region distal to the 3 MB typically deleted region (TDR), which con-
tains the TOP3B gene (Fig 1C). Three individuals (7%) carried a 2.8 MB deletion (Fig 1D),
three had a 1.5 MB deletion (Fig 1E), and one had a 1.3 MB deletion (Fig 1F). These deletion
types have been described previously in the literature [36,60]; however, to our knowledge the
copy number gain containing TOP3B has not been previously reported. In four individuals (3
with the 2.8 MB deletion and one with the 1.3 MB deletion) the proximal breakpoint was
located ~100kb distally from the start of the TDR. Two annotated coding genes, DGCR6 and
PRODH, are present in a normal diploid state among these affected individuals.

Gene Expression Analyses

22q11DS vs. Controls. Four hundred probes were DE in 22q11DS vs. controls (p < .005,
Fig 2A, S2 Table). We observed a significant over-representation of down-regulated probes
within the 22q11.2 locus, accounting for 13% of down-regulated genes in 22q11DS (p < .0006);
however, there was significant variability in expression levels of these genes (S1 Fig). Sixty-five
percent of DE genes were brain-expressed [42] (p < .00005). GO analyses revealed that the top
categories (<. 05) associated with the DE probes in 22q11DS included regulation of neuronal
action potentials, myelination, and axon ensheathment of neurons (Fig 2B). IPA revealed a top
network associated with cellular development, and cellular growth and proliferation (Fig 2D).
The top canonical pathway associated with this network was axon guidance signaling, with the
majority of DE genes down-regulated in 22q11DS patients.

When we removed the genes spanning the 22q11.2 region and re-ran these analyses, our
results remained very similar. Eighteen of the 19 reported GO terms overlapped with our origi-
nal analysis, indicting that the significant GO results were not driven by haploinsufficient
genes within the 22q11.2 locus. In addition, three more GO terms were also found to be signifi-
cant in this second analysis: immune response, regulation phosphate metabolic process, and
regulation of epithelial to mesenchymal transition. IPA analyses without the genes spanning
the 22q11.2 region showed that the identified top network was still associated with cellular
development, and cellular growth and proliferation.

We also conducted secondary analyses comparing 22q11DS-PSY+ vs. controls and
22q11DS-PSY- vs. controls, which can be found in Supporting Information.

Psychosis. Thirteen percent (6/46) of 22q11DS patients had a psychotic disorder diagno-
sis. 141 probes were significantly DE in 22q11DS-PSY+ relative to 22q11DS-PSY- (Fig 3D and
3F, S3 Table), 51% of which were brain expressed (hypergeometric test, p = .44). GO analyses
(g<.05) revealed an over-representation of genes associated with mitochondrial organization
and transport (Fig 3E). Pathway analyses revealed that the top network of these DE genes was
associated with embryonic development and cellular assembly and organization (S2 Fig).
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Fig 1. Representative examples of array comparative genomic hybridization (aCGH) using the NimbleGen 12*135 HX12 array, from: A) first-
degree relatives of 22q11DS patients (N = 11), B) 22q11DS participant with typical 3 Mb deletion (N = 37); C) 22q11DS participant with 3 Mb deletion
and distal duplication, which includes the TOP3B gene (N = 2); D) 22q11DS participant with 2.8 MB deletion (N = 3); E) 22q11DS participant with 1.5
MB deletion (N = 3); and F) 22q11DS participant with 1.3 MB Deletion (N = 1).

doi:10.1371/journal.pone.0132542.g001

Autism Spectrum Disorder. Comparing gene expression profiles of 22q11DS patients
with (N = 16) and without (N = 24) an ASD diagnosis, we identified 131 DE probes in
22q11DS-ASD+ relative to 22q11DS-ASD- (Fig 3A & 3C, S4 Table). Forty-five percent of DE
genes were considered to be brain expressed [42] (hypergeometric test, p =.56). The top GO
category (¢q<.05) associated with the DE genes was cell morphogenesis involved in differentia-
tion (Fig 3B). The top IPA network associated with DE genes in 22q11DS-ASD+ was related to
immune response (S3 Fig).

For both DE analyses of psychosis and ASD diagnoses within 22q11DS, none of the DE
probes were within the 22q11.2 locus and none of these probes overlapped with the DE genes
in the overall (22q11DS vs. control) analysis.
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Fig 2. Differential expression (DE) analysis comparing controls to 22¢q11DS patients. A) Number of DE genes at p<0.005. Four hundred probes (245
down-regulated, 155 up-regulated) were DE in 22q11DS vs. controls. B) Gene ontology analysis (g<.05) of DE genes in 22q11DS vs. controls. Top
categories included ensheathment of neurons, and regulation of cellular proliferation, signal transduction, and cell communication. Bars represent the—Log of
the over-representation g-value. Red and green represent the proportion of up and down-regulated genes, respectively. C) Heat map depicting fold changes
in peripheral blood samples for each 22q11DS participant. Genes are in rows and samples are in columns. Shades of red indicate up-regulation compared to
the control condition, shades of green indicate down-regulation. D) Ingenuity pathway analysis results of a top network associated with significantly DE
genes (p <.005) in 22g11DS vs. controls. This network is associated with cellular development, and cellular growth and proliferation. According to IPA, 10
different molecules in this network are associated with axon guidance signaling, including genes MTORC1, GNB1L and PDGFA, which were all down-
regulated in 22q11DS patients.

doi:10.1371/journal.pone.0132542.9002

Age Relationships. Age effects on gene expression profiles were consistent with those pre-
viously documented in other tissue types (S1 Text, S4 Fig).

Results from Secondary Gene Expression Analyses. Results remained similar when the
DE analyses were re-run on subsets of 22q11DS and control participants (S1 Text). Specifically,
we found highly significant fold change correlation coefficients between results from our over-
all analyses and those for 22q11DS vs. unaffected relatives only, 22q11DS vs. age-matched con-
trols only (r = 0.975 and r = 0.91, respectively).

Weighted Gene Co-Expression Analysis

Hierarchical clustering based on topological overlap identified 24 groups of co-expressed
genes, or modules (Fig 4A), each comprising between 45 and 1195 genes. Modules identified
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Fig 3. Differential expression (DE) analysis comparing phenotypic expression (i.e., psychosis, autism spectrum disorders) within the 22q11DS
sample. A. Number of DE genes at p<0.005 for 22q11DS participants with ASD (N = 16) vs. 22q11DS without ASD (N = 34). One hundred thirty one probes
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the proportion of up and down-regulated genes, respectively. C) Heatmap depicting fold changes in peripheral blood samples for each 22q11DS participant
with ASD. Genes are in rows, and samples are in columns. Shades of red indicate up-regulation compared to the 22q11DS participants without ASD, shades
of green indicate down-regulation. D) Number of DE genes at p<0.005 for 22q11DS with a psychotic disorder (N = 6) vs. 22q11DS participants without a
psychotic disorder (N = 40). One hundred forty one probes (62 down-regulated, 79 up-regulated) were DE in 22q11DS with psychosis in comparison to
22q11DS patients without psychosis. E) Gene ontology analysis (g<.05) of DE genes in 22q11DS with psychosis vs. 22q11DS without psychosis. Top
categories were associated with mitochondrial transport and organization. Bars represent the—Log of the over-representation g-value. Red and green
represent the proportion of up and down-regulated genes, respectively. F) Heat map depicting fold changes in peripheral blood samples for each 22q11DS
participant with psychosis. Genes are in rows, and samples are in columns. Shades of red indicate up-regulation compared to the 22q11DS participants
without psychosis, shades of green indicate down-regulation.

doi:10.1371/journal.pone.0132542.9003
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22q11DS-PSYS
22q11DS-PSY6

and the significance values of their relationship with the phenotypic traits of interest are shown
in Fig 4B.

Psychosis. We identified one WGCNA module (Purple, 237 probes; Fig 5A, S5 Table) that
was associated with psychosis, using both categorical (diagnosis status, r = .32, p = .03) and
dimensional measures of psychotic symptomatology (total SIPS positive symptoms, r = .54,

p = 1.0e-4). Genes co-expressed within this module were predominantly up-regulated in
22q11DS-PSY+, and in 22q11DS subjects with greater positive symptom severity. This module
was not associated with antipsychotic medication use (r = .04, p = .80). Seventy-five percent of
the probes in this module were brain-expressed (hypergeometric test, p = 1.92e-19) [42]. GO
categories (q<.05) associated with this module were related to protein folding, acetyl-co meta-
bolic processes, and aerobic respiration (Fig A in S5 Fig). Pathway analyses revealed that the
top network associated with this module was RNA post-transcriptional modification (Fig B in
S5 Fig).

Autism Spectrum Disorder. One WGCNA module (Royal Blue, 86 probes, Fig 5B, S6
Table) was associated with ASD diagnosis in 22q11DS (r = 0.4, p = 0.006). Genes in this mod-
ule were predominantly up-regulated in 22q11DS-ASD+, and were primarily related to
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Fig 4. Network construction of co-expressed genes in relation to psychosis and autism spectrum disorders in 22q11DS. A) Dendogram of modules
identified through Weighted Gene Co-expression Analysis, created through linkage hierarchical clustering of genes. B) Module-Trait relationships for age,
gender, psychotic disorder diagnosis, autism spectrum disorder diagnosis, and positive symptoms, as measured by the SIPs. Numbers shown represent
Pearson correlations between the modules and traits. P-values are in parentheses. Numbers on the color bar refer to the strength of the correlation in the
table (red =1, green=-1).

doi:10.1371/journal.pone.0132542.9004

immunological processes and functions, according to GO (¢g<.05) and IPA (S6 Fig). Sixty-
two percent of the probes in this module were brain-expressed (hypergeometric test, p = .002)
[42].

IQ was not significantly associated with the ASD (r = .038, p = .80) or psychosis modules
-26,p = .09).

Gender was not significantly associated with the ASD (r = 0.046, p = 0.8) or psychosis mod-
ules (r=-0.16, p = 0.3)

See S1 Text and S7 Fig for results of the module preservation analysis.

(r

Validation with published datasets

We observed significant overlap between our psychosis WGCNA module and multiple mod-
ules associated with idiopathic schizophrenia in whole blood obtained in a large Dutch sample
(Fig 5A,) [58]. One module that significantly overlapped with our Purple module (p = 2.7¢-07),
was also observed in an independent antipsychotic-naive schizophrenia dataset [58]. Permuta-
tion test showed that our observed overlap lies 9 standard deviations from the median of the
observed values within the empirical null distribution.

Additionally, we identified overlapping genes between the Royal Blue module and genes
related to idiopathic ASD (hypergeometric test, p =.01) [61]. Four genes in our ASD module
(i.e., CNTNAP2, KMO, MEF2C, PRICKLE1) have been previously associated with idiopathic

PTMA &

9 cp58

2.L0C402644

@ HNMT

9 MED23

9 IufPAt

@ DEGST

2 CNIHG @ COPS2

P GMEG

B TMEMABTA

2 CLECTA

2 LOCE430207

S HMGB1LT

JDBI

SLITA

»FCRL2

PAOX 3

» MEF2C
9 CXXCE
2 PRICKLE1
» CBORF13
9 KENGH

5 LOCT30525

D.4-MAR Py iills Y BORH s J C140RF129 S asL JCD?‘JB oCDYQA
09 LOC643210J AR TSPANIS 2 TETH
sutich @ Joste AN J/C1GALTACA @ LOCB42236 BENNDSBE o TR,
S — WD CNTNAP2
TP53113 @ "ECHOC1 @ D48 S HMEET P PSMAZ S E2F5
» CDCATL
@-TXNLA 5 HOHD? Al 9 LOCB49555 ssrr DLOCI092S
¥ RASGRP3 &
LOCE43287 & o MED28 JDEK JUSP1 BTLA X reapDes > DBNDD1
EIE3M 3 VENTTDL PKRCCH P Escot 7 KMo
& PDHAY
UQCRC2 & CXERS 5 LOC728014
GBAS @ Jepcs WBHATI QLARPT 2 PPPICC AFER S SELILR QD VPREBI )
D GIMAP2 P AASDHPPT S LRI
LIMS1 & QFAMSSA D GOLTAB i rrEsd FAM11BA COBLL1 4 5 LARGE ehz
RPLTA & - LOC134997 9 PTPLE ~ TNFRSF13C 2 ZNF395
J IERZIPA TCLAA % + Lamc
PTGES3@ /772% Suoi JosseLo T
PPPA2  ORTCOT BRPAAL T 9 MST4 CRz
VEIFIAX o JExasca SR DNAICE 3 ADD3 AR i 68AZ
S AziZ S HIPAOAAT
UTP3 J JCHORDC1 JSNXM » APOBEC3F Beiria e
SPRLZA & J TMEMIDRE ) FRG1 S RAPAD SoRt TR aniy U DBLE J3MAR
y J CERT1 W FCREA i San0
CPNES & HSPD1
 NARS LhE R o NaBP2LT Y TMZD3 L onrrd oNAJAZ?
PNRC2 @ BUF&I;P1 L1 \) 9 MAPKAPKS PIRULBA S et @z LAMAS HLAPOR.
SLYRLALL L O ACTRIG, L o tiuped PPPART4A SPACAP S cypascs
POLCS & ? 2'CCNG1 i cp22
A W CAAORFIRY 0 MUDENG 9 ROMIASYS Hbacs J COORFAS
0z @ 3 ZNF 7 TNFRSF13B &
DSEPT15 i Spepeat 9 DHx15 et

- FAMI2QC
FAMOZA O +RERLY

JoLp JMRPL‘|6 D RNASEH2B. )SDHD S SMARCAS

P BTBD1 3 PROXZ § grpaf C10RFAS

9 MAT2B  RUNDC2C

SPOUZAFT YENF208

S TCFG

Fig 5. A) Visant plot of top 1500 gene connections in 22q11DS Purple module, which is significantly associated with a psychotic disorder (p = .03)
and positive symptoms (p = 5.0e-8). Genes that are the most strongly connected are listed in a larger font than less connected genes. Genes found in the
Purple module that overlap with genes in the Salmon module, which was validated in a set of antipsychotic naive schizophrenia patients module [51] are
highlighted in red. B) Visant plot of top 1500 gene connections in 22q11DS Royal Blue module, which is significantly associated with an ASD diagnosis.
Genes that are most strongly connected are listed in larger font than other, less connected genes. Genes found in the Royal Blue module that overlap with
genes in M12 autism-related brain expressed module [52] are highlighted in red.

doi:10.1371/journal.pone.0132542.9005
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ASD in humans [61]. There was also a trend toward overlap between this module and an
autism-related ‘neuronal’ module (M12) from post-mortem brain transcriptome data obtained
from idiopathic autism cases (hypergeoemtric test, p = 0.10, Fig 5B) [59]. CNTNAP2—a gene
consistently implicated in the etiology of ASD and specific language impairment [62]-was
again identified in both our ASD module and in the M12 module.

Discussion

In this comprehensive investigation of genomic profiles in 22q11DS patients, we examined
structural variability within the 22q11.2 locus, compared peripheral blood gene expression pro-
files of 22q11DS participants to unaffected controls, and utilized a systems biology approach,
WGCNA, to identify genes associated with variability in phenotypic expression in 22q11DS.
This is the largest study to date of genome-wide gene expression in phenotypically well-charac-
terized patients with 22q11DS, and the first to utilize an unbiased network-based approach to
investigate disrupted functional pathways in 22q11DS. We identified distinct gene expression
profiles associated with psychosis and ASD in 22q11DS, which showed significant overlap with
genes associated with idiopathic psychosis and ASD. These findings provide support for the
notion that investigation of highly penetrant genetic variants of these disorders can guide
exploration for disrupted genes and functional pathways relevant to idiopathic forms of ASD
and psychosis.

Structural variability: Deletion breakpoints

Our aCGH results confirmed that the 3 MB deletion is the most common form of the deletion
[36,60,63], but also identified additional structural variability within and proximal to the
deleted region. Two 22q11DS individuals with the typical 3 MB deletion also had a distal dupli-
cation that encompassed one gene, TOP3B, a eukaryotic DNA topoisomerase. TOP3B is
involved in RNA metabolism through its interaction with FMRP [64], which codes for the frag-
ile X mental retardation protein, and inhibits the translation of neuronal mRNAs [65]. Two
studies have shown that single nucleotide and copy number variants of TOP3B are enriched in
individuals with schizophrenia and ASD [66,67]. Recently, deletions of TOP3B were shown to
be associated with both schizophrenia and intellectual disability [64]. Given the variability doc-
umented within our sample, and in the two prior studies to apply high-resolution tiling arrays
to the 22q11.2 region [35,36], larger samples are needed to adequately address whether disrup-
tion of the region encompassing TOP3B is associated with phenotypic variability within
22q11DS.

Differential Expression Findings

22q11DS vs. Controls. As anticipated, genes within the 22q11.2 locus of deleted patients
were significantly down-regulated relative to controls. There was, nevertheless, substantial vari-
ability in gene expression levels within 22q11DS patients, which may be partially explained by
genetic variability in functional alleles within or proximal to the 22q11.2 locus, and/or regula-
tory regions [27]. For example, recent findings show that, while there is an approximately 50%
reduction in COMT mRNA, protein, and enzyme activity levels in 22q11DS patients overall,
COMT haplotypes containing SNPs in the 3’ untranslated region modulate the effect of the
Val158Met genotype on COMT expression and enzyme activity [68]. Furthermore, we found
that genes that were DE in 22q11DS patients vs. controls showed significant enrichment for
brain-expressed genes, and top genetic networks were associated with axon guidance signaling
pathways. This finding complements human neuroimaging studies reporting disrupted white
matter integrity in 22q11DS, possibly driven by reduced axonal coherence [69,70]. These
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brain-related alterations may be associated with characteristic phenotypes of 22q11DS (e.g.,
social cognition and visual-spatial processing deficits) [71].

Psychosis. Our GO analyses revealed an over-representation of genes associated with
mitochondrial organization and transport in genes DE in 22q11DS patients with a psychotic
disorder. Recent studies have implicated mitochondrial dysfunction in the pathophysiology of
(idiopathic) schizophrenia [72], as transcriptome alterations in genes associated with mito-
chondrial functioning has been found in postmortem brain tissue of individuals with schizo-
phrenia [73,74]. However, it is unknown whether mitochondrial dysfunction in schizophrenia
is due to a genetic liability, a secondary response to neurotransmitter dysfunction, or a conse-
quence of environmental toxins[75]. Furthermore, there is evidence that mitochondrial dys-
function is also involved in other psychiatric disorders [76]. These findings, paired with the
fact that a subset of the genes within the 22q11 region encode mitochondrial proteins [77], sug-
gest that the relationship between mitochondrial dysfunction and psychiatric disorders in
those with 22q11DS should be investigated further.

Weighted Gene Coexpression Network Findings

It is noteworthy that we did not find a significant enrichment of brain expressed genes when
we looked at genes differentially expressed in 22q11DS patients with ASD and psychosis,
respectively, but the WGCNA modules associated with the clinical phenotypes were signifi-
cantly enriched for brain expressed genes. This discrepancy is likely due to the different ana-
lytic methods used. WGCNA examines the level of co-expression between genes and identifies
transcripts that are not up- or down- regulated in the respective psychiatric conditions. Thus, it
appears that WGCNA able to identify more brain-related genes associated with the clinical
phenotype than the DE analysis.

Psychosis. Our results indicate distinct genome-wide transcriptional changes relevant
to phenotypic expression of psychotis in 22q11DS patients. We identified a module of func-
tionally connected genes that was associated with categorical and dimensional measures of psy-
chosis. This module showed significant overlap with modules previously associated with
idiopathic schizophrenia and was not related to antipsychotic medication use. The top network
associated with this module was RNA post-transcriptional modification. Alterations of micro-
RNA expression, which is involved in post-transcription regulation of gene expression, have
been identified in post-mortem prefrontal cortical brain tissue of schizophrenia patients.
[78,79] Additionally, disruptions in RNA metabolism are a molecular signature common to
many neurodevelopmental disorders [80].

Given the emerging body of evidence linking immune system pathways to schizophrenia
and psychosis vulnerability [81], it should be noted that we originally identified significant
enrichment of genes associated with immune response in the WGCNA psychosis module;
however, these terms did not survive correction for multiple comparisons (g-value range: .07-
.08). Indeed our psychosis module included several immune-related genes, including TLR?,
which is part of a class of genes called toll-like receptors, whose molecules activate an inflam-
mation response and have been shown to be elevated in peripheral blood of those with psy-
chotic disorders [82]. Recently, suggestive evidence for neuroinflammation in idiopathic
schizophrenia has been provided by novel free water diffusion imaging methods indicating
increased extracellular volume in patients in a first episode of schizophrenia [83]. Thus, the
role of inflammatory processes in the etiology of psychosis, both in 22q11DS and in the
broader population, will be important to further investigate in future studies.

Autism Spectrum Disorder. Both DE analysis and WGCNA showed converging evidence
that alterations in immune-related pathways are associated with ASD. We identified a module
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of co-expressed genes, significantly associated with ASD, which also contained multiple

genes that have previously been associated with idiopathic ASD (CNTNAP2, KMO, MEF2C,
PRICKLE1[84-87]). Post-mortem studies have identified increased micro- and astro-glial reac-
tions in multiple brain regions in idiopathic ASD [88-90], coupled with up-regulation of pro-
and anti-inflammatory cytokines [88]. Together, these findings suggest that ASD pathology
may be related to an innate immune system response to neuronal disturbances.

There is debate over whether the ASD and psychosis phenotypes within 22q11DS are con-
sidered to be distinct phenomena. [27,30,91]. Our findings of independent gene expression
modules associated with psychosis and ASD in 22q11DS support the notion that these two dis-
orders are distinct phenomena. However, an inherent limitation to our cross-sectional study is
that we do not know which 22q11DS participants will subsequently develop a psychotic disor-
der, given the age range of our sample. Inclusion of such ‘false negative’ cases in our non-psy-
chotic group would presumably add noise to our data, reducing our ability to obtain significant
results rather than leading to spurious statistically significant findings. Nevertheless, prospec-
tive, longitudinal studies are necessary to fully address this question.

It should be noted that there is debate over the prevalence of ASD diagnosis in 22q11DS.
Though a high prevalence of ASD in 22q11DS has been reported in multiple publications
(~14-50%, [14-17]), others have suggested that the incidence of ASD (strictly defined) is not
elevated [92]. Some researchers have proposed that early social dysfunction in 22q11DS is asso-
ciated with premorbidity to schizophrenia, and that these social impairments may result in a
misdiagnosis of an ASD [27,91]. However, other studies indicate that a probable childhood
diagnosis of ASD does not predict later psychotic disorder [30]. Certain methodological
approaches, such as reliance only upon collateral report, may inflate the actual number of indi-
viduals diagnosed with ASD [92]. Direct comparison of children with idiopathic ASD versus
youth with 22q11DS and an ASD diagnosis (using the ADI-R), found that certain features
characteristic of idiopathic autism, such as idiosyncratic speech and social reciprocity deficits,
were spared in 22q11DS-ASD+ [93]. However, there were also many similarities between the
two groups, as they both exhibited impaired non-verbal social communication, inability to use
make-believe during play, motor stereotypies and repetitive use of objects, rituals, and difficul-
ties with peer relationships [93]. It is most likely that children with 22q11DS share some phe-
notypic features with idiopathic ASD, but have a unique behavioral phenotype that does not fit
neatly into defined diagnostic boundaries [25]. Future prospective studies that use information
from multiple sources (participants and collateral) and examine the relationships between
identified ASD symptoms and other psychopathology over time are necessary to determine the
validity and stability of ASD diagnoses in 22q11DS.

Limitations

Several limitations to the current study should be noted. Although brain tissue from early
stages of disease might be optimal, it is not available in patients with 22q11DS, and most patho-
logical specimens are from deceased individuals with long disease duration. Whole-blood gene
expression profiles have been found to share significant similarities, but not perfect correspon-
dence, with those of multiple CNS tissues [94-97]. Given that there are no publicly available
22q11DS post-mortem databanks, using peripheral blood to examine gene expression is an
important first step. Although peripheral blood cannot replace CNS tissue, it may provide a
suitable surrogate, particularly when post-mortem brain tissue is not available. Finally, more
consistent and reproducible effects on gene expression are likely to be obtained in patients with
homogeneous genetic etiology(4) like 22q11DS.

PLOS ONE | DOI:10.1371/journal.pone.0132542 July 22,2015 15/22



@’PLOS ‘ ONE

Transcriptome Profiling in 22q11.2 Deletion Syndrome

The number of subjects in our dataset with psychosis in particular was small and severel of
the analyses were not corrected for multiple comparisons; additional datasets of peripheral
blood and other tissues from 22q11DS patients are needed to confirm these findings. To maxi-
mize the sample size for our primary analyses, we chose to include all available 22q11DS
patients and healthy controls. Thus, not all of our samples were independent of each other.
However, results of a secondary analysis (22q11DS cases vs. a subset of age-matched, unrelated
controls; N = 39) was highly comparable to the overall analysis, indicating that our primary
results were not attributable to non-independence in the control group. However, age effects
on gene expression, both within and outside of the 22q11.2 locus, warrant further systematic
investigation.Future analyses may also benefit from using more sensitive technology (i.e., RNA
sequencing) to identify splicing events, non-coding RNAs, and novel transcripts [98,99].

Conclusion

Collectively, these findings provide a first step toward understanding the functional gene net-
works disrupted by the 22q11.2 deletion, which may relate to variable phenotypic expression of
the disorder. Future investigations in human in vitro cellular models and in animal models of
22q11.2 mutations are necessary to link the affected genetic pathways to molecular mecha-
nisms, which may be targeted for biologically informed interventions.
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