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Abstract

A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with
diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically
compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs
show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest
hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of
branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and
relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more
helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the
primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to
the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid
geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important
implications for RNA folding and viral assembly.
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Introduction

Single-stranded (ss) RNA molecules are typically branched, with

physical properties that depend on the secondary and tertiary

structures determined by their primary nucleotide (nt) sequence

[1–3]. High-resolution structures have been elucidated for several

biologically important molecules with lengths up to hundreds of nt;

e.g. ribozymes, transfer RNAs, and messenger RNA sub-sequenc-

es [4–6]. For longer sequences, however, it is generally not possible

to identify a unique secondary/tertiary structure that dominates

the ensemble of configurational states of the molecule [7,8]. [An

important exception is that of ribosomal RNAs [9], but there the

structures of these thousands-of-nt-long RNA molecules are largely

determined by the many proteins with which they are bound.]

Coarse-grained statistical properties – such as radius of gyration

and shape anisotropy – have been measured for viral RNAs

several thousand nt long [8,10], but how these relate to the

primary sequence or even the underlying secondary structures has

not been studied systematically.

On the other hand, the statistics of model branched molecules

and aggregates are well studied [11–13], e.g. ‘‘star’’ polymers,

dendrimers, diffusion-limited-aggregation clusters, mathematical

tree structures and ideal randomly-branched polymers. In each

case, it is possible to predict and/or measure the radius of gyration

as a function of molecular weight (number of monomeric units).

Very few experiments and theories [7,14–19] extend this approach

to long RNA molecules. In particular, the connection between

primary sequence and branching properties, and the resulting

molecular sizes, has not been studied in long RNAs.

ssRNA viral genomes are special RNA molecules in several

significant ways. First, because they involve two or more genes,

they are necessarily thousands of nt long. Also, unlike other long

RNAs, such as edited messenger RNA transcripts or ribosomal

RNA, they are constrained to have physical sizes compatible with

being packaged spontaneously by viral coat proteins into small

volumes corresponding to the inside of a rigid viral capsid. As

proposed in earlier theoretical work [7,14], the above factors

suggest that viral RNA molecules might be more compact than

other sequences of identical length, in order to enhance their

encapsulation efficiency and hence the survivability of the virus.

In this paper, we study the correlation between the nt sequence

and the physical size of large RNA molecules – in particular,

whether the sequence of a viral RNA codes not just for required

protein products but also for its own physical size. We compare the

experimentally determined size of a 2117-nt viral RNA with those

of non-viral sequences of identical length and find the viral
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sequence to be the most compact. The relative sizes of these

sequences are explained by analyzing the nature of branching in

predicted ensembles of secondary structures. We show that

compactness originates from an increased density of branching

defined by the number, degree and organization of multi-helix

junctions in secondary structures. We compare several families of

ssRNA viruses and find that genomes with propensity for denser

branching typically belong to families where other means of RNA

compaction (e.g., polyvalent cations) may not exist. Finally, we

outline how compactness improves the robustness of RNA folding

and enhances the ability of a viral genome to package in a capsid.

Results

RNA Sequence and Buffer Choice
To test the relationship between the primary nt sequence of an

RNA and its physical size, we study nine RNAs of identical lengths

(2117 nt), but different nt compositions and biological functions.

The first is genomic RNA3 of Brome Mosaic Virus (BMV) [20], a

plant pathogen. BMV RNA3 (B3) is a two-gene plus-strand RNA

coding for a movement protein (MP) and a capsid protein (CP).

The second molecule is the anti-sense (i.e. reverse-complement or

minus-strand) RNA of B3, hereafter denoted as B3A (BMV RNA3

Anti-sense). An anti-sense strand can differ in composition and

pattern only in the unpaired regions of the sense strand, therefore

representing a sequence with most of the original nt patterns and

about 20% change in composition. The third molecule is a B3

mutant, hereafter called B3R (BMV RNA3-Reverse), with the

positions of the MP and CP genes swapped. This alteration

changes the overall sequence, but not the nt composition. It also

hampers the ability of B3 to package into virions both in vivo and

in vitro [20]. The fourth molecule is the anti-sense strand of B3R,

denoted as B3RA (BMV RNA3 Reverse Anti-sense).

To compare the four B3-based RNAs with those not expected

to have evolved with a selective pressure to be compact, the

remaining five RNAs were transcribed from arbitrarily chosen

non-overlapping sections of the yeast genome (see Methods).

Labeled Y1 through Y5, three (Y1, Y2 and Y5) contain both non-

coding and coding regions, one (Y3) is a subset of a large gene and

therefore fully coding, and one (Y4) is from a region with no

known genes.

To study correlations between nt sequence and physical size,

measurements are best made under solution conditions where the

morphology of secondary structures is most evident. We recently

showed [8] that the 3D structures of large RNA molecules, when

visualized by cryo-electron microscopy in low-ionic-strength/

Mg2+-free buffers, are consistent with their predicted secondary

structures, and that the relative compactness of viral-sequence

RNAs observed in these buffers is preserved in higher-ionic-

strength Mg2+-containing (e.g., physiological) buffers. More

explicitly, the presence of Mg2+ and higher ionic strength will of

course decrease the absolute sizes of the RNA molecules, but the

radii of gyration for viral-sequence molecules are shown [8] to be

significantly smaller than for non-viral sequences in both buffers.

Therefore, as in our previous studies, we choose in the present

work a 10 mM 10:1 Tris:EDTA (TE) buffer (pH 7.4) as the

appropriate solvent for measuring the relative sizes of the RNAs

listed above, again accentuating the role of secondary structures

under conditions where tertiary interactions are minimal. We are

not suggesting that secondary structure is the only important factor

in determining the compactness of RNA; tertiary folding effects

can of course contribute substantially as well. Rather, we are

suggesting that the extent and nature of branching in the secondary

structure is a dominant factor. Accordingly, our predictions and

conclusions relate exclusively to differences in these properties

between viral and non-viral sequences.

Relative Gel Electrophoretic Mobilities
Sizes are first investigated by electrophoresis (Fig. 1) through a

1% agarose gel prepared and run in pH 7.4 TAE buffer (see

Methods). Prior to loading, the RNAs were equilibrated in TE

buffer for 24 hours to obtain reliable hydrodynamic properties

[21]. Each lane contains 1 mg RNA (*1011 molecules) and 1 ng of

a 2141-bp linear dsDNA added as an internal marker.

The RNA band positions in Fig. 1 indicate that B3 (lane 1) has

the highest mobility; B3A, B3R and B3RA migrate a slightly

shorter distance, whereas the yeast-based sequences Y1–Y5 are

most retarded by the gel. The viral and viral-based RNAs are

therefore effectively smaller in size compared to Y1–Y5, with B3

being the most compact. To confirm these trends, B3 and Y2 were

mixed prior to loading in lane 6. Electrophoresis clearly separates

the two bands, demonstrating that the physical properties of their

molecular ensembles are distinct. In other words, although each

band represents *1011 molecules with various secondary and

tertiary configurations, the molecular sizes and shapes in a given

band (sequence) are closer to each other than to those in other

bands. Differences in mobilities have similarly been observed

between evolved and random sequences of short (, 100 nt) RNAs

[22].

The mobility of an RNA can be quantified as its distance from

the DNA marker band (see Methods). Relative mobilities (mr) are

calculated with respect to the fastest migrating RNA, in this case

B3 in lane 1 (see Table S1 in File S1). Because the RNAs all have

the same formal charge, differences in their mobilities are expected

to arise from differences in their ability to diffuse through the gel

network. Relative mobilities therefore represent relative diffusion

rates, which in turn are inversely proportional to hydrodynamic

radii. To quantify relative hydrodynamic radii in the context of

diffusion through an electrophoretic gel, we use the retardation-

based effective radius, Rr, defined as the inverse of the mobility,

Rr~1=mr.

Solution Hydrodynamic Radii
To explore the relationship between gel-electrophoretic retar-

dation and the size of a freely diffusing molecule, solution

hydrodynamic radii (Rh) are measured. FCS (fluorescence

correlation spectroscopy; see Methods) is used to determine the

characteristic time (tD) taken by fluorescent RNA molecules to

diffuse through a known confocal volume. For a fixed excitation

volume, the Rh of a diffusing molecule is directly proportional to

tD. Therefore, comparing the tD of an RNA with that of a

standard allows the quantification of its hydrodynamic radius.

Experimental fluorescence auto-correlation curves, and a sample

excitation-power series to illustrate the fitting method (see

Methods), are shown in Fig. S1 in File S1. Rh values and the

standard errors of their estimates are listed in Table S1 in File S1

and plotted against Rr in Fig. 2A.

The linear regression in Fig. 2A reveals a correlation between

the values of Rr and Rh for the RNAs. B3 and B3-based RNAs

form a group with low retardation and accordingly smaller Rh

values. In contrast, the yeast-based sequences generally have

higher Rh values. However, the correlation between Rr and Rh is

not perfect. While Y3, Y4 and Y5 have increasingly higher Rhs,

Y1 and Y2 have unusually low values. Similarly, the trends in Rrs

of B3 and B3-derived RNAs (Fig. 1) are not captured by trends in

their Rh values.

While recognizing the general correlation between Rh and Rr in

Fig. 2A, we reconcile the outliers by acknowledging the inherent
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shortcomings of measuring the two properties. Rr values implicitly

account for deformation and alignment of asymmetric molecules

moving in an electrical field through a gel network. These effects

are ameliorated by measuring Rh, which represents the radius of

an equivalent sphere with the same tD as the molecule. The

assumption of spherical geometry, however, is a fundamental

limitation of most hydrodynamic measurements, making Rh values

less sensitive to small variations in shape and size. For example, gel

electrophoresis yields a clear separation in Rr between B3 and Y2,

whereas their Rh values are not significantly different. These

molecules with similar diffusive properties therefore have suffi-

ciently distinct shapes and sizes to be captured by gel electropho-

resis. With the above limitations in mind, we choose Rr as the

more sensitive measure of molecular shape and size and try to

understand the origin of relative mobilities by analyzing the

structural properties of secondary structure ensembles.

Secondary Structures and Maximum Ladder Distance
Cryo-electron microscopy of large RNA molecules in solution

[8] reveals that coarse-grained properties, such as the overall shape

and size of an ensemble of molecules in solution, can be deduced

using secondary-structure ensembles predicted from the primary

nt sequence. This allows us to rationalize the gel-retardation

results in terms of the ensemble-averaged properties of predicted

secondary structures (see Methods) that best reflect physical shape

and size. In an earlier study [7], we considered the longest path

along an RNA secondary structure, in terms of the number of base

pairs between the ends of the path, as one such physical property.

This measure was termed the ‘‘maximum ladder distance’’ (MLD)

Figure 1. Gel electrophoretic mobilities of 2117-nt RNAs. Lanes 1–4 show a viral RNA (B3) and sequences engineered from it, while lanes 5 &
7–10 show yeast-based transcripts. Each lane contains < 1 mg of RNA, i.e., an ensemble of *1011 molecules. B3 & Y2 were mixed prior to running in
lane 6. Mobility is measured as the distance from the DNA marker (see Methods), and reported relative to B3.
doi:10.1371/journal.pone.0105875.g001

Figure 2. Correlation between measured and predicted size metrics for 2117-nt RNAs. Plotted against gel-retardation radii Rr, are: (A)
hydrodynamic radii Rh, (B) ensemble-averaged maximum ladder distance SMLDT, (C) tree-graph radii of gyration Rg, (D) higher-order branching
propensity SV1T=SV3T, and (E) numbers of d = 4 (circles) and d$4 (squares) vertices. Solid lines are least-squares linear regression fits. Error bars are
standard deviations (s) except in A, where they are the standard errors of estimates (se). Standard deviations of SV4T are listed in Table S1 in File S1.
doi:10.1371/journal.pone.0105875.g002
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and its average for a Boltzmann ensemble containing 1000

secondary structures determined for a given sequence (see

Methods) was represented as SMLDT. Because MLD is a

measure of the longest physical distance within each secondary

structure, we test whether SMLDT variations between sequences

are sufficient to explain their relative gel-retardation rates.

SMLDT values computed as described in Methods are listed in

Table S1 in File S1 and plotted against Rr in Fig. 2B. Linear

regression (solid line) indicates an overall co-variation of SMLDT
and Rr, but several points (B3RA, Y3 & Y5) are significant outliers.

Knowledge of the maximum extents of secondary structures of

sequences is therefore not sufficient to reliably predict their relative

mobilities. For large RNAs, the MLD path typically accounts for

<20% of the molecule’s mass. It follows that the details of

branching, i.e. how the remaining mass (80%) is distributed about

the longest path, play an important role in determining relative

mobilities.

RNA Tree Graphs and Radii of Gyration
The average length of a base-paired helical segment in large

RNAs is independent of the length of the sequence [7]. This allows

branching patterns in secondary structures to be accurately

depicted by tree graphs where helices are represented by edges,

and multi-helix junctions and loops by vertices [23–25]. (See Fig.

S3 in File S1 for example.) This simplification allows statistical

measurements developed for ideal branched polymers to be

applied to RNA secondary structures. In particular, the radius of

gyration (Rg) of an equivalent ensemble of ideal polymers with

branching patterns identical to an RNA ensemble can be

computed using a rigorous theorem due to Kramers [14]. As

detailed in Methods, the secondary structure ensemble for each

RNA is converted to an ensemble (forest) of tree graphs; the mean

radii of gyration (SRgTs) are listed in Table S1 in File S1 and

plotted against Rr in Fig. 2C. SRgT values are in units of edge-

length b, which represents the mean helix length (<5 base pairs).

The data and linear regression line in Fig. 2C indicate a general

covariation of Rg with Rr. As with previous measurements, RNAs

that differ significantly in Rr can have similar values of Rg (e.g., Y3

& Y5), and conversely, RNAs with similar Rrs can have

significantly different Rg s (e.g., Y2 & Y4). In addition R g

Rr, making it

Branching Statistics in RNA Trees
Because the degree of a vertex is the number of edges connected

to it, the sum of the degrees (d) of all the vertices in a graph is twice

the total number of edges (E). First shown by Euler [26,27], this

relation can be written as

XV

i~1

di~2E, ð1Þ

where di is the degree of the ith vertex and V is the total number of

vertices in the graph. For tree graphs, where cyclical paths are

disallowed by definition, E~V{1. Substituting this equality into

Eq. 1 and writing the total number of vertices of each degree d as

Vd (where d~1,2,3 . . .), Euler’s lemma can be rewritten as V1z

2V2z3V3z4V4z � � �~2 {1zV1zV2zV3zV4z � � �ð Þ. Re-

arrangement and then division by V3 yield the following relations

between the numbers of vertices per degree:

V1~2zV3z2V4z3V5z � � � ð2Þ

V1

V3

~
2

V3

z1z2
V4

V3

z3
V5

V3

z � � � : ð3Þ

As shown previously [8,28], about 95% of vertices in large-RNA

tree graphs have degree 1, 2 or 3 (e.g., Fig. S3 in File S1). While

d~2 vertices are found in significant numbers, they do not affect

the branching, as indicated by the absence of V2 in Eq. 2. The

‘‘branchedness’’ of a tree is ultimately determined by the number

of d~1 vertices relative to the number of branch points (i.e., d§3
vertices), which further depends on the distribution of vertex

degrees. Branching in RNA trees is primarily due to d~3 vertices.

Higher-order junctions (d§4), although rare, can make significant

contributions to V1 as seen by their progressively higher

coefficients in Eq. 2.

For long RNAs, where the 2=V3 term of Eq. 3 is small, V1=V3

is effectively a constant independent of sequence length (i.e.,

V1=V3~ V3z2ð Þ=V3&1) unless higher-order branching is pres-

ent. As a consequence, we use V1=V3 as a convenient length-

independent intrinsic measure of higher-order (V§4) branching

propensity. Ensemble-averaged values of this ratio, denoted as

SV1=V3T, are shown in Table S1 in File S1 for the nine RNAs

studied. They are all significantly greater than 1, confirming the

presence of d§4 vertices in these RNAs. The values of SV1=V3T
and SV§4T in Table S1 in File S1 (plotted in Figs. 2D & E)

confirm that the numbers of vertices of d§4 are indeed in the

relative order predicted by SV1=V3T and Eq. 3. Among the 2117-

nt RNA ensembles studied, SV1=V3T is greatest for B3 (Fig. 2D),

suggesting that the viral sequence has the highest propensity for

d§4 branching.

To understand the trends in SV1=V3T, we compare SV4T with

SV§4T in Fig. 2E (Table S1 in File S1). For all RNAs, we find

SV4T & SV§4T, indicating that higher-order vertices are

predominantly d~4. Only B3 (black square) has a significantly

higher contribution from d§5 vertices, which stems from the

presence of one d~5 vertex, on average, in every secondary

structure in the ensemble. Next, we test if this propensity for

higher-order branching is general to all viral genomes by

comparing them to random sequences.

Branching in Random and Other Viral RNAs
To understand the likelihood of higher-order branching in

unevolved sequences, we study secondary structure ensembles of

2000 distinct random sequences of length 4000 nt. As with the

2117-nt sequences, the ensemble-averaged numbers of vertices of

each degree are determined (see Methods). In Figs. 3A & B,

SV§4T=SV3T, the number of higher-order vertices (d§4) per

d~3 vertex, is plotted against the branching propensity ratio

SV1T=SV3T. These length-independent ratios facilitate compari-

son of the random-sequence data with other families of RNAs.

Note that values of SV1=V3T and SV1T=SV3T (Table S1 in File

S1) are statistically indistinguishable, making the latter an equally

good measure of higher-order branching propensity.

Eq. 2 shows that knowing V1 and V3, one can estimate the

maximum numbers of vertices of higher order. For example, the

number of d~4 vertices, assuming no higher degree is present,

which we call V4�, is calculated using

Viral RNAs Are Unusually Compact
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These limitations indicate a need for deeper analysis of the
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V4�~
1

2
SV1T{SV3T{2ð Þ, ð4Þ

where the expression in parentheses represents the surplus of d~1
vertices that cannot be explained by the number of d~3 vertices.

Similarly, the maximum number of d~5 junctions, V5�, is

determined by disallowing vertices of d~4 and d§6:

V5�~
1

3
SV1T{SV3T{2ð Þ: ð5Þ

Ratios of the maximum numbers of junctions to SV3T are

plotted in Fig. 3B to compare with SV§4T=SV3T. Least-squares

linear regression fits to V4�=SV3T and V5�=SV3T, respectively,

yield slopes of 1/2 and 1/3 as expected from Eqs. 4 & 5. The x-

intercept (1z2=V3) indicates the average number of d~3 vertices

for 4000 nt sequences to be & 58 (i.e., one d~3 vertex per 69 nt).

SV§4T=SV3T (gray squares), for most sequences, lies along or

close to the V4�=SV3T line, indicating that d~4 is the dominant

form of higher-order branching. Data lying away from this line

indicate a small likelihood of randomly generating sequences that

lead to junctions with 5 or more helices. However, these do not

significantly increase the branching propensity measured by

SV1T=SV3T. The averages over 2000 random sequences of

SV§4T=SV3T and SV1T=SV3T (and their standard deviations) are

0.13 (0.03) and 1.30 (0.06), respectively.

Fig. 3A compares higher-order branching data (Table S2 in File

S1) from eleven families of viral RNAs with those from random

sequences (Fig. 3B). Astroviridae and Caliciviridae are spherical

non-enveloped animal viruses. Bromoviridae are spherical plant

viruses containing tripartite genomes (labeled 1, 2 & 3) with each

packaging into a separate particle. Leviviridae are spherical non-

enveloped viruses that infect bacteria. Luteo-, Sobemo- and

Tymoviridae are spherical non-enveloped plant viruses similar to

Bromoviridae, but with monopartite genomes. Tobamoviridae

constitute a group of rod-like (i.e. filamentous) plant pathogens and

Togaviridae are membrane-enveloped animal viruses.

In Fig. 3A, most viral sequences have SV1T=SV3T§1:30, the

mean value for random sequences. In fact six of the eleven viral

families have members with SV1T=SV3T§1:6, values completely

outside the range observed for 2000 random sequences. While the

first trend suggests a generally higher propensity for §4-helix

loops in viral RNAs, the latter shows that the genomes of some

families of viruses have unusually high levels of higher-order

branching. Families with half or more of their members with

SV1T=SV3T§1:48 (3s greater than random sequences) are shown

with circular symbols and the remaining with squares. It is

noteworthy that as SV1T=SV3T exceeds 1.48, the number of d§5
vertices increases, leading to a shift of SV§4T=SV3T from the

V4�=SV3T line towards V5�=SV3T.

Thus, knowledge of the number of stem-loops and 3-helix

junctions in a secondary structure is sufficient to predict higher-

order branching and therefore the compactness of an RNA. These

differences in higher-order branching propensities reveal useful

details about the patterns of base pairing in the primary sequence.

To illustrate this, we analyze the relative proximities of vertices in

secondary structure trees and their implications on the information

content of the RNA sequence.

Vertex Distance Distributions and Base Pairing Proximity
To verify that higher-order branching significantly increases the

compactness of trees within an ensemble, we compute a graph-

distance distribution function P(r) for the nine 2117-nt RNAs (see

Fig. S4 in File S1). Analogous to pair-distance distributions from

small-angle scattering [29], bell-shaped narrow P(r)s indicate

compact/spherical objects while skewed distributions with long

tails represent elongated/anisometric shapes. Instead of a physical

distance, r here represents the number of edges (graph-distance)

along the tree between pairs of vertices. Fig. S4A in File S1 shows

Figure 3. Higher-order branching in random and viral RNAs.
SV§4T=SV3T is shown versus SV1T=SV3T in both plots. Inset B shows
4000-nt random-sequence data (gray squares) with V4�=SV3T (red
squares) and V5�=SV3T (blue squares) plotted against SV1T=SV3T (see
Eqs. 4 & 5). Values of SV§4T/SV3T (gray squares) are consistent with
V4�=SV3T, indicating that most higher-order junctions in random RNAs
have d~4. Plot A compares the random sequences with eleven distinct
families of viral RNA. Families with more than half their members having
SV1T=SV3T§1:48 are shown with circular symbols.
doi:10.1371/journal.pone.0105875.g003

Figure 4. Base-pairing proximity for 2117-nt RNAs. Ensemble-
averaged cumulative histograms of backbone distance between paired
bases (DP) are in F & G. Viral and non-viral histograms diverge up to
DP~100 and converge thereafter. Unlike in yeast RNAs, over 70% of
base pairs in B3 (See inset G) have DPv100. This predominance of
proximal base pairing leads to compact secondary structures.
doi:10.1371/journal.pone.0105875.g004
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ensemble-averaged P(r)s for the 2117-nt RNAs. Differences in the

relative proximity of low-order (d~3) branch points due to higher-

order branching can be discerned by computing P(r) for d~3
vertices alone (Fig. S4B in File S1). The d~3 and total P(r)
distributions are both significantly narrower for viral (B3) and

viral-based RNAs (B3R, B3RA) with comparable gel mobilities

and Rgs.

In order for a few d§4 branch points to cause a significant

narrowing of the P(r) curves, they would need to be placed

centrally along the tree so as to increase the density of branched

arms while reducing their overall lengths. Shorter arms implicitly

contain secondary-structure elements that arise from pairing of

bases closer to each other along the RNA backbone. This

positional correlation is quantified for each sequence as ensemble-

averaged normalized and cumulative histograms (Figs. S5 & 4A) of

the backbone distance between paired bases (DP). The normalized

histograms (Fig. S5 in File S1) for B3 (black curve) and similarly

compact RNAs (B3A, B3R & B3RA) are narrower, strongly

peaked at DP&10, and show less pronounced tails. This is better

illustrated by the cumulative histograms (Fig. 4A & B), where

nearly 70% of all the base pairs in a secondary structure occur

between bases within 100 nt of each other. In comparison,

proximal base pairs (i.e. DPƒ100 nt) for the yeast sequences can

be as few as 45%. As discussed below, this has important

implications for the relative stabilities of the kinetically and

thermodynamically preferred secondary structures.

Discussion

This work establishes that differences in the shapes and sizes of

long equal-length RNAs in solution can be determined using

standard experimental techniques, and explained by the coarse-

grained properties of secondary structure ensembles predicted

from their sequences. Using graph-theoretical arguments we have

shown that knowledge of the number of stem-loops and three-helix

junctions in experimentally determined [30] or calculated

secondary structure ensembles quantifies the number of higher

order multi-helix junctions and therefore the overall compactness

and hydrodynamic properties.

Because of the central role played in our analyses by the

ensembles of secondary structures associated with different

primary sequences, and because the sequences involved are

thousands of nts long, it is important to comment on the

robustness of our predictions. It is well-known, of course, that all

secondary-structure computational algorithms begin to degrade

significantly – in their prediction of base-pairings – when the

sequence lengths begin to exceed several hundred nts. But this

failure is not relevant to predicting coarse-grained properties of the

secondary structures such as vertex order distributions and the

extent of higher-order branching, etc., much as we had explicitly

shown earlier [7] that relative maximum ladder distances and

other size measures of long (thousands-of-nt) sequences do not

depend on the details of folding algorithm used. Also, our

conclusion – that viral sequences are more compact because their

secondary structures are more compact – is not invalidated by our

neglect of pseudoknots. Indeed, including the effects of pseudo-

knots [31] would only make the viral sequences still more compact

relative to non-viral ones, because pseudoknots contribute to

compaction of an RNA molecule and are more prevalent in viral

sequences [32]. Finally, the stability/existence of pseudoknots is

favored by Mg2z and high ionic strength [33], and their

importance is thus minimized by our choice of TE buffer.

We showed recently [8] that molecular ensembles of large

RNAs in solution can generally be represented by a prolate

envelope. For RNAs ranging in length from 1000 to 3000 nt, the

relative sizes and shapes of molecular envelopes could be

distinguished by cryo-EM and explained by the inherent

asymmetry of secondary structures and the geometric properties

of multi-helix junctions. The present study shows that even RNAs

of identical nt length can have significantly different shapes and

sizes depending on the density of branching in their secondary

structures. Higher-order (d§4) multi-helix junctions represent

locations where the density of the molecule is locally high. Larger

numbers of higher-order junctions imply the molecule has a higher

density and therefore a smaller molecular envelope for the same

mass. As seen in Figs. 2D & E, relative densities inferred from

numbers of higher-order junctions best explain the gel-mobility

trends in Fig. 1.

Bacteriophage MS2 provides a compelling example of the

relevance of this kind of analysis to understanding the role of RNA

branching statistics in viral assembly. The packaging propensity of

MS2 RNA is known [34] to depend on the availability of stem-

loops that bind strongly to capsid protein. For a given RNA length,

the number of stem-loops in a secondary structure increases with

the number of higher-order junctions. This is seen clearly in Table

S1 in File S1, where B3 and B3-based sequences consistently show

larger numbers of stem-loops (SV1T& 45) and higher-order

vertices compared to yeast RNAs. It follows that MS2 RNA, with

the highest examined SV1T=SV3T (2.48, see Fig. 3 & Table S2 in

File S1), has extremely dense branching that leads to a physically

compact molecule with increased numbers of stem-loops for

binding protein. Fig. 3 shows that most Leviviridae genomes have

SV1T=SV3Tw2, indicating a strong selection for compactness

among these bacterial pathogens.

Differences in branching propensities between viral families

(Fig. 3, Table ST2) can be understood by analyzing the structural

role of the RNA genome in each case. In rod-like viruses such as

Tobamoviridae [35], hydrophobic interactions between capsid

proteins and electrostatic interactions between RNA and protein

supply the energy required to unravel the RNA secondary

structure and confine the genomic molecule within a thin long

cylindrical volume. Due to the restructuring of RNA, the

compactness of the genomic molecule before its packaging is not

relevant to the survival of these viruses. Accordingly we find that

values of SV1T=SV3T in the Tobamoviridae family (Fig. 3, cyan

squares) are not significantly different from random sequences.

Compactness becomes important when the genome needs to be

packaged in a limited spherical volume.

The evolutionary pressure for compactness is best understood

by comparing the genomes of spherical viruses of similar sizes and

triangulation (T ) numbers [36]. Seven of the nine families in Fig. 3

(Astroviridae, Bromoviridae, Caliciviridae, Leviviridae, Luteovir-

idae, Sobemoviridae and Tymoviridae) contain viruses with

spherical capsids of similar diameters (27-30 nm) and internal

volumes. The capsid in each case exhibits T~3 icosahedral

symmetry, and is composed of 180 copies of identical coat

proteins. One way to condense RNA molecules to a size

comparable to their capsids is to use condensing agents. Just as

linear anionic DNA molecules condense into densely packed

toroids or aggregates in the presence of polycations such as

spermine and spermidine [37,38], individual RNAs molecules are

known to acquire a physically compact state in the presence of

natural polyamines [39,40]. Hundreds of molecules of spermidine

[41] are known to condense the genomic RNA molecule in

Tymoviridae. Similarly, Caliciviridae RNAs are condensed by

small basic proteins produced by the translation of their viral

genomes [42,43]. If condensation is caused mainly by polyamines

or basic polypeptides, there should be minimal pressure on the
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viral genomes to be densely branched and intrinsically compact.

Consistent with this, Caliciviridae (Fig. 3, yellow squares) and

Tymoviridae (Fig. 3, orange squares) genomes do not show

significantly higher propensities for branching than random

sequences.

Condensing agents are not found in the other five families of

T~3 viruses studied. In the absence of polycations, the

condensation and confinement of RNA genomes can also be

achieved by their electrostatic interaction with basic residues often

present on disordered protein tails on the inner surface of the

capsid [44]. Because the capsids of these viruses contain the same

number of coat proteins and therefore the same number of

positively charged internal tails, the degree of electrostatic

stabilization of the genome depends on the length, flexibility and

the number of basic residues on each tail. In other words, viruses

with fewer positive charges on their internal protein tails should

rely more on the intrinsic compactness of the RNA genome for

stability. The number of basic residues on the RNA-accessible N-

terminal disordered tails in Astroviridae are typically between 20

and 30 [45]. For Bromoviridae [44,46–48], Luteoviridae [49,50]

and Sobemoviridae [51], this number ranges between 10 and 20,

whereas Leviviridae coat proteins do not have charged tails

[34,52]. Consistent with the above prediction, we find (see Fig. 3)

that Astroviridae genomes (black squares) deviate least from

random sequences in their branching propensity, Bromoviridae

(red, green & blue circles), Luteoviridae (gray circles) and

Sobemoviridae (magenta circles) genomes typically have values

of SV1T=SV3T more than one standard deviation higher than

random sequences, and Leviviridae RNAs (brown circles) are the

most densely branched.

The family Togaviridae consists of membrane-enveloped T~4
viruses. Besides being physically larger, their capsids consist of 240

copies of identical coat proteins, each with 10 to 15 RNA-

accessible basic residues. Comparing Togaviridae to T~3
Bromoviridae, whose coat proteins have similar numbers of

RNA-accessible basic residues, allows us to evaluate the impact of

a larger size on the selective pressure for RNA compactness. For

example, Sindbis virus has a genome nearly 4 times as long as the

RNA inside CCMV virions and their capsid proteins have around

10 basic residues each [46,53] in the N-terminal disordered

regions. Theoretical models [7,14] and a comparison of the sizes of

RNAs in the PDB database [15] indicate that the Rgs of RNA

molecules scale as N1=3, where N is the number of nucleotides in

the sequence. Their volumes should therefore be directly

proportional to the nt length of the sequence. The Sindbis

genome therefore occupies nearly four times the volume of say

CCMV RNA1. Whether this represents a greater need for

compaction can be discerned by comparing their internal volumes.

The internal radii of capsids of Sindbis and CCMV are 18.2 [54]

and 9.4 nm [55], respectively, which means the internal volume of

Sindbis is nearly eight times that of CCMV. Because the RNA

volume increases by a smaller factor than the internal volume, we

expect the Sindbis genome to be under less pressure to be compact

than a CCMV RNA. The compactness requirement is further

reduced because a T~4 capsid contains 4/3 times more coat

proteins and RNA-exposed basic residues than a T~3 one. It is

therefore not surprising that the branching propensities of

Togaviridae genomes (Fig. 3, pink squares) are lower than those

of Bromoviridae such as CCMV, and indistinguishable from those

of random sequences.

As seen above, estimating the pressure for RNA compactness by

evaluating electrostatic stabilization provides insight into the

relative branching propensities of various virus families. While

genome sequences are available for most known viruses [56], high-

resolution capsid structures and the nature of interaction between

the RNA and capsid proteins are known for far fewer [57]. As

more structural details emerge, sophisticated models that include

additional factors – such as variations in internal volumes or the

presence of basic residues in VPg [58,59], a protein covalently

bound to the 59 end of the RNA in many viruses – can be used to

clarify further the selective pressure for viral RNA compactness.

The information leading to the compactness of branching is

ultimately encoded in the sequence of nucleotides in the primary

sequence. We illustrate this in Fig. 4A by introducing the quantity

DP as a metric that reflects positional correlations of pairable

(complementary) base patterns along the primary sequence. It is

particularly notable that although the three B3-derived RNAs

formally differ in sequence from B3, each retains the local

availability of pairable nt patterns. Large-scale changes like gene-

swapping or changing the sense of the strand conserve the relative

positions of locally available pairable regions. The fact that

compactness is preserved in these sequences (Fig. 1) indicates that

it is encoded on a scale smaller than the length of either gene in B3

(&1000 nt). The consistently larger sizes of Y1–Y5, irrespective of

whether they are non-, partially- or fully-coding, indicate that the

signature for compactness does not depend on whether the RNA

codes for a protein. Rather, it involves strong proximal base

pairing (DPƒ 100 nt), as seen in Fig. 4B for B3-based but not for

yeast-based RNAs. The distinguishing length scale of *100 nt,

while much larger than that of a canonical stem-loop (DP*10), is

only slightly larger than that of a three-helix junction (recall that

random sequences produce on average a d~3 vertex every 69 nt).

Increased non-trivial local base pairing, also observed in some

translated bacterial RNAs [60], has important effects on RNA

folding.

The strong proximal pairing identified above for viral and

related sequences is based on ensembles of free-energy-minimized

secondary structures. This represents a very unusual case, where

the global minimum free-energy structure heavily relies on local

base pairing – up to 75% within 100 nt, as seen in Fig. 4B. In

other words, if we were to predict secondary structures for the

same sequences with the limitation of local pairing [61–63], we

would recover most of the branching seen in the globally

minimized structure without a significant free-energy cost.

Locally-folded secondary structures represent a scenario where

folding is kinetically quenched, i.e., co-transcriptional [64–66].

Denser branching and stronger proximal pairing thus ensure

similar folding outcomes for viral sequences under thermodynamic

and kinetically controlled conditions. Robustness of the structural

outcome of viral-RNA folding to variations in the environment

represents an evolutionary advantage – that of the reliable

packaging of the genome into nanoscopic protein capsids. This

advantage often works in parallel with specific local secondary and

tertiary structure motifs associated with short sequences essential

for genome packaging in many RNA viruses [67,68].

While we have concerned ourselves exclusively in the present

work with ssRNA viruses, similar arguments should apply as well

to ssDNA viruses for which the genome is co-self-assembled with

capsid protein in spherical shells. We have focused on ssRNA

because these viruses are so much more prevalent, involving a

wide variety of well-known pathogens whose host ranges include

bacteria, plants, and animals. One reason for spherical viruses

needing to be small is simply so that larger numbers of them can fit

into their host cell before it lyses or is otherwise obliged to shut

down viral synthesis. In the case of plant viruses, which spread to

neighboring cells through the plasmodesmata channels traversing

cell walls, the capsid diameter is still more severely constrained;

indeed, in many instances, a viral gene is dedicated to a protein
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product that chaperones virus particles to surrounding cells by

reorganizing the otherwise-too-small plasmodesmata. For this

reason, even rod-like viruses, whose RNA genomes are not under

pressure to be compact, must still have the smallest dimension

(cross-sectional diameter) of their capsids sufficiently small.

By demonstrating i) that experimentally determined RNA sizes

are related to the compactness of branching patterns in secondary

structure ensembles, and ii) that the compactness of several

families of viral genomes are consistent with the selective pressures

imposed by capsid size and electrostatics, we have shown that the

density of secondary-structure branching is a degree of freedom

available for optimization in viral RNA genomes. When other

means of condensing the genome are absent, viral RNAs are

unusually compact.

Methods

RNA Synthesis and Purification
The RNA molecules were in vitro transcribed from PCR

templates using T7-polymerase (courtesy of Prof. Feng Guo,

UCLA), followed by DNAse digestion of the template. Protein

impurities were removed by phenol-chloroform extraction and the

RNA isolate was rid of shorter polynucleotides and unreacted

ribonucleotides by repetitive additions of TE (pH 7.4) buffer and

filtration through a 100 kDa MWCO Centricon device. RNA

samples were equilibrated in TE buffer at 4uC for 24 hours to

obtain uniform ensembles [8,21] and typically used within

48 hours of preparation. DNA templates for B3, B3A, B3R and

B3RA were amplified by PCR from linearized plasmids of B3 and

B3R [20] by designing appropriate primers. The templates for Y1-

5 were similarly made by PCR from genomic yeast DNA. The

sequence from the second base onwards for Y1, Y2, Y3, Y4 & Y5

correspond to those starting from the 855700th, 874269th,

353947th, 390695th and 687701st base of chromosome XII of

Saccharomyces cerevisiae [69]; note that the first base of a T7-

polymerase transcript is required to be a G. These five yeast

sequences have nucleotide compositions, and hence fractions of

bases paired, comparable to those of the four viral-derived RNAs.

A formaldehyde denaturing gel [70] confirmed that the nine RNA

transcripts had identical nucleotide lengths (see Fig. S2 in File S1).

Fluorescent RNAs – used in our fluorescence correlation

spectroscopy (FCS) experiments – were synthesized by spiking

the transcription reaction mixture with ChromaTide Alexa Fluor

488-5-UTP (Life Technologies, Carlsbad, CA) such that 5 in every

1000 NTP (nucleotide triphosphate) molecules were fluorescently

tagged. Due to lower inclusion efficiency of the fluorescent UTP

compared to the untagged nucleotide, the 2117-nt RNA

transcripts contained either none or just one Alexa-488 tag at a

randomly chosen UTP position. This is desirable because

untagged molecules are not counted in FCS, however multiple

tagging can lead to higher apparent concentrations. Tagging

efficiency of ƒ1 was verified by comparing FCS profiles of known

concentrations of RNAs and standards.

Gel Electrophoresis & Mobility Measurements
About 1 mg of equilibrated RNA in 10 mM TE buffer (pH 7.4),

mixed with 1 ng of 2142 base-pair dsDNA marker, was loaded in

each lane. The 1% native agarose gel was prepared and run at

room temperature in TAE buffer (pH 7.4). It was stained with

ethidium bromide for 20 minutes and the excess stain rinsed away

prior to imaging to minimize background fluorescence. The gel

was recorded as a TIFF image and imported into ImageJ [71] for

mobility analyses. The gel analysis plugin was used to generate

one-dimensional mobility profiles from the fluorescence image.

Individual mobilities were measured as the distance in pixels

between the peak maxima of the RNA and marker bands. The

mobility of an RNA divided by that of B3 is used as the relative

mobility (mr).

Fluorescence Correlation Spectroscopy (FCS)
The Advanced Light Microscopy shared facility at the

California NanoSystems Institute (UCLA) was used for fluores-

cence correlation. The setup contains a custom-made confocal

configuration built with an Axiovert 100 (Zeiss, Germany) inverted

microscope as its base. The 488-nm line from a continuous-wave

Argon Laser (Ion Laser Technology, Frankfort, IL) was used with

excitation power ranging from 5–90 mW. A water immersion

objective (1.2 NA, 63|, Zeiss) was used in combination with a 50-

mm pinhole to achieve an excitation volume of & 1 fl. Between 7–

10 ml of RNA sample were sealed between two 150-mm glass slides

using silicone isolators (Grace Bio-labs, Bend, OR) and placed on

the microscope stage for imaging. Fluorescence signal was

collected with the focal volume 35 mm away from the glass

surface to prevent substrate interactions. The signal was split

evenly to two APDs (AQR-14, Perkin-Elmer Inc) and the channels

cross correlated with a temporal resolution of 6.5 ns using an

ALV-6010 correlator (ALV GmbH, Langen, Germany). Auto-

correlation curves, G(t), were first obtained for Alexa Fluor 488

(Life Technologies, Carlsbad, CA) in TE buffer, which was used as

a size standard of known diffusion constant [72,73]. Four curves

with progressively higher excitation powers between 10 and 90

mW were globally fit to obtain the characteristic diffusion time (tD)

and triplet relaxation time (tt) using the following 2D diffusion

model for a Gaussian excitation volume [74,75]:

G(t)~
1

SNT
1z

t

tD

� �{1

1z
F

1{F
exp

{t

tt

� �
, ð6Þ

where SNT, the time averaged number of fluorescent molecules in

the focal volume, and F , the fraction of molecules in the triplet

state, are constant for a sample at a fixed excitation power. The

variables tD and tt were fit globally (Origin 7, OriginLab,

Northampton, MA) to the excitation-power series while allowing

F to have distinct values for each power. Fitted curves for a sample

RNA molecule (B3) are shown in Fig. S1A in File S1. Values of tD

were similarly obtained for the remaining RNA molecules. The

diffusion constant of Alexa Fluor 488 is measured to be

4:35|10{10m2s{1 [73]; its hydrodynamic radius (Rh) was

calculated using the Einstein-Stokes relation to be 0.50 nm in

aqueous media. Knowing tD values for both the standard dye and

RNA samples, values of Rh in Table S1 in File S1 are computed

using the relation RRNA
h ~(tRNA

D =tdye
D )|R

dye
h . Concentration-

normalized auto-correlation curves at 15 mW excitation power

for the nine RNAs and Alexa Fluor 488 standard are shown in Fig.

S1B in File S1.

Secondary Structure Prediction and Tree Graph Analyses
RNA primary sequences were obtained from the NCBI Viral

Genome project [56]. Boltzmann-sampled secondary structure

ensembles with 1000 configurations of each RNA were calculated

using the RNAsubopt program in Vienna [76] as described in

earlier work [7]. Each secondary structure in the ensemble was

then converted using the RNA-As-Graphs program [23,24] into

the Laplacian matrix representing the corresponding tree graph.

Adjacency and degree matrices were deduced from the Laplacian

for further analyses. Degree matrices were used to calculate

SV1=V3T, SV1T=SV3T, SV4T, SV§4T, etc (see Results). The
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adjacency matrices were analyzed using the Mathematica Graph

Utilities package and custom programs to compute the graph-pair

distribution functions [P(r)] shown in Fig. S4 in File S1. The

radius of gyration, Rg, for each tree graph was computed using

Kramers’ method as described in Ref. [14].

Supporting Information

File S1 Combined Supporting Information. Single PDF

file containing Figures S1-S5 and Tables S1 & S2. Legends are

provided within the file below each Figure or Table.

(PDF)
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