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The identification and optimization of promising lead molecules is essential for

drug discovery. Recently, artificial intelligence (AI) based generative methods

provided complementary approaches for generating molecules under specific

design constraints of relevance in drug design. The goal of our study is to

incorporate protein 3D information directly into generative design by flexible

docking plus an adapted protein-ligand scoring function, thereby moving

towards automated structure-based design. First, the protein-ligand scoring

function RFXscore integrating individual scoring terms, ligand descriptors, and

combined terms was derived using the PDBbind database and internal data.

Next, design results for different workflows are compared to solely ligand-

based reward schemes. Our newly proposed, optimal workflow for structure-

based generative design is shown to produce promising results, especially for

those exploration scenarios, where diverse structures fitting to a protein binding

site are requested. Best results are obtained using docking followed by

RFXscore, while, depending on the exact application scenario, it was also

found useful to combine this approach with other metrics that bias structure

generation into “drug-like” chemical space, such as target-activity machine

learning models, respectively.
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1 Introduction

Finding and optimizing promising lead molecules with high affinity for a particular

protein is an important prerequisite for successful drug discovery. In addition to high

throughput screening, virtual screening (Sotriffer et al., 2011; Stumpfe and Bajorath, 2020;

Walters and Wang, 2020) is critical for identification of such compounds. In virtual

screening, advanced computational strategies are applied to search collections of existing

or virtual molecules (Muegge and Oloff, 2006; Hoffmann and Gastreich, 2019; van Hilten
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et al., 2019; Walters, 2019; Grebner et al., 2020a). Here,

collections of virtual compounds are typically built from well-

established chemical reactions and available building blocks to

increase the likelihood of potential synthesis (Lyu et al., 2019).

Hence, often synthetic success rates >80% are reported in the

literature (Hoffmann and Gastreich, 2019; Lyu et al., 2019; van

Hilten et al., 2019; Walters, 2019).

Likewise, de novo design (Schneider and Schneider, 2016;

Schneider and Clark, 2019) also serves to sample the vast

chemical space for active molecules. As the identification of

chemical motifs is often not restricted by availability of

building blocks or pre-defined chemical reactions, designed

molecules are often challenging to synthesize (Hartenfeller

et al., 2012; Gao and Coley, 2020).

Any automated design for compound structures with good

affinity against a biological target of interest consists of two tasks,

structure generation and scoring of the generated structures with

a reward function to select candidates for synthesis. Dedicated

software programs have been developed towards automation of

some parts of this workflow including different fragment linking

and growing strategies (Böhm, 1992; Gillet et al., 1993; Stahl et al.,

2002; Schneider and Fechner, 2005; Dean et al., 2006). This led to

a variety of de novo design approaches (Böhm, 1992; Gillet et al.,

1993; Stahl et al., 2002; Schneider and Fechner, 2005; Dean et al.,

2006; Todorov et al., 2006; Mauser and Guba, 2008; Hartenfeller

et al., 2011).

In recent years, artificial intelligence (AI) based generative

methods employing in particular neural networks provided a

novel view on the creation of chemical structures under defined

constraints. Several of these models are already applied in drug

design settings (Chen et al., 2018; Hessler and Baringhaus, 2018;

Grebner et al., 2020b). These include sampling of novel structures

using recurrent neural networks (RNN) (Olivecrona et al., 2017;

Popova et al., 2018; Arús-Pous et al., 2019; Brown et al., 2019), re-

training of RNNs with collections of virtual structures (libraries)

using transfer learning (Segler et al., 2018), using generative

adversarial networks (GANs) (Sanchez-Lengeling et al., 2017;

Guimaraes et al., 2018; Prykhodko et al., 2019) or reinforcement

learning (RL) (Olivecrona et al., 2017; Popova et al., 2018; Segler

et al., 2018; Ståhl et al., 2019), and autoencoders (Blaschke et al.,

2018; Gómez-Bombarelli et al., 2018; Jin et al., 2019). Moreover,

fragment-based reinforcement learning approaches based on an

actor–critic model for generating structures have also been

developed (Ståhl et al., 2019). Typically, the actor and the

critic are both modeled with bidirectional long short-term

memory (LSTM) networks (Ståhl et al., 2019).

Recurrent neural networks (RNN) (Goodfellow et al., 2016),

originally applied for natural language processing, can process

any sequential input like SMILES strings (Weininger, 1988) as

“chemical language.” Typically, an initial model is trained with

large chemical databases in SMILES representation as references.

SMILES strings and characters are treated in analogy to “words”.

RNN can learn the distribution of individual characters from the

reference set. For sampling, the RNN is then initialized with a

random token and each following character is computed by a

multinomial sampling of the probability distribution in the

model. This produces variability of the sampled structures.

Once an end token is detected, the SMILES string is

completed, with the complete SMILES string representing the

generated structure. However, there are some disadvantages to

this simple approach due to the complex grammar and lack of

chemistry knowledge in SMILES. First, a large amount of

reference data is needed to learn the generation of valid

SMILES strings. Then, chemical motifs such as scaffolds and

functional groups are not represented, and a chemical structure

can be denoted by many different SMILES. Despite these issues,

the SMILES-RNN approach has already been successful in design

applications. Some disadvantages are accounted for by using

molecular graphs (Jin et al., 2019) or fragments (Ståhl et al., 2019)

as alternative molecular representations. Furthermore, different

ways to encode chemical structures were recently developed, e.g.,

an improved SMILES-like description named DeepSmiles
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(O’Boyle and Dalke, 2018) or a method called SELFIES (Krenn

et al., 2020).

Acceptable molecule structures in de novo design must fit to a

desired property profile with high affinity to the desired target

and favorable ADMET and physicochemical properties. These

properties can be learned either indirectly from related molecules

using transfer learning techniques (Amabilino et al., 2020) or

directly from a scoring function, which computes a score for a

given molecule, as implemented in reinforcement learning and

particle swarm optimization (Olivecrona et al., 2017; Popova

et al., 2018; Segler et al., 2018; Jin et al., 2019; Ståhl et al., 2019). In

the second case, compounds are assessed using these properties

to guide the design process. Machine learning models are here a

natural choice, as they capture complex molecular properties in a

model derived from the chemical structures of the ligands (Chen

et al., 2018; Merk et al., 2018; Popova et al., 2018; Schneider, 2018;

Wenzel et al., 2019; Zhavoronkov et al., 2019). Their potential

difficulty is that a large set of ligands and affinities must be

known, before a predictive model can be derived. Especially for

novel target proteins, this is not always the case, while for

ADMET properties, many validated models have already been

described (Wenzel et al., 2019; Goller et al., 2020; Aleksić et al.,

2021; Grebner et al., 2021). The design guided by those models

often only explores the already known chemical space for that

particular target. Alternative approaches have explored 3D shape

similarity (Grant et al., 1996; Rush et al., 2005) to guide the design

process (Grebner et al., 2020b; Papadopoulos et al., 2021).

Fewer examples have been reported, in which a protein 3D

structure is directly employed for AI-based design. One obvious

strategy relies on molecular docking approaches. For example,

Dockstream has been added to REINVENT2.0 as a structure-

based design component (Guo et al., 2021) with the goal to retain

key protein-ligand interactions, to discard those design results

with clashes to the binding site, and to explore additional

subpockets for better overall performance in the scaffold-

hopping scenario. Docking as reward for AI design was also

used in the sample-and-dock pipeline (Xu et al., 2021a) that

interfaces the junction-tree-variational autoencoders (Jin et al.,

2019) with the docking engine rDock (Ruiz-Carmona et al.,

2014). The DOCKSTRING bundle provides a benchmark how

different machine learning algorithms, including de-novo-design

methods, perform with molecular docking (García-Ortegón

et al., 2022). Furthermore, the program OptiMol for

optimization of binding affinities also integrates a docking

evaluation in combination with SELFIES autoencoders

(Boitreaud et al., 2020). In addition, the deep learning-based

molecular generator, SBMolGen was reported to integrate a

recurrent neural network, a Monte Carlo tree search, and

docking simulations (Ma et al., 2021). A different structure-

based de novo design strategy using 3D deep generative models

was also recently described with the program DeepLigBuilder (Li

et al., 2021). Here, ligand structures are directly generated within

the binding site and scored using refinement docking of this

initial molecule, which appears to be much faster than standard

docking. Moreover, a prediction model for docking scores from

SMILES as reward function for molecular design was

implemented in the program V-dock (Choi and LeeV-Dock,

2021). Finally, in a retrospective design study for the GPCR

DDR2, Glide and its Glide-SP score were directly integrated into

the REINVENT generative approach (Thomas et al., 2021). Some

other approaches directly use a geometrical representation of the

protein binding pocket without explicit docking for generative AI

(Skalic et al., 2019; Xu et al., 2021b).

The goal of our present study is to incorporate a state-of-the-

art docking engine plus a protein-ligand adapted scoring

function into our AI-based de novo design workflow to enable

structure-based lead optimization. To this end, we have selected

Glide-XP (Friesner et al., 2004; Halgren et al., 2004; Friesner et al.,

2006) as one of the industry standards for structure-based design.

Glide-XP differs from Glide-SP in its high accuracy with respect

to pose prediction and affinity prediction (Friesner et al., 2006).

Different post-processing schemes to obtain a reward term from

docking were assessed for their usefulness in generative AI. In

addition to the Glide-XP scoring term (Friesner et al., 2006)

(gscore), a size-corrected term was used (ligand_efficiency_sa).

Furthermore, we have developed a protein-ligand scoring

function (RFXscore) based on individual Glide and Glide-XP

scoring terms, RDKit ligand descriptors, and cross-terms of both.

The “refined set” of the PDBbind 2019 database with more than

4,000 protein-ligand complexes and affinities served for training

and validation. This RFXscore helps to improve ranking of active

ligands and to discriminate between actives and inactives in

comparison to the pure Glide-XP score.

We then study the impact of these reward methods alone or

in combination with additional terms (e.g., target protein

machine learning models, QED scores) as drivers of

reinforcement learning on quality and chemical diversity of

the newly generated molecules. In a retrospective exercise

from a typical structure-based design project, we analyze to

which extent molecules for project advancement can be

automatically generated, which are drug-like and cover new

chemical space. Hence, an improved picture of the usefulness

of incorporating 3D protein information combined with a high-

quality protein-ligand scoring function as reward term into

generative AI design approaches emerges.

2 Materials and methods

2.1 Generative methods

Two generative engines have been used for compound

generation, namely REINVENT and Lib-INVENT.

REINVENT creates new molecules from scratch and requires

several hundred steps to reach convergence, even with simple

reward functions like 2D-fingerprint-based similarity. As 3D
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docking of batches of several hundred molecules per

reinforcement learning (RL) iteration is a very time-

consuming process, we first focused our evaluations on Lib-

INVENT as structure generation engine. Therefore, the

comparison of different structure-based scoring functions was

performed with Lib-INVENT, which samples molecules from a

given scaffold. As the possible chemical space is smaller,

convergence is reached much faster. Since the architectures of

REINVENT and Lib-INVENT are similar, conclusions obtained

from Lib-INVENT might be transferable to REINVENT. This is

demonstrated in final generation runs with the best scoring

scheme in combination with REINVENT.

2.1.1 Lib-INVENT
To evaluate the behavior of the different scoring functions,

the Lib-INVENT framework was used as a structure generator

(Fialkova et al., 2021). Lib-INVENT is a modification of

REINVENT for scaffold decoration. It contains two neural

networks of the same architecture, prior and agent. The prior

is trained only once and provides general chemistry knowledge,

while the agent is driven towards a specific task that is defined by

the scoring function. In case of Lib-INVENT, both networks are

autoencoders that take a predefined molecular scaffold as input.

This network will then generate decorations which are added to

the scaffold at specified attachment vectors to form a complete

chemical structure matching the predefined score. Both input

scaffold and output decorations are encoded as SMILES strings

(Fialkova et al., 2021). For an overview of the model training

workflow see Figure 1.

As prior network, we used the reaction-based model

provided in the Lib-INVENT repository (Fialkova and

Patronov, 2022). It has been pre-trained on a cleaned subset

of the ChEMBL database, sliced according to chemical reactions

(Fialkova et al., 2021). The agent is initialized as a copy of the

prior. The score is computed by the different scoring functions

described below and a diversity filter that evaluates the diversity

of the generated compounds as follows: Every generated

molecule with a score above 0.4 is stored in memory. If a

molecule is already in memory, the score from the scoring

function is scaled down by a factor of 0.5 (Fialkova et al.,

2021). This way, repeated generation of the same compound

is punished by lower scores. This drives the process towards

previously unexplored regions of chemical space, resulting in a

higher diversity of generated compounds. Training was run for

100 epochs with a learning rate of 0.0001 and a batch size of 128.

Two input scaffolds were given. They were created by cutting off

the two sidechains of the fXa inhibitor from structure 2BOH of

the Protein Data Bank (see Figure 2). (Nazaré et al., 2005a;

Nazaré et al., 2005b) In scaffold 2, the isopropyl group was

converted to ethyl by removing one carbon atom in order to

lower the molecular weight while maintaining key interactions.

2.1.2 REINVENT
REINVENT is a de novo generation method for molecular

structures based on recurrent neural networks (RNNs) that

employ SMILES strings (Weininger, 1988) as input and

FIGURE 1
Overview of the Lib-INVENT training workflow. The agent
takes amolecular scaffold as input and samples some decorations.
Scaffold and decorations are then combined to form a molecule
that is scored by the user-defined scoring function. This
score is then scaled down according to the desired diversity filter
to obtain the final score which is used to improve the model. If the
score is above 0.4, the molecule is stored in memory (Fialkova
et al., 2021).

FIGURE 2
Inhibitor from PDB entry 2BOH (Nazaré et al., 2005a). The left image shows the 3D structure of the inhibitor in the pocket illustrated in PyMol
(The PyMOL, 2022), on the right the two scaffolds used for Lib-INVENT are displayed. The atoms in the surface are colored by their element types.
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output (Olivecrona et al., 2017). The first RNN, called prior, is

trained on a large number of molecules in order to learn general

rules reflecting desirable chemistry. After training of this prior,

RL is applied to narrow the chemical space of the generated

structures. For this purpose, a second RNN, called agent, is

initialized as a copy of the prior. Furthermore, a scoring

function (also termed “reward function”) is introduced that

modifies the output probabilities of the agent in a way that

high scoring molecules have a higher probability to be sampled

(Olivecrona et al., 2017). For an overview of the training

workflow see Supplementary Figure S1.

It should be noted that the term “scoring” herein refers to

reward functions guiding generative methods, unless noted

otherwise. This should help to differentiate from “classical”

protein-ligand scoring functions to guide docking engines

(Sotriffer and Matter, 2011).

In this work, we used a prior network trained on the

combined set of ChEMBL24, Enamine REAL space and the

Sanofi compound collection as described previously (Grebner

et al., 2020b). We used the most promising scoring functions

from the Lib-INVENT runs to start REINVENT computations

with 1,600 epochs.

In order to speed up convergence, we also used transfer

learning to pre-train the prior network. For this, the ChEMBL

database was searched using FastROCS (Openeye, 2022) with

2BOH and four other co-crystallized drugs for coagulation

factor Xa (fXa) as queries. 464 molecules with a

TanimotoCombo score of more than 1.2 were found. After

a uniqueness check, 452 compounds remained which

contained the five queries and database hits. The

REINVENT model was pre-trained on these molecules for

35 epochs. Then the final production training on the docking

score was run for 800 epochs, where the pre-trained model was

used as prior and as agent.

The generated SMILES strings for all trainings were stored

every 10th epoch. Those SMILES that could be converted to valid

and unique chemical structures were used for further analysis

that was performed analogously to the Lib-INVENT runs (see

Section 2.4.2).

2.2 System for evaluation: Coagulation
factor Xa

As example for the new design workflow we employed the

serine protease factor Xa (fXa), as it is well-characterized in

structural terms with many X-ray crystal structures in the PDB

database and available structure-activity relationship (SAR)

information (Bernstein et al., 1977; Burley et al., 2021). In

particular, we focused on a representative X-ray structure for

the indole-2-carboxamide series of fXa inhibitors (Figure 2).

Here, the indole-2-carboxamide 1 (resolution 2.2 Å, PDB

2BOH, Ki 3 nM (Nazaré et al., 2005b)) was crystallized in

complex with fXa and therefore allows identifying critical

features for binding affinity (Nazaré et al., 2005b).

2.3 Reward functions to guide generative
artificial intelligence-methods

2.3.1 Ligand-based scoring functions
As a comparison of our design results to well-established

methods, initial trainings were performed as a baseline where 3D

similarity to the co-crystallized ligand was applied as scoring

function (Grebner et al., 2020b). TanimotoCombo score as

implemented in ROCS from OpenEye was employed as 3D

similarity measure (Grant et al., 1996; Openeye Toolkits,

2019). Before using it in the scoring function for Lib-

INVENT, it is scaled that values between 0.5 and 1.4 are

projected linearly into the range between 0.01 and 1. Values

below 0.5 are set to 0.01 and values above 1.4 are set to 1 (see

Supplementary Figure S2). These thresholds were chosen to focus

the learning on the most informative region of the score based on

inhouse experience.

Furthermore, the previously reported (Grebner et al., 2020b)

ligand-based QSAR model [based on Graph Convolutional

networks implemented from the DeepChem library, version

2.2 (Github, 2019)] for predicting binding affinity (pKi) of fXa

inhibitors was used as scoring function. This score is called fXa

score. For more details, please refer to the original publication

(Grebner et al., 2020b). Besides the model itself, which predicts

the activity, this scoring function also considers an applicability

domain estimate of the model, which is used as a binary score.

We first calculate the similarity for the evaluated molecule with

respect to the training data set of the model using a Morgan

Fingerprint from RDKit (Rdkit, 2022). If the highest similarity is

above 0.4, the molecule is considered to be similar enough to the

training data sets and thus the model is assumed to be applicable.

In contrast, if the highest similarity is below the threshold, the

molecule is too dissimilar to the data and the score for these

molecules is always set to zero. This approach is related to

previous literature studies (Baringhaus et al., 2013), while the

exact threshold value in combination with the chosen fingerprint

descriptor was empirically derived. While this approach is a

simplification of the complex topic of applicability of a model, it

serves well in the current applications.

2.3.2 Glide docking and scoring terms
For all scores using glide docking, we used a docking grid

from the protein structure 2BOH from PDB which was prepared

using the Schrödinger Protein Preparation Wizard with default

parameters (Sastry et al., 2013). Compounds to be scored are first

run through LigPrep, enumerating stereocenters, tautomers and

protonation states (Schrödinger, 2020). They are then docked

using Glide Extra Precision (XP) with flexible sampling (Halgren

et al., 2004; Friesner et al., 2006). The crystallized ligand from
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PDB 2BOH serves as reference structure for MCS (maximum

common substructure) core pattern comparison where the

hydrogen bond including the backbone NH of Gly216 is

constrained. The program Proplister from the Schrödinger

Suite is used to obtain individual docking and scoring terms

(Schrödinger Knowledge Base, 2018).

From the Glide-XP docking output, two different protein-

ligand scoring terms were used: the Glide-gscore and the Glide-

ligand_efficiency_sa score. The first term corresponds directly

to the Glide-XP docking score without Epik state penalties

(Friesner et al., 2006), while the latter term scales the original

Glide-XP docking score by the number of heavy atoms to the

power of 2/3 in order to approximate the effect of the molecular

surface area (SA) (Friesner et al., 2006; Schrödinger Knowledge

Base, 2021). The docking scores usually range from negative to

positive values, however, positive docking scores do not have

any physical meaning. Therefore, docking scores are

transformed as follows before being applied in the Lib-

INVENT workflow for maximizing the scores:

f(x) � {−x, x< 0
0, x≥ 0 (1)

2.3.3 New protein-ligand scoring function based
on glide and RDKit terms

In addition, a newly derived protein-ligand scoring function

was used, which integrates individual Glide XP scoring terms as

structure-based information with ligand-based 2D descriptors

computed using RDKit into a predictive statistical model (see

Figure 3).

For each protein-ligand complex, a total of 26 descriptors

are extracted from Glide-XP (see Supplementary Table S1).

These include individual energetic terms (e.g., total energy, Van

der Waals, Coulomb), hydrogen-bond terms, different

description of hydrophobic enclosures (Friesner et al., 2006),

penalties for atoms located in unfavorable environments, and

terms for less common protein-ligand interactions like π-cation
interactions.

In addition to these structure-based terms, the ligands are

characterized by a total of 40 2D descriptors taken from RDKit

(see Supplementary Table S2) (Rdkit, 2022). This includes

properties like number of heavy or hetero atoms, number of

hydrogen bond donors/acceptors, logP, TPSA, number of rings,

and MOE-type subdivided surface area descriptors using partial

charges or logP contributions (Labute, 2000).

Furthermore, 42 cross-terms are computed as quotients of

Glide descriptors and RDKit properties (see Supplementary

Table S3). The goal here is to individually scale the Glide

energy term contributions by specific features of the ligand in

the binding site. From Glide, the following terms were used to

compute these cross-terms: GlideScore, van der Waals energy,

Coulomb energy, modified Coulomb - van der Waals interaction

energy, H-bond term, and lipophilicity term. Each of these

individual terms is divided by the following RDKit terms,

namely number of heavy atoms, number of hetero atoms,

logP, TPSA, fraction of C.sp3, N and O count, NH and OH

count, which finally results in the 42 cross-terms (6 glide-terms *

7 RDKit-terms).

The final protein-ligand scoring model was then trained from

the “refined set” of protein-ligand complexes from the PDBbind

2019 database (Wang et al., 2004; Liu et al., 2017; Wang, 2020).

This set is compiled from the general PDBbind set and contains

complexes with better experimental quality along with

experimental binding affinity and a converted ligand file with

validated atom typing. Furthermore, a number of filters

regarding binding data, crystal structures, as well as the nature

of the complexes were applied (Liu et al., 2017). The refined set in

the 2019 release contained 4,852 protein-ligand complexes. Each

input PDB file was processed using the Protein Preparation

Wizard using default settings in an automated workflow. It

was assumed that protonation state and geometry is

acceptable in the refined set, which we confirmed by visual

inspection in several complexes. In addition, crystallographic

water molecules were deleted, and disulfide bridges were formed.

As next step, a Glide grid file for each complex was

automatically generated using standard settings without

constraints. For each successfully converted complex, a Glide

XP scoring step without altering the ligand geometry was

performed in order to obtain the Glide and XP terms as

input. Some complexes could not be successfully processed, or

not all descriptors could be computed. Those were rejected,

FIGURE 3
Overview of the RFXscore: Every molecule to be evaluated is
docked using Glide and several docking descriptors are
determined. Furthermore, a number of physicochemical
properties is computed by RDKit. The docking descriptors,
the RDKit properties, and some crossterms of both are put into a
random forest model that predicts the binding affinity for the
compound. Further details see text and Supporting Information.
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which resulted in a final training set of 4,231 complexes from the

PDBbind set for further scoring function development.

This set then was split into a training set of 3,591 compounds

and a test set of 640 compounds. To assure a balanced activity

distribution between both sets, the compounds were first

partitioned into 10 evenly distributed pKi activity bins and

15% were randomly selected from each bin as test set. A

random forest (RF) model (Breiman, 2001) was developed to

correlate descriptors with the experimental affinity, expressed as

pKi or pIC50 values. The model was generated with scikit-learn

(Pedregosa et al., 2011) using 500 individual trees and the mean

absolute error (MAE) as criterion for optimization. A 10-fold

cross-validation strategy in 3 repeats each served as validation

approach for the training set. A significant model with a cross-

validated r2 value of 0.459 (maximum r2 0.545, StdDev: 0.047)

and an r2 value of 0.855 resulted with a MAE of 0.578. For the

independent test set, a predictive r2 of 0.496 was obtained (MAE:

1.121).

In addition to this PDBbind training and test set, we added

numerous internal X-ray structures and binding affinity data for

two internal projects, namely factor Xa (see above) and Renin

(Scheiper et al., 2010; Matter et al., 2011). In all cases, resolutions

for added structures are <3.0 Å, while structures with a

resolution <2.5 Å are preferrable. For factor Xa, 10 X-ray

structures representing two main series, namely indole-2-

carboxamides and oxybenzamides were added. A

representative structure for the indole-2-carboxamide series is

found in the PDB file 2BOH (resolution 2.20 Å) (Nazaré et al.,

2005b). For the oxybenzamide series, the PDB file 2BMG

provides a typical example (resolution 2.70 Å) (Matter et al.,

2005). For Renin, 8 X-ray structures representing two series of

potent analogs are added to the dataset. Here, the PDB file 3OOT

(resolution 2.55 Å) provides a typical example for the indole-3-

carboxamide series (Scheiper et al., 2010). In addition, X-ray

structures for analogs of the inhibitor Aliskiren were added, as

exemplified by the PDB file 2V0Z (resolution 2.20 Å) for this

prototypical Renin inhibitor reported by Rahuel et al. (2000)

We further augmented this dataset by reliable binding poses

from carefully docked and inspected factor Xa and Renin

inhibitors as close analogs to the internal X-ray structures. All

the additional data was added to the training set, so this resulted

in an updated training set of 3,995 compounds and

719 compounds in the test set. With this updated dataset, a

final model with a cross-validated r2 value of 0.460 (maximum r2

0.533, StdDev: 0.037) and an r2 value of 0.856 resulted with a

MAE of 0.556. For the test set, a predictive r2 of 0.494 was

obtained (MAE: 1.086). The graph of experimental pKi values on

the x-axis versus predictions from this model (y-axis) is shown in

Figure 4 for the training (left) and test dataset (right). While the

statistics of this model remains similar to the general new

protein-ligand scoring function, it focuses the chemical space

for the target proteins used in this de novo design study.

Therefore, this model was used throughout the entire study in

this manuscript. pKi predictions using bothmodels are scaled in a

similar manner as those from the QSAR model.

Random forest models are often used as robust approach for

high-dimensional regression. They require little hyperparameter

tuning and have only a low probability for overfitting. In this

method, predictions from an ensemble of decision trees are

finally averaged for an overall predicted value. This averaging

could introduce a systematic bias of the resulting models. In fact,

it is reported that models can be sometimes too conservative,

i.e., predictions of extreme values are shifted towards the mean

value of the dataset (Zhang and Lu, 2012; Hooker and Mentch,

2018). We also observe this in our models, which is exemplified

by the difference of the slope of the regression line (red)

compared to the line of identity (grey) in Figure 4, in

particular for the test set. Hence, this model systematically

FIGURE 4
Graph of experimental pKi values on the x-axis versus predictions from the final random forest model (y-axis) for the training (left) and test
dataset (right). Line of identity is shown in grey.
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over- or under-predicts at either end of the plot for the test set,

while the relative ranking is preserved. However, as we did not

obtain significantly better models using other methods (PLS,

regression trees), we maintained the final random forest model.

While no significant outliers were observed for the training

set, larger deviations were found for the test set, as seen in

Figure 4 (right panel). For the factor Xa or Renin series, no

significant outlier predictions are observed. Furthermore, a list of

main outliers for the test set and a further discussion is given in

the Supporting Information.

2.3.4 Estimation of druglikeness
In additional runs, the RFXscore was combined with a score

for the “Quantitative Estimate of Druglikeness” (QED) and with

a QSAR model predicting pKi values against fXa (fXa model)

(Bickerton et al., 2012; Grebner et al., 2020b).

The QED is a number between 0 and 1 which describes the

“druglikeness” of a molecule by comparing its physicochemical

properties to their distribution in a set of approved drugs

(Bickerton et al., 2012). It is computed as the weighted

geometric mean of several so-called desirability functions di:

QED � exp ⎛⎝∑n
i�1wi di∑n
i�1di

⎞⎠ (2)

Each desirability function di corresponds to one of the

following molecular properties: Molecular weight, octanol-

water partition coefficient, number of hydrogen bond donors,

number of hydrogen bond acceptors, molecular polar surface

area, number of rotatable bonds, number of aromatic rings, and

number of structural alerts (Bickerton et al., 2012).

In our scoring functions, QED was computed via RDKit and

taken “as is”. The fXa score was obtained and scaled like

described in Section 2.3.1. The total score was calculated as

the arithmetic mean of the two single scores, i.e., RFXscore +

QED or RFXscore + fXa.

2.3.5 Glide-ROCS
In order to speed up the computation for individual design

runs, we implemented an option to initially perform a 3D shape

overlay with the reference ligand and use the resulting conformer

as a starting point for refinement docking, in analogy to Kelley

et al. (2015). The 3D shape overlay is performed using ROCS

from OpenEye by maximizing the Tanimoto Combo similarity

(Grant et al., 1996; Openeye Toolkits, 2019). In order to prepare

it for docking, hydrogens are added to the “best” conformer via

the OpenEye function OEAddExplicitHydrogens() before

writing the structure into an sd-file (Openeye Toolkits, 2019).

This file is now directly put into the docking process with docking

method mininplace, which means that no ligand sampling is

performed but only a local optimization of the ligand (Chaput

and Mouawad, 2017). Unlike before, no reference ligand is used

and no constraints are set. The docking output needed is again

obtained using Proplister and postprocessing is performed like

described in the previous section.

2.4 Model evaluation

For evaluating the different generative design runs, two

important aspects were considered: The first is the training

performance, i.e., how successful the model learns to generate

suitable compounds based on the applied scoring function. The

second aspect is to analyze the diversity and usefulness of the

generated molecules themselves. As the scoring function is

different for every run, other metrics to judge the quality of

the compounds should also be considered.

In this work, we applied several filtering steps to evaluate the

generated molecules (see Figure 5): Starting from the entire Lib-

INVENT memory (i.e., all compounds with a score >0.4), or all
sampled molecules from REINVENT, we first apply filters on

physicochemical properties to remove compounds that are not

considered “drug-like” (MedChem filters). The 1,000 highest-

scoring molecules are then selected for the next step which serves

as an evaluation procedure independent of the generation

FIGURE 5
Compound evaluation workflow: All generated molecules
frommemory are filtered based on physicochemical properties to
enforce the generated compounds to be inside a scope that is
generally considered as drug-like (MedChem). Then the
1,000 remaining compounds with the highest scores are re-
docked and undergo an MM/GBSA analysis. Only compounds with
a MM/GBSA energy of less than −70 kcal/mol are considered
further. In the last step, several structural filters are applied to
remove compounds with undesired substructures from the final
hits.
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method. The compounds are redocked and Molecular

Mechanical/Generalized Born Surface Area (MM/GBSA)

(Greenidge et al., 2013) is applied. The free energy computed

by MM/GBSA can be seen as a selection property that is not

biased, neither by the scoring function of the generator nor by

human prejudice. In the last step, the compounds with a low

MM/GBSA energy are run through several structural filters that

remove substructures that are generally not desired for drug-like

compounds.

2.4.1 Evaluation of training performance
In order to evaluate the training progression, the average

score, resulting from the employed scoring function, for all

generated molecules was plotted for each epoch. For Lib-

INVENT, plotting is performed for scores with and without

application of the diversity filter. As the diversity filter is applied

before reinforcement learning, the score including them shows

the success of the training itself, while the “pure score” without

diversity filter (explanation see above) indicates the quality of the

generated molecules, where quality is measured by the current

score. Furthermore, by comparing the two curves it is possible to

estimate the diversity of the compounds generated during

training.

As another metric, we computed the percentage of valid,

unique, and novel molecules during each training epoch (Brown

et al., 2019). A SMILES string is defined as valid if it can be

converted to a molecule by the RDKit suite. A molecule is

counted as unique if it has not appeared in any of the

previous training epochs, whereas it is novel if it was not

present in the training set for the prior (Brown et al., 2019).

Identical molecules are detected by comparing the canonical

SMILES strings using RDKit (Rdkit, 2022).

2.4.2 Evaluation of generated molecules
For the evaluation of the generated molecules in Lib-

INVENT, the yield is suggested as a metric to evaluate the

degree of success of the runs (Fialkova et al., 2021). It is

defined as the number of molecules in memory divided by the

number of all generated molecules (Fialkova et al., 2021):

yield �
∣∣∣∣Scaf foldmemory

∣∣∣∣
Batch size × Number of steps

(3)

As the yield corresponds to the fraction of unique

molecules with a score above the cutoff of 0.4, it combines

information about how many different compounds are

generated and how good they are in the scope of the

scoring function. Additionally, we defined some filters

based on physicochemical properties to enforce the

generated compounds to be inside a scope that is generally

considered as drug-like. Specifically, only molecules were kept

where the following conditions are fulfilled:

• Molecular weight between 250 and 550 Da.

• Polar Surface Area (PSA) between 50 and 150.

• Number of heavy atoms between 20 and 50.

• Number of rotatable bonds not bigger than 10.

FIGURE 6
Average score from one run for each method with a batch-size of 256 molecules per epoch during Lib-INVENT training (black: including
diversity filter, blue: score without diversity filter).
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• Number of hydrogen bond acceptors between 1 and 10.

• Number of hydrogen bond donors between 1 and 5.

Out of the filtered molecules, the 1,000 highest scoring

compounds have been extracted for each Lib-INVENT run.

For all 13,000 compounds combining all runs, the t-distributed

stochastic neighbor embedding (tSNE) was calculated to evaluate the

chemical distribution and diversity of the generated molecules

(Maaten and Hinton, 2008). The tSNE was computed as follows:

For all molecules, Morgan fingerprints with radius 2 were created by

RDKit (Rdkit, 2022). Then, a Principal Component Analysis (PCA)

was performed on them (Wold et al., 1987). The 50 most important

components from PCA were used in the tSNE algorithm to project

compounds into two dimensions where they can easily be plotted.

PCA and tSNE were both performed using scikit-learn (Pedregosa

et al., 2011). The same tSNE coordinates were used for all plots to

ensure that the position of a particular molecule in different plots is

preserved.

For the next step, the molecules were docked into the grid

created from 2BOH with the same parameters as in the scoring

function Glide-gscore. The MM/GBSA approach, as implemented

in Schrödinger/Prime was applied on the 250 structures with the

lowest docking score for each Lib-INVENT run (Greenidge et al.,

2013). The OPLS3e force field was employed and protein residues

within 3 Å around the ligand were treated as flexible in Prime. All

ligands with a computed free energy below the threshold

of −70 kcal/mol (10% above the energy of the reference ligand)

were then selected for further analyses.

In the last step, compounds with undesired substructures as

described above were removed (Baell and Holloway, 2010).

Specifically, the molecules should contain no more than one

hydroxy or primary amine group, no anilines or phenols, and no

aliphatic bonds between the heteroatoms N, S, andO. An internal

list of substructure filters was applied to eliminate molecules with

presumably non-druglike, reactive and toxic fragments. This list

is based on an internally reviewed collection of public domain

substructure filters, as exemplified in the following references

(Rishton, 1997; Baell and Holloway, 2010). The remaining

molecules passing the filters were projected into the former

tSNE embedding.

For molecules from REINVENT runs, the entire filtering

workflow remains identical.

3 Results and discussion

Two methods for generating molecules have been analyzed:

REINVENT and Lib-INVENT. Results are first described for Lib-

INVENT, where all the different scoring schemes have been

tested. Then, the two most promising scoring functions have

been applied to REINVENT with and without transfer learning.

In general, results about the performance of scoring functions

should be transferable between REINVENT and Lib-INVENT, as

the general reinforcement strategy for generative design remains

similar (Fialkova et al., 2021).

3.1 Lib-INVENT computations

3.1.1 Model performance
In order to investigate whether the optimization procedure

was successful, the average score during training was plotted for

each run (see Figure 6). In this context, the average score

corresponds to the score resulting from the respective scoring

function, i.e., the underlying methods are different for each run

and thus cannot be compared directly. In addition, gscore and

ligand_efficiency_sa describe absolute values, the other scores are

projected into a range between 0 and 1 (see Section 2.3.2).

Most of the training runs reached a plateau of the score

within 100 epochs. The learning success for the combined scores

Glide-RFXscore + QED and Glide-RFXscore + fXa is rather poor,

although both RFXscore and the fXa model show a good training

performance when used alone. This happens when the two scores

trained simultaneously are negatively correlated to each other, as

it is the case for RFXscore and QED (see Supplementary Figure

S3). This negative correlation is mediated by the polarity of the

molecules which is shown as the number of possible hydrogen

bonds (sum of H-bond-donors and H-bond-acceptors). Since the

protein pocket is quite polar, the RFXscore favors compounds

with a lot of these groups (around 8–11), whereas the definition

of the QED prefers lower numbers (around 4–7). The upper right

corner, where molecules are found for which both of the scores

are in the desired range, is not populated, so the model will not be

able to move here.

As can be seen in Supplementary Figure S4, all methods

maintain high ratios of valid and novel compounds (>90%) and a

sufficiently high ratio of unique compounds that ranges from

around 90% for the fXa model to around 50% for Glide-

ligand_efficiency_sa.

As the average score for the ensemble of generated molecules

does not necessarily correlate to the final quality of generated

molecules, we now took the ensembles and performed further

evaluation.

3.1.2 Generated molecules
As described in Section 2.4, the generated molecules were

filtered in a three-step process (see Figure 5). In the first step, the

scores from the generative runs were applied to select

1,000 compounds. Then, the MM/GBSA energy served as an

independent judge to compare the different engines. At last,

those molecules passing the MM/GBSA threshold were subjected

to a structural filter to remove undesired molecules. This

workflow represents a typical flow applied in a structure-based

drug design project. Therefore, this gives a reasonable judgement

about the quality and usefulness of molecules generated by the

different approaches.
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Figure 7 shows the Lib-INVENT yield in blue, i.e., the ratio of

unique compounds with a score >0.4 that are generated during the

training. It is highest for the fXa QSARmodel and the 3D similarity,

and lowest for Glide-RFXscore + QED. Glide-ROCS results in

higher yields than pure Glide, leading to the conclusion that it

might be easier for the engine to fill the pocket if the orientation of

the compound is already pre-determined by the 3D overlay. After

applying the physicochemical property filters (see Figure 7, red bars),

most molecules remain for the 3D similarity, Glide-ROCS-

ligand_efficiency_sa, and Glide-ROCS-RFXscore + QED, while

more than half of the molecules in scaffold memory are filtered

out for the fXa model, Glide(-ROCS)-gscore and Glide-RFXscore.

When the QED score is included into the scoring function (Glide-

RFXscore + QED, Glide-ROCS-RFXscore + QED), only very few

compounds are removed, which shows that the properties chosen as

druglikeness conditions are in good agreement with this estimate of

druglikeness.

To compare the quality of the compounds generated by the

different methods, the 1,000 highest scoring molecules after

filtering were extracted for each method as described above.

The tSNE plot of all 13,000 compounds (see Figure 8A)

shows that different scoring methods explore different regions of

chemical space, although there is substantial overlap. The

application of a free energy cutoff after MM/GBSA analysis

clearly reduces the number of molecules but does not

considerably reduce the compound diversity as obvious from

their broad distribution in the tSNE plot (Figure 8B).

After this step, most compounds remained for Glide-

RFXscore + fXa which combines the structure-based scoring

function with a pure ligand-based QSAR model (see Figure 9,

blue bars). The Glide-ROCS scores (gscore, ligand_efficiency_sa,

and RFXscore) produce a higher number of molecules with good

MM/GBSA scores than the corresponding Glide-only scores. The

pre-alignment facilitates the generation of molecules fitting the

binding site resulting in a better binding free energy. Combining

the RFXscore with QED results in a smaller number of remaining

compounds (independently of the application of ROCS pre-

alignment), while adding the fXa QSAR model increases the

number of compounds with good MM/GBSA energy.

After filtering undesirable structural motifs, the biggest number

of molecules remains for the combined score of RFXscore and

QSARmodel (see Figure 9, red bars). A large number of compounds

also remains for the pure fXa model and for the “normal” Glide-

FIGURE 7
Yield for Lib-INVENT runs with different scoring functions.
MedChem filters were applied on scaffold memory.

FIGURE 8
tSNE plots, color-coded according to the scoring function.
(A) all 1000 extracted molecules for each run, (B) molecules after
MM/GBSA, (C) finally selected molecules.
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gscore. RFXscore alone, however, produces only very few

compounds that pass all the filters. Most unwanted fragments

are found in the molecules generated with the ROCS pre-

alignment, which is mainly due to multiple polar groups like OH

or NH2. However, the ratio of accepted molecules increases when

applying RFXscore or even RFXscore + fXa instead of Glide-gscore.

Looking at the tSNE plot in Figure 8C, it can be seen that the

compounds that were created by the QSAR model are quite close

to the reference molecule. This is not a surprise as the scoring

function as well as the tSNE plot are based on 2D representations

of molecules. Compounds generated with the docking scores

Glide-gscore and RFXscore + fXa are much more diverse and less

similar to the original inhibitor. Interestingly, the results from the

Glide-ROCS runs, spread over nearly the whole chemical space,

although their number is comparably low.

In summary, the results show that the tailored structure-based

scoring function RFXscore together with a QSAR-model results in

themost promising structures which are also structurally different to

the reference compounds. Some examples for docking poses of

molecules generated with this scoring function are shown in

Supplementary Figure S5. A pure 2D-based QSAR model scoring

also results in a large number of acceptable molecules, however,

those molecules are very close analogs to the reference (as expected).

This also highlights that the average score discussed in the beginning

of this section does not necessarily correlate to the final quality of

molecules. Most importantly, the average score as a metric should

only indicate if there is a learning progress in the method.

As already stated in the introduction and goal setting, the

chosen approach of combining structure-based-scoring with Lib-

INVENT is mainly intended for lead optimization with focus on

R-group replacement, thus a rather focused search for new

molecules. Extension of these scoring schemes to other

generative engines such as REINVENT can offer ways to vary

molecules more broadly towards a lead finding scenario, which

will be evaluated in the next section.

3.2 REINVENT computations

To evaluate REINVENT as an example for lead generation,

we used the most promising scoring functions from the Lib-

INVENT runs to start REINVENT computations for

1,600 epochs. Based on the results of the last section, we

FIGURE 9
Number of molecules remaining after filtering by MM/GBSA
(blue + red) and unwanted fragments (red).

FIGURE 10
Training performance of REINVENT runs. Upper row: average (blue) and maximum (red) score, lower row: number of valid (black) and unique
(blue) generated molecules.
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chose RFXscore and RFXscore + fXa, as the RFXscore + fXa score

gave the best results and RFXscore gives a direct comparison

about the effect of including the fXa model. To access a potential

acceleration of the generation runs, we also explored a transfer-

learning pre-training using a model focused on 452 molecules

with a high 3D similarity to known fXa drugs. The generated

SMILES strings were stored every 10th epoch.

The plots of the average score during these runs (Figure 10,

upper row) show that convergence is reached after around

800 epochs without and 300 epochs with transfer learning at

an average score of over 0.8. This clearly demonstrates that the

generation runs can be accelerated very efficiently with transfer

learning pre-training. In the second row, the number of valid and

unique molecules is shown. A molecule is counted as unique if it

was not present in any former sample. From 128 generated

SMILES per epoch, the number of valid molecules never drops

below 100 for any of the runs. The number of unique molecules,

however, suddenly drops close to zero for the runs without

transfer learning when the score reaches its plateau. This

indicates that the optimization in these runs gets stuck in a

local minimum and generates the same high-scoring molecules

repeatedly. For the runs with transfer learning, the number of

unique molecules also decreases but much slower, so there are

still new compounds created in the final epochs. This might be

explained by the fact that the model is already focused by transfer

learning towards regions of chemical space where an exploitation

by docking scores finds different acceptable molecules, whereas a

model trained on a huge database consisting of very diverse

molecules only very rarely finds compounds with a good score,

which makes it easier to get stuck at one of them.

After applying MedChem filters, the 1,000 best-scoring

virtual hits were docked into the fXa binding pocket and

submitted to MM/GBSA like already described for Lib-

INVENT runs. Molecules with a score <−70 kcal/mol (plus

10% tolerance compared to the reference 2BOH

with −77.42 kcal/mol in this run) were kept for further

analysis. The blue bars in Figure 11 show the number of

compounds remaining after this step. The last bar (TL_only)

was created by just sampling 1,000 SMILES strings from the pre-

trained model and running them through the same filtering

workflow. The RL runs with pre-training from transfer

learning produce significantly more compounds with a good

MM/GBSA score than those without transfer learning. The

number of accepted compounds is even higher than that

obtained only by transfer learning. This illustrates that the

RL-optimization with the two scoring functions is able to

further optimize the focused transfer learning prior.

After that, the same structural filters as for the Lib-INVENT

runs were applied. The number of remaining molecules is

depicted in red in Figure 11. It is biggest for the TL_RFXscore

run with around 125 compounds. More molecules are removed

here for the run with the combined score of RFXscore and QSAR

model, but still more than 100 compounds remain. This is

slightly more than for the computation where SMILES were

just sampled from the pre-trained model. Here, only very few

compounds are removed in this step, probably because the model

was trained on a compound set that didn’t contain any unwanted

structural motifs.

When looking at the tSNE plot of the finally accepted

molecules (Figure 12), it can be stated that RFXscore and the

combined score RFXscore + fXa cover different regions of

chemical space, where the compounds generated including the

QSAR model are closer to the reference structure. The

structures from pure transfer learning populate small

islands around the reference inhibitor as well as at other

spots due to the presence of novel chemical series used for

transfer learning from ChEMBL.

The finding that different scoring functions cover different

regions of chemical space is supported by directly comparing the

generated molecules. The Venn diagram of the three transfer

learning runs shows only very small overlap between the

compound sets (see Supplementary Figure S6). The sets from

the two runs without transfer learning do not overlap at all,

neither to each other nor to one of the transfer learning runs.

These results show that the RFXscore scoring function is able

not only to generate promising new compounds in a lead

optimization scenario (Lib-INVENT), but it can also find

interesting molecules in a lead finding scenario without structural

restrictions (REINVENT). The convergence of the engine as well as

the number of acceptable output molecules can be improved by pre-

training and consecutive transfer learning.

FIGURE 11
Number of molecules after MM/GBSA (blue + red) and
structural filters (red).
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4 Conclusion

In the present study, we explored different 3D-structure based

scoring functions for generative de novo design methods and

compared the results to the baseline of 3D-similarity and QSAR-

model based scoring. We evaluated two different methods, the

REINVENT framework based on RNN-SMILES to sample the

entire chemical space and the Lib-INVENT framework for a

more focused exploration. As convergence was found to be slower

with REINVENT combined with significantly higher computational

demands, we focused the general comparison of scoring schemes on

Lib-INVENT first, where we envision the results to be transferable to

other generative AI-methods as well. This transferability is illustrated

by the REINVENT test runs with the most promising scoring

functions found in the Lib-INVENT study. Thus, the present

study can be of potential value for structure-based AI-de novo design.

In summary, a large number of molecules accepted in the last

step originates from the ligand-based scoring function

(i.e., QSAR-model). However, this result appears to be quite

obvious as the ligand-based scoring delivers more similar

molecules and thus stays close to the reference structure. This

approach is therefore very valuable in a focused lead optimization

scenario where only close analogs are desired.

If the main goal is lead optimization with more diverse

molecules, i.e., varying R-groups, or replacement of parts of

the molecule, the structure-based scoring schemes together

with Lib-INVENT deliver very promising results. The most

compounds passing all filters are obtained when docking

poses are scored using the RFXscore method in combination

with the QSAR-activity model for the target. As this combination

has shown to be quite effective, this might suggest an avenue for

combining 3D with 2D scoring schemes for generation.

In a lead finding scenario, which we conducted using

REINVENT, RFXscore alone resulted in more acceptable

compounds than the combination of RFXscore and QSAR,

but the number of molecules was in general very low and the

computations very slow. In order to improve the results with

respect to quality and computational performance, we

recommend using transfer-learning with a model pre-trained

from a diverse set of starting structures with high 3D similarity to

known inhibitors. This transfer learning step not only sped up

the calculation significantly (less than half epochs needed until

convergence), but also increased the number of acceptable

compounds at the end of the filtering process. As can be seen

in Figure 12, RFXscore alone results in more diverse and

potentially novel compounds while the combined score

performs a more local exploration, which allows to tune the

generation into the desired direction.

In summary, structure-based scoring indeed delivers novel

and high-scoring molecules. Those are close analogs to known

FIGURE 12
tSNE plot of the final molecules for each REINVENT run, color-coded according to the scoring function.
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inhibitors as well as more diverse compounds. The combination

of docking scores with other metrics is quite effective to bias the

generation of novel and relevant structures into desired chemical

space. Furthermore, the combination with a transfer learning

step allows to accelerate and improve the results significantly.
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