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Il1rl1 (also known as ST2) is a member of the IL-1 superfamily, and its only known ligand 
is IL-33. ST2 exists in two forms as splice variants: a soluble form (sST2), which acts as 
a decoy receptor, sequesters free IL-33, and does not signal, and a membrane-bound 
form (ST2), which activates the MyD88/NF-κB signaling pathway to enhance mast cell, 
Th2, regulatory T cell (Treg), and innate lymphoid cell type 2 functions. sST2 levels are 
increased in patients with active inflammatory bowel disease, acute cardiac and small 
bowel transplant allograft rejection, colon and gastric cancers, gut mucosal damage 
during viral infection, pulmonary disease, heart disease, and graft-versus-host disease. 
Recently, sST2 has been shown to be secreted by intestinal pro-inflammatory T cells 
during gut inflammation; on the contrary, protective ST2-expressing Tregs are decreased, 
implicating that ST2/IL-33 signaling may play an important role in intestinal disease. This 
review will focus on what is known on its signaling during various inflammatory disease 
states and highlight potential avenues to intervene in ST2/IL-33 signaling as treatment 
options.
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iNTRODUCTiON

In 1989, the Il1rl1 gene product, which has also been given the alias ST2 and defined as the IL-33 
receptor, as it binds to IL-33, was discovered (1, 2). It belongs to the IL-1-receptor superfamily. The 
literature has been misnaming ST2 as “suppressor of tumorigenicity 2,” when in fact the original 
name was “growth stimulation expressed gene 2” (2) and has recently been renamed by the original 
discoverer, Shin-ichi Tominaga, as “serum stimulation-2” (3), as it was first discovered to function 
as a mediator of type 2 inflammatory responses (4). IL1RL1 is located on chromosome 2q12.1 in 
humans, while the gene “suppressor of tumorigenicity 2,” also called ST2, is located on chromosome 
11p14.3-p12 in humans. In this review, we will call ST2 as the IL-33 receptor or Ilr1rl gene product.

ST2 has two main splice variants due to differential promoter binding: a membrane-bound form 
(ST2), which promotes NF-κB signaling, and a soluble form (sST2), which prevents its signaling. 
It was not until 2005 that the ligand for ST2, the cytokine IL-33, was identified through database 
searching for genes homologous to other IL-1 superfamily members (5, 6). IL-33 has been identified 
as a mediator of various inflammatory diseases such as asthma, cardiovascular diseases, and allergic 
diseases (6). Besides being secreted, IL-33 can be found in the nucleus of human high endothelial 
venules (7), lung airway epithelium, keratinocytes, fibroblastic reticular cells, and some epithelial 
cells of the stomach and salivary glands (8). Due to the presence of a N-terminal domain nuclear 
localization sequence and a homeodomain-like helix-turn-helix motif, IL-33 is able to bind hetero-
chromatin, potentially giving IL-33 transcriptional regulatory capacity (7).
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FigURe 1 | Different promoter usage dictates ST2 and sST2 expressions. ST2 consists of two main splice isoforms: ST2 and sST2. These isoforms are 
splice variants of each other regulated by alternative promoter bindings, the distal promoter for ST2, and the proximal promoter for sST2. Exon 1 varies between 
ST2 and sST2 depending on the promoter being bound. In immune cells, GATA1, GATA2, and PU.1 have been shown to bind to the distal promoter. The proximal 
promoter has not been well studied; it is thought that a PMA-responsive element induced sST2 transcription (37).
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Dysregulation of ST2/IL-33 signaling and sST2 production 
have been implicated in a variety of inflammatory diseases such 
as cardiac disease (9–12), inflammatory bowel disease (IBD) 
(13–16), graft-versus-host disease (GVHD) (17–24), small bowel 
transplant rejection (25), and type 2 diabetes (26–29). The pur-
pose of this review is to highlight the function of both ST2 and 
sST2, ST2/IL-33 in regard to different immune cells, and sST2 
production and ST2 signaling in inflammatory diseases.

TwO MAiN iSOFORMS OF ST2: 
SeCReTeD AND MeMBRANe BOUND ON 
iMMUNe CeLLS wiTH OPPOSiTe ROLeS

The ST2 gene is located on human chromosome 2q12.1 and is 
approximately 40  kb long. Homologs of ST2 are found in the 
genomes of mouse, rat, and fruit fly. ST2 has four splice isoforms 
from a single transcript dependent on the promoter being used: 
ST2, a membrane receptor; sST2, a soluble factor; ST2V, a variant 
form of ST2; and ST2LV, another variant form of ST2, which are 
differentially regulated through alternative promoter binding 
(30–32). Little is known about ST2V other than it is expressed 
highly in gastrointestinal organs (33). ST2LV lacks the transmem-
brane domain found in ST2; is secreted by eye, heart, lung, and 
liver tissues; and is found during later stages of embryogenesis 
(34). Other information on ST2LV is currently lacking.

By cloning the Il1rl1 gene in rat and sequencing sST2 and ST2 
cDNAs, it was found that sST2 and ST2 have different exon 1 
sequences (30). Mapping the promoter regions for Il1rl1 showed 
that the transcription start site for sST2 is in a proximal promoter 
region while the transcription start site for ST2 is in a distal pro-
moter region, 15 kb upstream from the sST2 proximal promoter 
(30) (Figure 1). Three to four GATA transcription factors have 
been identified at the distal promoter region within 1,001 bp, two 
of which were conserved between human and mouse Il1rl1 genes 
(32, 35). These GATA elements binding to the distal promoter 
lead to ST2 expression. The transcription factor PU.1 also binds 
to the distal promoter near the GATA elements in both human 
mast cells and basophils (36). PU.1 and GATA2 cooperatively 
transactivate the distal ST2 promoter inducing expression of 
ST2, but not sST2 (36). Loss of PU.1 significantly decreased ST2 

expression (36). Conversely, a PMA-responsive element has 
been found near the proximal promoter region of ST2 in the 
mouse fibroblast line NIH 3T3 (37). Similarly, activated human 
fibroblast line TM12, which only uses the proximal promoter 
for Il1rl1 transcription, led to sST2 expression (32). These data 
further suggest that the distal promoter is used to transcribe ST2 
and the proximal promoter is used to transcribe sST2. To verify 
these results and find other transcription factors important in 
ST2 and sST2 expressions, ChIP-seq experiments should be 
performed.

ST2
ST2 was first found in serum-stimulated BALB/c-3T3 cells 
in the presence of cycloheximide (38). It contains an extracel-
lular domain, which binds IL-33 with the help of IL-1 receptor 
accessory protein (IL-1RAP), a transmembrane domain, and an 
intercellular domain called a Toll/interleukin-1 receptor (TIR) 
domain. Due to the presence of the TIR domain, ST2 has been 
classified as a member of the IL-1 receptor superfamily. ST2 is 
expressed on cardiomyocytes (39) and a large variety of immune 
cells, including T conventional cells, particularly type 2 (40), 
regulatory T cells (Tregs) (41), innate helper 2 cells [innate lym-
phoid cell type 2 (ILC2)] (42), M2 polarized macrophages (43), 
mast cells (44), eosinophils (45), basophils (46), neutrophils (46), 
NK (47), and iNKT cells (47). Signaling through ST2 in immune 
cells induces type 2 and Treg immune responses, IgE production, 
and eosinophilia (5, 40–42, 48).

sST2
sST2 protein lacks the transmembrane and cytoplasmic domains 
contained on ST2 and contains a unique nine amino acid 
C-terminal sequence (35). In vitro, sST2 production has been 
shown to be enhanced by pro-inflammatory cytokines (IL-1β and 
TNF-α) in human lung epithelial cells and cardiac myocytes. In 
humans, sST2 can be not only produced spontaneously by cells 
in the lung, kidney, heart, and small intestine (49) but also pro-
duced after activation with IL-33 in mast cells (50) or anti-CD3/
anti-CD28 in both CD4 and CD8 conventional T cells (51). In a 
murine GVHD model, it has recently been shown that intestinal 
Th17 and Tc17 cells produced large amounts of sST2 following 
alloreactivity (51). This enhanced sST2 presence has been shown 
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FigURe 2 | ST2/iL-33 signaling pathway. IL-33 either binds to the ST2/IL-1 receptor accessory protein (IL-1RAP) heterodimer, recruiting MyD88 to its 
intracellular domain, or the sST2 decoy receptor, which does not signal. MyD88 binding recruits IL-1R-associated kinase (IRAK) and TRAF6, leading to either the 
NF-κB or AP-1 pathway being activated. NF-κB and AP-1 activations promote inflammatory cytokine expressions. On regulatory T cells (Tregs), ST2/IL-33 signaling 
has been shown to promote Foxp3 and GATA3 expressions, while also promoting Treg function and expansion through enhancing TGF-β1-mediated differentiation 
though a p38-dependent mechanism. It has recently been shown that IFN regulatory factor (IRF) 1, which can be activated through MyD88 signaling, can inhibit 
Tregs by binding to the Foxp3 promoter and preventing Foxp3 transcription.
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to inhibit the production of the type 2 cytokines IL-4 and IL-5 but 
not the type 1 cytokine IFN-γ (52).

ST2/iL-33 SigNALiNg

The Membrane-Bound Form of  
ST2 Signals through MyD88/NF-κB
Upon IL-33 binding, the membrane-anchored ST2 forms 
a heterodimer along with IL-1RAP (53, 54) leading to the 
dimerization of the TIR domain. This leads to the recruitment 
of the TIR domain binding protein MyD88 and subsequent 
IL-1R-associated kinase activation, which can activate MAP 
kinases and NF-κB pathways (Figure  2) (5, 6). In regards to 
ST2/IL-33 signaling, how ST2/IL-33 signals specifically to 
either the MAPK or NF-κB is currently unclear. However, 
downstream events of ST2 do seem to occur differentially, as 
TRAF6 is required for NF-κB activation and induction of type 
2 cytokines but TRAF6 is not needed for IL-33-induced ERK 
(a MAPK protein) activation (55). How TRAF6-independent 
activation of ERK occurs after IL-33 binding ST2 is currently 
unknown.

A recent report has shown that signaling through ST2/IL-33 
in colonic Tregs helps to promote Foxp3 and GATA3 expressions 
while also promoting Treg function through enhancing TGF-
β1-mediated differentiation (41). This enhancement is caused 
by phosphorylation of GATA3, which recruits more GATA3 and 
RNA polymerase II to the Foxp3 promoter (41). GATA3 binds to 
the ST2 promoter, enhancing ST2 on the surface of both Th2 cells 
(56, 57) and Tregs (41, 57). IL-33 has been shown to drive NF-κB 
and p38 signaling in Tregs, leading to the selective expansion 
of ST2+ Tregs (58). As this effect is observed in Tregs in a non-
diseased setting, independent of outside inflammatory responses, 
we believe that the ST2/IL-33-GATA3-Foxp3 pathway to be 
canonical. Conversely, in a non-canonical MyD88-dependent 
pathway (59), IFN regulatory factor (IRF) 1 signaling can inhibit 
Tregs by binding to the Foxp3 promoter and preventing Foxp3 
transcription in murine T cells (60); however, this signaling lead-
ing to IRF1 activation through MyD88 has only been shown to be 
induced using CpG-B, a TLR9 agonist and a pathway independ-
ent from ST2/IL-33 (59). Whether ST2/IL-33 can activate IRF1 in 
a MyD88-dependent pathway and whether this ST2/IL-33-IRF1 
activation can affect Treg function are currently unknown. We 
have highlighted the different ST2 signaling pathways in Figure 2.
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Unlike IL-1RAP, the single immunoglobulin domain 
IL-1R-related molecule (SIGIRR or TIR8) SIGIRR can form a 
complex with ST2 upon IL-33 stimulation and can inhibit ST2/
IL-33-mediated signaling both in vitro and in vivo (6, 61). IL-33 
binding to ST2 has also been shown to negatively regulate ST2 
through ST2 polyubiquitination, internalization, and degrada-
tion (62).

The Soluble Form, (s)ST2, is a Decoy 
Receptor and Does Not Signal
sST2 acts as a decoy receptor to sequester free IL-33, prevent-
ing ST2/IL-33 signaling. This was shown using a thymoma cell 
line transfected to express ST2, but not sST2, in the presence of 
added IL-33. When these thymoma cells were pretreated with 
sST2, they showed suppressed NF-κB activity (63). Another 
group used IL-33-treated cardiomyocytes and observed blocked 
prohypertrophic effects of angiotensin II or phenylephrines in the 
presence of sST2 (64). Blocking NF-κB signaling in lung alveolar 
epithelial cells and cardiac myocytes with the specific NF-κB 
inhibitor CAPE prevented sST2 production by these cells (49). 
In a human endotoxin model, healthy donors injected with LPS 
(2 ng/kg) had increased sST2 in their plasma within 24 h of injec-
tion (49). Fibroblast growth factor 2 enhanced sST2 production 
in the human breast adenocarcinoma cell line MCF-7 through 
MEK/ERK signaling (65). Lysophosphatidic acid has also been 
shown to increase sST2 production by human bronchial epithelial 
cells in an NF-κB- or JNK-dependent manner (66). Enhanced 
sST2 plasma circulation has been correlated with pulmonary 
fibrosis (67), acute myocardial infarction (39), subclinical brain 
injury and stroke (68), celiac disease (69), gastric cancer (70), 
HBV-related acute-on-chronic liver failure (71), HIV progression 
(72), and GVHD (17–24).

iL-33 Regulation and Release
During cell stress or damage, IL-33 is released in either a full 
length or a cleaved form. Unlike IL-1β, however, IL-33 is not 
cleaved via caspase-1, and cleavage is not necessary for secretion 
nor biological activity of released IL-33, further suggesting its 
role as an alarmin (73, 74). Surprisingly, caspase-1, caspase-3, or 
caspase-7 processing actually leads to IL-33 inactivation (75, 76). 
Inactivation of IL-33 via caspases is therefore thought to alleviate 
the immune response, rather than enhance it. Other proteins are 
able to cleave IL-33, such as the neutrophil serine proteases cath-
epsin G and elastase, mast cell-derived serine proteases, tryptase, 
and chymase, and these proteins, unlike caspases, increase the 
biological activity of cleaved IL-33 10–30 times compared to that 
of full-length IL-33 (74, 77, 78).

IL-33 is expressed mainly by non-hematopoietic cells, includ-
ing endothelial cells, adipocytes, fibroblasts, and intestinal and 
bronchial epithelial cells (8, 79, 80); however, some hematopoietic 
cells like dendritic cells (DCs) have also been show to express IL-33  
when activated (5). In many non-hematopoietic tissues, IL-33 
is constitutively expressed. Constitutive expression of IL-33 in  
epithelial cells suggests that IL-33 is used as an alarmin in 
response to infection or injury (8). Further suggesting IL-33 as 
an alarmin, IL-33 is released by damaged or necrotic cells (8), 

leading to activation of the immune system through ST2/IL-33 
signaling (8, 81).

IL-33 can be found in the nucleus due to a nuclear localization 
sequence in the N-terminus, leading to binding of heterochroma-
tin in the nucleus (7). Nuclear IL-33 can bind directly to NF-κB, 
sequestering it and preventing NF-κB signaling in HEK293RI 
cells, causing a downregulation of pro-inflammatory signaling 
(82). Further evidence of IL-33 having the ability to repress gene 
transcription is described because there is a structural similar-
ity between a part of the IL-33 protein and the Kaposi sarcoma 
herpes virus motif latency-associated nuclear antigen (82). This 
mimicry allows IL-33 to bind to the H2A–H2B chromatin dimer 
and regulate the compaction of chromatin through nucleosome–
nucleosome interactions. Recent discoveries have shown that 
nuclear IL-33 can bind to multiple sites in the promoter regions 
of ST2 in human endothelial cells and that knockdown of IL-33 
increased sST2 levels (83). Loss of the nuclear localization domain 
of IL-33 led to non-resolving lethal inflammation (84). However, 
IL-33−/− mice fail to develop autoimmune disease, and no one has 
shown whether nuclear IL-33 has been found in immune cells. 
These results indicate that nuclear IL-33 could act as a moderator 
of inflammation, but more evidence is needed to confirm the 
extent of the ability of nuclear IL-33 to moderate inflammation.

ST2/iL-33 AND iMMUNe CeLLS

ST2 Signaling on Lymphoid Cells
Th2 Cells
ST2 was first shown both in vitro and ex vivo to be preferentially 
expressed on murine Th2 cells (Figure  3; Table  1) expressing 
predominantly IL-4, IL-5, or IL-10, but not IFN-γ or IL-2 (40, 85).  
Its expression is independent of IL-4, IL-5, and IL-10, as loss of 
any of these cytokines does not affect ST2 expression on Th2 
cells (40). ST2 expression on Th2 cells is dependent on GATA3 
signaling (86) and is enhanced by IL-6, IL-1, TNF-α, and IL-5 (4). 
Given that ST2 expression in Th2 cells is independent of IL-4 and 
dependent on GATA3 signaling, it makes sense that ST2 expres-
sion occurs late during Th2 differentiation (4). IL-33 stimulation 
of Th2 cells in vitro increased the amount of IL-5 and IL-13 pro-
duced (5). Antigen-specific ST2+ Th2 cells were shown to produce 
more IL-5 and IL-13 compared to non-antigen-specific Th cells 
and ST2−/− Th2 cells (87). Interestingly, IL-33 polarization of 
antigen-stimulated murine and human naïve CD4+ T cells leads 
to high IL-5 production but no IL-4 production, independent 
of GATA3 and STAT6 induction but dependent on MAPK and 
NF-κB signaling (88, 89). Adoptive transfer of these cells into 
naïve IL-4−/− mice still triggered airway inflammation (88). In 
vivo administration of IL-33 led to an increase in the number 
of lymphocytes circulating in the blood and increased type 2 
cytokine secretions in the thymus, spleen, liver, and lung (5). 
IL-33 has also been shown to be a chemoattractant for Th2 cells, 
as adoptive transfer of Th2 cells into ST2 knockout (KO) followed 
by IL-33 administration into the footpad of these mice led to the 
accumulation of the transferred Th2 cells (90). Loss of ST2 on Th2 
during infection with the helminthic parasite Nippostrongylus 
brasiliensis did not affect Th2-mediated clearance of the infection 
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FigURe 3 | iL-33 signaling on immune cells. Tissue damage and mechanical stress to epithelial, endothelial, and stromal cells lead to the release of IL-33 from 
these cells. IL-33 then signals through many different immune cells, enhancing their function.
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nor was recruitment of Th2 cells in a murine model of asthma 
dependent on ST2, indicating that ST2 is not necessary for Th2 
function (91). Recently, it was shown that human and murine Th2 
cells do not produce sST2 in vitro (51).

Th9 Cells
IL-9-producing Th9 cells are the newest T  cell subset to be 
described, polarized through TGF-β and IL-4 signaling (92, 93).  
When used separately on naïve T cells, TGF-β alone would cause 
Treg development, while IL-4 would induce Th2 cell differen-
tiation. It has been found that the PU.1 gene is a Th9-specific 
transcription factor, which could induce IL-9 production in cells 
under Th2- or Th9-stimulating condition in vitro (94). Human 
or mouse PU.1-deficient T  cells have diminished IL-9 produc-
tion. Furthermore, IRF4 binds directly to the IL-9 promoter and 
is required for the development of Th9 cells, just like PU.1 (95). 
However, unlike PU.1, IRF4 is also required for the development 
of other Th cell subsets, including Th2 and Th17 cells (96, 97). 
Studies have shown that Th9 cells primarily secrete IL-9 to medi-
ate the immune response in several diseases, such as asthma, 
autoimmune diseases, and parasitic infections (98), and IL-9 is 

associated with impaired Th1 immune response in patients with 
tuberculosis (99). Treatment of in vitro polarized human Th2 cells 
with TGF-β and IL-33 increases their IL-9 and ST2 expressions 
(100, 101).

Regulatory T Cells
ST2/IL-33 signaling in Tregs was first suggested to enhance their 
protective ability in an experimental colitis model in which IL-33 
treatment ameliorated colonic tissue injury and colitis symptoms 
(41). IL-33 was shown to increase both ST2 and Foxp3 levels and 
expand Tregs in mice with colitis. ST2/IL-33 signaling in Tregs 
has also been shown to increase Treg frequency and decrease 
IL-17 and IFN-γ productions in an experimental autoimmune 
encephalomyelitis (EAE) model (102, 103). ST2+ Treg expansion 
is helped by IL-33 signaling in DCs, as IL-33 has been shown 
to stimulate DC production of IL-2, which selectively expands 
ST2+ Tregs (104). In a model of GVHD, treatment of mice daily 
with IL-33 from 10 days pretransplantation to day 4 posttrans-
plantation enhanced the frequency of ST2+ Tregs, which per-
sisted after irradiation, leading to disease amelioration through 
prevention of T conventional cell accumulation in target GVHD  

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 1 | ST2 and sST2 expressions and their regulation in immune cells.

Cell type ST2 ST2 regulation sST2 sST2 regulation Reference

Mast cell + Constitutively expressed + Strongly induced by IL-33 and 
weakly by Ag or SCF

(44, 50, 
137–139)

Basophil + Induced by IL-3 stimulation + Released after IL-3 stimulation (46, 145)

Eosinophil + Weakly constitutively expressed but strongly induced after IL-33 
stimulation

? (45)

Th2 + Constitutively expressed and enhanced by IL-6, IL-1, TNF-α, and IL-5 − (40, 51, 85)

Th1 − + Released after CD3 stimulation or 
alloactivation

(51)

Th17 − + Released after CD3 stimulation or 
alloactivation

(51)

Regulatory T cell 
(Treg)

+ Constitutively expressed only on Tregs expressing GATA3; enhanced by 
IL-33

− (41, 58)

Th9 + Constitutively expressed and enhanced by IL-33 ? (100, 101)

Innate lymphoid cell 
type 2

+ Constitutively expressed and enhanced by IL-33 − (42, 109)

Dendritic cell + Weakly constitutively expressed but strong induction after rapamycin 
treatment

? (134, 149)

Neutrophil + Weakly constitutively expressed ? (46, 153)

Macrophage + Weakly constitutively expressed but enhanced by IL-4 and IL-13 + Constitutively expressed (43, 134)

B1 B cell + Constitutively expressed ? (128)

iNKT cell + Constitutively expressed ? (47, 130)

NK cell + Constitutively expressed ? (47, 130)

Tc1 T cell + Weakly constitutively expressed + Released after CD3 stimulation or 
alloactivation

(51, 123, 124)

Tc17 T cell − +++ Released after CD3 stimulation or 
alloactivation

(51)

+, expressed; −, not expressed; ?, unknown; Ag, antigen; SCF, stem cell factor; ST2, serum stimulation-2; sST2, soluble serum stimulation-2.
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organs (58). Treatment of mice receiving a heart transplant with IL-33 
has been shown to prolong graft survival through increase of 
Treg and myeloid suppressor-derived cell numbers (105, 106). 
Similarly, mice treated with IL-33 after skin transplantation had 
increased Treg numbers in the graft, decreased IFN-γ and IL-17 
production, increased IL-10 production, and increased skin graft 
survival (107). This group also showed that ST2/IL-33 signaling 
can convert Foxp3− CD4 cells into Foxp3+ CD4 Tregs in the 
periphery. We have shown that in a murine model of allogeneic 
hematopoietic stem cell transplantation (allo-HCT), transplant-
ing ST2 KO Tregs with wild-type (WT) T conventional cells 
worsens GVHD compared to mice receiving WT T conventional 
cells and Tregs (51), further indicating the enhanced suppres-
sive effect of ST2+ Tregs. Conversely to the enhanced protective 
effect of Tregs through ST2/IL-33, it has been reported that IRF1 
is downstream of MyD88 (108) and negatively regulates Foxp3 
transcription (60, 108), although whether ST2/IL-33 signaling 
increases IRF1 expression, leading to decreased Treg function, 
has yet to be studied. Given that ST2/IL-33 has been shown to 
enhance, rather than impair Treg function, upregulation of IRF1 
through MyD88 signaling is probably independent of ST2/IL-33. 
These data show that IL-33 signaling on Tregs increases their 
immunomodulatory function and could be further studied for 
their potential clinical benefits in a variety of diseases.

Innate Lymphoid Cells Type 2
Innate lymphoid cells type 2 were first discovered in the mouse 
and human mesenteries and found to be lineage marker negative, 
c-Kit positive, Sca-1 positive, IL-7Rα positive, and ST2 positive 

(42, 109). These cells have been shown to play a protective role 
against helminth infection and regulate metabolic homeostasis 
(110). In humans ST2+, ILC2s were later found in the lung and 
gut (111), and these ILC2s produced IL-5 and IL-13. During ILC2 
activation, ST2 is upregulated in a GATA3- and Gfi1-dependent 
manner (112, 113). Treatment of Rag2 KO mice with IL-33 
induced IL-5 and IL-13 production, whereas Rag2 and common 
gamma chain double KOs, which still have mast cells and basophils 
(both of which express ST2 and secrete type 2 cytokines), did not 
increase IL-5 or IL-13 production, indicating that this increase 
is due to ILC2 stimulation with IL-33 (42). ST2/IL-33 signaling 
enhancement was shown to expand ILC2s in  vivo (42, 114).  
This group also found that ILC2s are major producers of type 2 
cytokines after Nippostrongylus brasiliensis infection. It was also 
shown using the N. brasiliensis infection model that loss of both 
IL-33 and IL-25 signaling on ILC2s completely abrogated the 
early response against this infection due to impaired expansion of 
ILC2s and lack of IL-13 production, and adoptive transfer of WT 
ILC2s rescued this phenotype (42). During lung inflammation, 
ILC2s produce IL-9 (115), and IL-33 can promote cytokine pro-
duction by ILC2s (116). Recently, it was shown that in a murine 
eosinophilic airway inflammation model that T-bet regulates IL-9 
production by IL-33-stimulated ILC2s (117). ST2/IL-33 signaling 
in ILC2s is also important for protection against lung infection, 
as blocking ST2 signaling during influenza infection in mice 
lowered ILC2 frequency and number in the lung and resulted 
in diminished lung function, loss of airway epithelial integrity, 
and impaired respiratory tissue remodeling (118). Histological 
examination of influenza-infected lungs from anti-ST2-treated 
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mice showed severe damage similar to that seen in a similar 
experiment where ILC2s were depleted (118). ILC2s have been 
recently reported to home to the skin in humans, where activation 
induces upregulation of ST2 (116). ST2/IL-33 signaling of ILC2s 
in the murine skin has been shown to not only promote atopic 
dermatitis (AD)-like inflammation (116, 119) but also promote 
skin wound repair (120). However, overstimulation of ILC2s with 
IL-33 during tissue remodeling of the liver after chemical injury 
promoted liver fibrosis (121). Also, signaling through ST2/IL-33 
on ILC2s during breast cancer has been shown to promote breast 
cancer growth and metastasis (122). These data indicate that ben-
eficial or harmful ST2/IL-33 stimulation in ILC2s is dependent 
on certain disease states.

CD8 T Cells
CD8 T cells have been shown to either express ST2 or produce 
sST2 (51, 123, 124). Although CD8 T cells express low levels of 
ST2, loss of either IL-33 or ST2 impaired the CD8 T cell response 
to LCMV infection (124). ST2/IL-33 signaling has also been 
shown to enhance CD8 T cell antitumor activity (125). During 
GVHD, however, IL-33 treatment during peak inflammation 
significantly increased GVHD severity and mortality in part 
through increased expansion of Tc1 cells (126). Given that IL-33 
can increase type 1 responses when IL-12 levels are high (127), 
IL-33 treatment during peak inflammation was deleterious in 
this case.

B Cells
ST2 has been shown to be expressed on B1 B  cells but not B2 
B cells, leading to enhanced proliferation capacity and IgM, IL-5, 
and IL-13 productions both in vitro and in vivo; neutralizing IL-5 
almost completely abolished this effect (128). Recent studies have 
also shown that IL-33 treatment in mice increases circulating 
IL-10-producing B cells that are neither conventional B1 nor B2 
B  cells (129). Adoptive transfer of these IL-33-treated, IL-10-
producing B cells prevented spontaneous colitis in IL-10−/− mice 
without affecting Treg frequency (129).

iNKT Cells and NK Cells
ST2/IL-33 signaling in murine iNKT cells causes their expansion 
and activation (130). Mice treated with IL-33 had twice as many 
iNKT cells in the spleen and liver compared to untreated mice 
(130). Unexpectedly, ST2 signaling in iNKT cells induced IFN-γ 
instead of IL-4 upon TCR engagement, which synergized in the 
presence of IL-12 (47, 130). This effect was also seen in Vα24+ 
human iNKT cells (47). NK cells constitutively express ST2, and 
ST2/IL-33 signaling increases IFN-γ levels synergistically with 
IL-12 (47, 130). Loss of ST2 in Ly49H+ NK cells did not affect 
their development but did impair their ability to expand and 
protect against MCMV (131). These data have yet to translate to 
human disease.

sST2 expression in Lymphoid Cells
Th1 and Th17 Cells
Although much of the research on ST2/IL-33 signaling in T 
conventional cells has been devoted to type 2 signaling, recent 

studies have come out looking at ST2/IL-33 signaling in type 
1- and type 17-mediated diseases. Blockade of IL-33 with 
200 µg anti-IL-33 every other day from day 0 until day 18 post-
MOG35–55 injection during MOG-induced EAE ameliorated the 
disease in part through decreased IL-17 and IFN-γ produc-
tions, and treatment of 50 µg/kg IL-33 during this same time 
course enhanced IL-17 and IFN-γ productions (102). However, 
the amount of IL-33 given here is not physiological, so caution 
must be advised when interpreting these data. Conversely, 
another group using the same EAE model found that treatment 
with 1 µg IL-33 daily from day 12 to day 20 after immuniza-
tion reduced IL-17 and IFN-γ productions and alleviated the 
disease (103). Seemingly, timing of ST2/IL-33 signaling affects 
response, perhaps through differing environments. In a murine 
model of collagen-induced arthritis, treatment with anti-ST2 
antibody reduced both IFN-γ and IL-17 productions (132). 
In a murine model of rheumatoid arthritis, treatment with 
an sST2-Fc fusion protein attenuated disease and decreased 
production of IFN-γ, TNF-α, and IL-6 (133). Recently, we 
were the first to show that both murine and human Th1 and 
Th17  cells produce sST2 in  vitro and in  vivo after allo-HCT 
(51). Blocking ST2 with a blocking antibody in vivo decreased 
sST2 production in intestinal T  cells 10  days after allo-HCT 
while maintaining ST2. Recipients of ST2−/− T cells, compared 
to WT T cells, showed lower frequencies of T cells expressing 
the Th1 transcription factor T-bet and the Th17 transcrip-
tion factor RORγt and their associated cytokines IFN-γ and 
IL-17, respectively, while increasing the expressions of the Th2 
transcription factor GATA3 and the Treg transcription factor 
Foxp3 and their associated cytokines IL-4 and IL-10, respec-
tively (51). Importantly, anti-ST2 treatment did not lead to loss 
of immunomodulatory ST2+ Tregs but rather maintained them 
in the intestine. On the basis of our findings, we have suggested 
that increased sST2 production affects the normal balance of 
pathogenic Th1/Th17 cells and immunomodulatory Th2/Treg 
cells by promoting the Th1/Th17 response and dampening 
the ST2-mediated Th2/Treg response through sequestering  
IL-33 (51).

Tc1 and Tc17 Cells
We were also the first to demonstrate that CD8 T cells, particularly 
Tc1 and Tc17 cells but not Tc2 cells, produce significant amounts 
of sST2 in  vitro and after allo-HCT due to alloreactivity (51). 
sST2 secretion by donor T cells significantly increased as GVHD 
progressed. Similar to CD4 T cells, blocking ST2 with a block-
ing antibody decreased sST2 production by Tc1 and Tc17 cells 
in vivo after allo-HCT (51). Our data indicate that sST2 secre-
tion by Tc1 and Tc17 cells sequester free IL-33, preventing ST2/
IL-33-mediated Th2/Treg responses. In patients with early HIV 
infection, sST2 levels were strongly correlated with CD8 T cell 
count and their expressions of the activation markers HLA-DR 
and CD38 (72). However, it is not known if sST2 was produced 
from the CD8 T cells themselves or if sST2 is only a marker of gut 
damage and disease progression. While our study was the first to 
show that preventing sST2 secretion from CD8 T cells prevented 
disease pathogenesis, further studies are warranted to determine 
their role in other disease pathogeneses.
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Myeloid Cells
Macrophages
Macrophages, mast cells, basophils, eosinophils, and DCs all 
have been shown to express ST2 (43–46, 134). IL-33 amplifies 
the expression of M2 markers on murine macrophages (43, 135).  
Bone-derived human macrophages have been shown to con-
stitutively express both ST2 and sST2; however, skewing these 
macrophages toward an M2 phenotype using IL-4 and IL-13 
increased the expression of ST2 while not affecting sST2 expres-
sion (136). ST2/IL-33 signaling has been shown to enhance the 
activation of macrophages by upregulating the LPS receptor 
components TLR4 and MD2, soluble CD14, and MyD88 (135).

Mast Cells
ST2/IL-33 signaling on both murine and human mast cells has 
been shown to promote their survival through upregulation of 
B-cell lymphoma-X large in the peritoneum (137). ST2/IL-33 
signaling also promotes mast cell activation and maturation, as 
IL-33 treatment of CD34+ mast cell precursors accelerated their 
maturation in vitro and induced GM-CSF, IL-5, IL-13, CXCL8, 
CCL17, CCL22, and CCL2 secretions (138, 139). These cytokine 
and chemokine secretions may be NFAT and AP-1 signaling 
dependent (140). It is well documented that mast cells can pro-
duce a variety of type 2 cytokines after ST2 signaling (141–143); 
however, ST2/IL-33 signaling on mast cells during airway inflam-
mation has also been shown to promote a Th17 response (144).

Basophils and Eosinophils
ST2/IL-33 signaling promotes not only type 2 cytokine secre-
tions such as IL-4 and IL-13 but also IL-8 in synergy with IL-3 
or Fcε receptor activation on basophils (145). Basophils can also 
release sST2 after activation via IL-3 and C5a or anti-FcεRIα 
antibody, while IL-33 prevents sST2 release (145). IL-33 induces 
the degranulation of eosinophils and production of superoxide 
(45); controls their responsiveness to Siglec 8 (146); and increases 
IL-13, TGF-β, CCL3, CCL17, and CCL24 in the lungs during 
airway inflammation (147). Treatment with anti-ST2 antibodies 
prevented the upregulation of CD11b and decreased survival of 
eosinophils (148).

Dendritic Cells
Dendritic cells express low basal levels of ST2 on their cell 
surfaces (134); however, activation of DCs with rapamycin 
strongly upregulates ST2 through autocrine IL-1β signaling 
(149). Treatment of DCs with IL-33 has been shown to increase 
surface levels of MHC-II, CD40, CD80, CD86, OX40L, and CCR7 
(134, 150, 151). ST2/IL-33 signaling in DCs also increases their 
productions of IL-4, IL-5, IL-13, CCL17, TNF-α, and IL-1β (150). 
In the presence of naïve CD4+ T cells, IL-33-activated DCs induce 
IL-5 and IL-13 but not IL-4 and IFN-γ from the T cells (134, 151). 
Interestingly, sST2 has also been shown to be internalized by DCs, 
suggesting a non-canonical method of action for sST2 (152). It is 
currently unknown whether sST2 can be internalized by other 
immune cells. IL-33-activated murine DCs have recently been 
shown to be required for in vitro and in vivo expansion of ST2+ 
Tregs through DC IL-2 production (104), which could be used 
for therapeutic benefit against inflammatory diseases through 

expansion of Tregs both in vitro and in vivo. ST2 expression on 
host hematopoietic cells, including DCs, and non-hematopoietic 
cells was not implicated in the severity of GVHD as recipient ST2 
KO bone marrow chimeras did not modify GVHD severity (51).

Neutrophils
While ST2 has been shown to be present on neutrophils (46, 153), 
not much is known about the role of ST2 on neutrophils. It has 
been shown that IL-33-treated murine and human neutrophils 
do not downregulate CXCR2 induced by the activation of TLR4 
through the inhibition of GRK2 (153). IL-33 injected into the 
ears of mice induced neutrophil recruitment to the skin (154); 
however, it is not clear if ST2/IL-33 signaling on the neutrophils 
directly led to their migration.

ST2/iL-33 iN iNFLAMMATORY DiSeASeS

gastrointestinal Diseases
Inflammatory Bowel Disease
It is believed that IBD starts with a dysregulated immune 
response to either food or commensal gut bacteria, leading to 
the production of pro-inflammatory cytokines such as TNF-α, 
IL-6, IL-1, and IL-8. Expression of these cytokines along with 
chemokine release leads to attraction of T cells, specifically type 1 
T cells, to the intestines. Continual damage of the gut mucosa by 
these type 1 cells and other immune cells such as macrophages, 
neutrophils, and DCs leads to the release of various alarmins and 
other proteins. sST2 was found to be significantly increased in 
both the gut mucosa and the serum in both patients and experi-
mental models of IBD (13–16). However, in IBD patients, ST2 
expression remained similar to that of healthy patients (13). In 
the lamina propria of active ulcerative colitis (UC) patients, ST2 
predominately came from CD11b+ and CD4+ cells (14). These 
findings suggest that increased sST2 production by lymphocytes 
or the gut mucosa could either lead to development of IBD, 
particularly UC, or that these proteins are markers for disease 
severity.

ST2/IL-33 signaling has been shown to enhance epithelial 
proliferation and mucus production in the gut (5), suggesting that 
the increase in IL-33 in the colonic mucosa in active UC could be 
beneficial. However, in multiple mouse models of IBD, use of ST2 
KO mice led to amelioration of IBD compared to WT controls. 
These results were verified using an IL-33 KO. Using bone marrow 
chimeras, it was shown that ST2 signaling in non-hematopoietic 
cells was responsible for IBD. This was due to ST2/IL-33 signaling 
impairing epithelial barrier function and delayed wound healing. 
Lack of ST2 signaling in hematopoietic cells did not prevent UC 
development. A ST2 blocking antibody confirmed the findings 
from the KO experiments (155). Crohn’s disease (CD), however, 
shows opposite results from UC. In a trinitrobenzene sulfonic 
acid-induced IBD model, which mimics the pathology of human 
CD, administration of recombinant IL-33 (rIL-33) into mice 
ameliorated colonic tissue injury and clinical symptoms (156). 
Protection was shown to be through upregulation of type 2 
cytokines, Foxp3+ Tregs, and CD103 DCs, which promote Treg 
development. In patient colons with active IBD, Treg levels in 
the lamina propria are increased compared to healthy controls 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 4 | Pathogenesis of graft-versus-host disease (gvHD). The gut and other issues are damaged during irradiation or chemotherapy, leading to the 
release of various DAMPs, PAMPs, and cytokines, including IL-33. These DAMPs, PAMPs, and cytokines activate both host and donor antigen-presenting cells 
(APCs), which then activate the donor T cells. The APCs are also secreting various cytokines that promotes T cell differentiation toward type 1 and type 17 
responses. These activated type 1 and type 17 T cells are able to secrete various pro-inflammatory cytokines, leading to apoptosis of healthy tissue, mainly in the 
gut, liver, and skin, which can be exacerbated by free IL-33. Furthermore, sST2 is produced by both type 1 and type 17 T cells, and while this may sequester free 
IL-33 from the type 1 and type 17 T cells, sST2 can also prevent the potential beneficial effects from ST2/IL-33 signaling in Th2 cells, Tregs, and lymphoid cell type 2 
(ILC2s).

9

Griesenauer and Paczesny ST2/IL-33 in Immune Cells during Inflammatory Diseases

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 475

and function normally (157, 158). It has recently been shown 
that colonic Tregs preferentially express ST2 and that signaling 
through ST2/IL-33 promotes both Treg accumulation and main-
tenance in the intestine and enhances their protective function 
(41). However, treatment with rIL-33 to promote Treg-mediated 
protection may be time dependent, as rIL-33 treatment at onset 
of a DSS-induced colitis model exacerbated disease severity. 
rIL-33 treatment during recovery or chronic phases ameliorated 
DSS-induced colitis (159). Given these data, selective treatment 
of ST2+ Tregs with IL-33 could provide therapeutic benefits.

Graft-versus-Host Disease
Graft-versus-host disease is a common occurrence in patients 
who undergo allo-HCT as treatment for both malignant and non-
malignant diseases of the blood and bone marrow. The patho-
genesis of GVHD has been well documented and is now thought 
to occur in three steps: (1) activation of antigen-presenting cells 
caused by tissue damage from the conditioning regimen leading 
to the release of pro-inflammatory cytokines and danger signals, 
(2) alloactivation of donor T cells leading to their proliferation 
and differentiation into type 1 and type 17 T cells, and (3) tissue 
destruction by alloreactive T  cells through release of cytolytic 
molecules leading to donor cell apoptosis, mainly in the mucosal 
tissues (160). Discovering prognostic and diagnostic biomarkers 
for GVHD has been successful with sST2 being one of the most 
validated to date (17–24). Blocking sST2 with a blocking antibody 
during the peritransplant period decreased GVHD morbidity 
and mortality in both minor histocompatibility and human-
ized murine models (Figure  4). Importantly, the ST2-blocking 

antibody, which inhibits the full length of ST2 and not specifically 
sST2, maintained protective ST2-expressing T cells while also not 
impairing the graft-versus-leukemia activity (51), suggesting that 
addition of anti-ST2 or a ST2 small molecule inhibitor could show 
efficacy in reducing GVHD-related morbidity and mortality in 
patients. Using IL-33 as a treatment seems to be time dependent, 
as injections with IL-33 during the peak inflammatory response 
in a murine model led to increased morbidity and mortality in 
mice due to increased migration and increased pro-inflammatory 
cytokine production (126). IL-33 treatment preconditioning, 
however, increased the number of ST2+ Tregs, which persisted 
after irradiation in a murine model. This led to decreased GVHD 
severity and mortality. Adoptive transfer of ST2+ versus ST2− 
Tregs showed that GVHD protection is increased by ST2+ and not 
ST2− Tregs (58). Given that IL-33 is pleiotropic, IL-33 treatment 
for GVHD seems to be dependent on both timing and the state 
of inflammation present.

Other Gut Diseases
ST2/IL-33 signaling has been implicated in protection from vari-
ous infections, which could impact the gut. Studies have shown 
that treatment of mice with rIL-33 led to epithelial cell hyperplasia 
in the gut along with infiltration of eosinophils and mononuclear 
cells in the lamina propria (42, 161). These effects are thought 
to be mediated by IL-13, which becomes overexpressed after 
IL-33 treatment (5). Treatment of mice with IL-33 after Trichuris 
muris infection increased parasite clearance through increased 
Th2 cytokine response (161). Other infections that can impact 
the gut, including Toxoplasma gondii (162), Leptospira (163), 
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and Pseudomonas aeruginosa (164), have shown that the loss of 
ST2 or high sST2 levels led to higher morbidity and mortality 
with increased Th1 cytokine profiles. Recent studies have shown 
that gut epithelial barrier dysfunction and immune activation 
independently predict mortality during treated HIV infection 
(165). A later study showed that patients during the early stage 
of HIV infection, defined as being within 180 days of the date 
of infection, had higher levels of sST2 in their plasma and was 
highly correlated with CD8 T cell count and levels of gut mucosal 
damage, but not with viral load or CD4 T cell count (72).

sST2 increase has also been implicated during small bowel 
transplant rejection (25). Patients who had rejection of small 
bowel transplants had higher serum levels of sST2 during rejec-
tion compared to that during rejection-free time points and that 
rejection increased allograft ST2 expression. An increase in sST2 
in the allograft was predicted by Pathway and Network Analysis 
caused by TNF-α and IL-1β signaling (25). However, these data 
do not implicate sST2 as a mediator of disease but rather a bio-
marker of occurring transplant rejection.

Lung Diseases
Asthma and Allergy
Asthma is characterized by varying levels of airway hyper-
responsiveness, mucus secretion, bronchoconstriction, and 
chronic inflammation, affecting 300 million people worldwide 
(166). ST2/IL-33 signaling in mast cells, ILC2s, eosinophils, 
basophils, Th2, and Th9 cells drive allergic asthma (141–143, 
147, 167–170). Activating ST2 signaling in bone marrow-derived 
mast cells and basophils in  vitro shows strong type 2 cytokine 
production, including IL-4 and IL-13 (171). Treatment of mice 
with IL-33 alone induced airway hyperresponsiveness and goblet 
cell hyperplasia through IL-4, IL-5, and IL-13 induction in the 
lungs (172). RAG2−/− mice treated with IL-33 also induce this 
phenotype, implicating the importance of the innate immune 
system in generating airway inflammation (171). IL-33 has also 
been shown to be a chemoattractant for Th2 cells, as injection 
of IL-33 into the footpad of ST2−/− mice, which were adoptively 
transferred with WT polarized Th2 cells led to local accumulation 
of the transferred Th2 cells (90). After ovalbumin (OVA)-induced 
acute allergic lung inflammation, levels of IL-33, ST2, and sST2 
are significantly increased in the lung (172). While activation 
of the innate immune system in part through ST2/IL-33 sign-
aling establishes airway inflammation, ST2+ T  cells maintain 
this inflammation. Indeed, injecting mice with a ST2 blocking 
antibody during the resolution phase after OVA-induced allergic 
inflammation, when Th2 cells but not eosinophils are present in 
the lung, reduced airway hyperresponsiveness and mucus produc-
tion (173). Loss of both IL-4 and IL-5 during OVA-induced airway 
inflammation did not abolish airway hyperreactivity, which was 
abolished only after anti-CD4 treatment (174), suggesting that 
ST2/IL-33 signaling in CD4 T cells may be critical for efficient 
antigen-induced airway inflammation (175). Blockade of either 
IL-33 or addition of sST2 before OVA-induced allergic airway 
inflammation showed reduced total cell counts and eosinophil 
counts in the bronchoalveolar lavage fluid and decreased IL-4, 
IL-5, and IL-13 (40, 52, 176).

Non-Allergic Lung Disease
During idiopathic pulmonary fibrosis, patients with stable 
disease versus healthy controls had similar levels of serum sST2; 
however, during exacerbations of fibrosis, there was over a sixfold 
increase in serum sST2 in the exacerbation group compared to 
both healthy controls and stable disease groups, which correlated 
with measurements of inflammation (67). Patients with acute 
respiratory distress syndrome had significantly higher sST2 
levels at day 0, which were associated with worse prognosis and 
mortality (177). Serum levels of sST2 were also increased in 
patients with chronic obstructive pulmonary disease compared 
to control patients (178). Patients with moderate or severe H1N1 
influenza infection also had significantly increased serum sST2 
compared to patients with mild H1N1 infection or rhinovirus 
infection (179). Idiopathic pneumonia syndrome (IPS) occurs 
in 5–10% of patients who undergo allo-HCT. In a cohort of 42 
patients with IPS without infection, sST2 was significantly higher 
in the serum of patients with IPS compared to healthy controls 
and patients with human rhinovirus and parainfluenza occurring 
at approximately the same time after transplantation (180).

Skin Diseases
Atopic Dermatitis
Atopic dermatitis is a Th2-driven disease and patients with AD 
show higher IgE levels and eosinophilia in the skin and blood 
(181). ST2/IL-33 signaling has been recently implicated in AD, 
as transgenic mice expressing IL-33 under the keratin 14 pro-
moter had spontaneous AD-like inflammation (119). This led to 
increased IL-5 producing ILC2s. Mice receiving topically applied 
OVA, house dust mites, or staphylococcal enterotoxin B led to 
upregulation of both sST2 and IL-33 expressions (182). Patients 
with AD have higher IL-33 expression levels in their skin lesions 
compared to healthy controls (182). However, in a small cohort 
of 71 adults and 61 children with AD, serum sST2 levels were 
not significantly elevated compared to adult controls, in contrast 
to sST2 expression in patient skin lesions (182, 183). Currently, 
phase I–II clinical trials are being conducted using novel anti-
IL-33 antibodies.

Psoriasis and Vitiligo
Unlike AD, psoriasis is driven by Th1 and Th17 cytokines (184). 
However, psoriatic skin still shows increased IL-33 expression 
compared to healthy skin in patients (154). ST2−/− mice had 
reduced cutaneous inflammatory responses compared to WT 
mice in a phorbol ester-induced murine model of psoriasis (154).

Patients with vitiligo are characterized by the disappearance 
of their melanocytes. In lesions of patients with vitiligo, both 
ST2 and IL-33 levels were increased, and serum levels of IL-33 
were increased (185). As ST2 signaling in psoriasis and vitiligo is 
relatively new, not much else has been published as of yet.

Scleroderma and Chronic GVHD
Scleroderma is characterized by the fibrosis and hardening of the 
skin and connective tissues, measured by the modified Rodnan 
skin score (MRSS) test (186). In a two cohort study, serum sST2 
levels were increased in patients with scleroderma compared to 
healthy controls, which, when combined with Spondin-1, best 
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described longitudinal change in MRSS, using mixed linear 
models (187). This was validated using three other independent 
cohorts (187).

Chronic GVHD can affect multiple organs, with skin involve-
ment being one of the most common. In a large study of chronic 
GVHD, plasma samples were collected from patients at day +100 
post-allo-HCT. A four-biomarker panel, which included sST2, 
correlated strongly with chronic GVHD diagnosis, severity, and 
non-relapse mortality (21).

Cardiac Diseases
sST2 was found to be upregulated after mechanically stimulating 
cardiomyocytes and stimulating with IL-1β (39). Inducing myo-
cardial infarction via coronary artery ligation increased sST2 in 
the serum of mice compared to unoperated controls (39). This 
observation was also seen in patients, as those who suffered myo-
cardial infarction had elevated serum sST2 levels 1 day postevent 
(39). In a cohort of over 800 patients with acute ST-elevation 
myocardial infarction, sST2 levels 1  day postevent correlated 
with 30-day mortality independent of age, blood pressure, heart 
rate, infarct territory, and time from symptom onset to treatment 
(11). sST2 levels of patients with non-ischemic congestive heart 
failure at time of entry to the study also correlated with both 
brain natriuretic peptide levels (BNP), which is routinely used 
in the clinic and serum noradrenaline levels (12). This study also 
found that changes in serum sST2 were an independent predictor 
of mortality. sST2 levels are correlated with impaired epicardial 
coronary flow and risk of death or congestive heart failure within 
30 days of presentation, independent of BNP (188). These data 
show the value of sST2 as a biomarker in cardiac diseases.

Functional analysis of ST2/IL-33 signaling and sST2 produc-
tion has shown that treatment of cultured rat neonatal cardio-
myocytes with rIL-33 blocked angiotensin II or phenylephrine 
induced hypertrophy, while addition of sST2 or blocking of ST2 
with an antibody reversed this effect (64). When using ST2−/− or 
WT mice to look at in vivo response to pressure overload by trans-
verse aortic constriction, ST2−/− mice had more left ventricular 
(LV) hypertrophy, more chamber dilation, reduced fractional 
shortening, more fibrosis, and impaired survival compared with 
WT mice (64). Treatment of WT mice with rIL-33 reduced 
fibrosis and hypertrophy and increased survival in WT mice (64). 
This reduction in damage when treating with IL-33 may be due to 
inhibited apoptosis in cardiomyocytes (189).

In an atherosclerosis model in which mice deficient for the 
ApoE protein fed a high-fat diet, treatment with rIL-33 reduced 
aortic atherosclerotic plaque development and increased levels of 
type 2 cytokines in the serum (190), which have an atheroprotec-
tive effect. Mice treated with sST2 developed significantly larger 
atherosclerotic plaques (190). These data indicate that ST2/IL-33 
signaling may have a protective effect, while sST2 plays a deleteri-
ous role in cardiac diseases.

Obesity and Metabolic Complications
Accumulation of visceral adipose tissue (VAT) due to obesity 
leads to inflammation, insulin resistance, and development of 
type 2 diabetes (191), leading to the reduction and function of 

Tregs in the VAT (192), which have been shown to be enriched for 
ST2 expression (193, 194). IL-33 is critical for the development 
and maintenance of these VAT Tregs (194). In vitro culturing of 
murine adipocytes with IL-33 induced IL-5 and IL-13 production, 
decreased expression of genes associated with adipogenesis and 
lipid metabolism, and reduced lipid storage (195). ST2−/− mice 
fed a high-fat diet had increased body weight and fat mass and 
impaired glucose regulation and insulin secretion compared to 
high-fat diet WT controls (195). IL-33 treatment to genetically 
obese diabetic mice led to reduced adiposity, lower fasting glu-
cose levels, improved glucose and insulin tolerance, accumula-
tion of Th2 cells and M2 macrophages in their adipose tissue, and 
increased the proportion of ST2+ Tregs in the VAT (193, 195). 
However, ST2/IL-33 signaling may only help obesity-related 
insulin resistance. An age-associated insulin resistance model 
showed that fat-resident Treg depletion protected against insulin 
resistance, and these findings were confirmed using an anti-ST2 
antibody (196).

ST2 and IL-33 are produced by white adipose tissue and in 
preadipocyte and adipocyte cell cultures in humans (79), while 
sST2 expression has been shown to be increased in omental and 
subcutaneous human adipose tissues (197). In a large, population-
based study, sST2 levels in the plasma of patients strongly correlated 
with markers of diabetes, after adjusting for age and gender (28). 
In another study separating 525 patients into normal, prediabetic, 
and diabetic groups, plasma sST2 levels were only significantly 
increased in the diabetic group compared to prediabetic and 
normal groups (29). In a multicenter, cross-sectional study of 
180 patients with metabolic syndrome with normal LV ejection 
fraction, LV mass index was independently associated with serum 
sST2 concentrations. Increased sST2 associated with increased 
likelihood of LV hypertrophy and increased systolic blood pressure 
(198). New-onset posttransplantation diabetes mellitus (PTDM) 
is a common occurrence after allo-HCT. Serum sST2 levels from 
three cohorts collected at engraftment and day 30 showed elevated 
sST2 levels at both time points and that high sST2 levels predicted 
PTDM and non-relapse mortality, independent of conditioning 
and high-grade GVHD (27). These data suggest that high sST2 
levels correlate with obesity and type 2 diabetes and metabolic 
complications even when sST2 is already elevated by alloreactivity.

POTeNTiAL THeRAPeUTiC BeNeFiT  
OF TARgeTiNg ST2/iL-33 SigNALiNg

The clinical usefulness of targeting either sST2 excess of secretion 
or ST2/IL-33 excess signaling or use of sST2 as a biomarker for 
diseases has been a hot topic in the last few years, as shown by the 
increase in translational studies devoted to ST2/IL-33 and sST2. 
Manipulation of ST2/IL-33 signaling or blocking sST2 secretion 
or sequestration of IL-33 is highly disease dependent. Several new 
antibodies that inhibit IL-33 binding to ST2 are currently being 
tested in phase I–II clinical trials for patients with asthma and 
chronic obstructive pulmonary disease. Using either an antibody 
or small molecule inhibitor is an attractive option for therapeutics 
targeting sST2 in CD, GVHD, or heart disease, while ideally 
maintaining ST2. However, given the involvement of ST2/IL-33 
in a multitude of processes, caution must be afforded.
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sST2 usefulness as a clinical biomarker has been studied  
extensively in both cardiac and allo-HCT patients, showing 
both prognostic and diagnostic value (11, 12, 17–24, 27, 39, 
187, 188). sST2 levels are also increased in patients suffer-
ing from intestinal (13–16) and metabolic diseases (27, 28,  
197, 198); however, the data from these studies so far are correla-
tive and have not passed the qualification for biomarkers that can 
be used in clinic (199).

CONCLUSiON

ST2/IL-33 signaling in immune cells has recently become a hot 
target of study. This signaling helps to activate T cells, ILC2s, DCs, 
B cells, mast cells, basophils, eosinophils, and other immune cells. 
Most of the work has shown that ST2/IL-33 signaling enhances 
the type 2 response, although recent studies have shown how ST2/
IL-33 signaling enhances the immunomodulatory effects of Tregs. 
T cells have also been recently shown to produce sST2, which was 
once thought to be produced only by non-hematopoietic cells. 
ST2/IL-33 signaling in Tregs, ILC2s, and IL-10-producing B cells 
protects against inflammation, while sST2 can act either as a bio-
marker or can play a role in a variety of diseases by sequestering 
IL-33 and preventing ST2/IL-33 signaling. However, ST2/IL-33 

signaling can also lead to progression of various lung and skin 
diseases such as asthma and AD. Given the complexity between 
ST2/IL-33 signaling and timing during the immune response and 
the importance of ST2/IL-33 in various organ systems, several 
questions and challenges remain. When does ST2/IL-33 signaling 
affect Treg response more so than the inflammatory response in 
various diseases? Which mediators can enhance ST2 expression 
on immunomodulatory cells? Which mediators can reduce or 
promote sST2 production during disease? A better understand-
ing of the impact of ST2/IL-33 and sST2 during disease and how 
ST2 and sST2 targeting could affect different organ systems will 
be critical for the development of therapeutics.
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