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   Abstract: Background: The amino acid residues, in protein, undergo post-translation modification 
(PTM) during protein synthesis, a process of chemical and physical change in an amino acid that in turn 
alters behavioral properties of proteins. Tyrosine sulfation is a ubiquitous posttranslational modification 
which is known to be associated with regulation of various biological functions and pathological process-
es. Thus its identification is necessary to understand its mechanism. Experimental determination through 
site-directed mutagenesis and high throughput mass spectrometry is a costly and time taking process, 
thus, the reliable computational model is required for identification of sulfotyrosine sites.  
Methodology: In this paper, we present a computational model for the prediction of the sulfotyrosine 
sites named iSulfoTyr-PseAAC in which feature vectors are constructed using statistical moments of 
protein amino acid sequences and various position/composition relative features. These features are 
incorporated into PseAAC. The model is validated by jackknife, cross-validation, self-consistency and 
independent testing.  
Results: Accuracy determined through validation was 93.93% for jackknife test, 95.16% for cross-
validation, 94.3% for self-consistency and 94.3% for independent testing.  
Conclusion: The proposed model has better performance as compared to the existing predictors, however, 
the accuracy can be improved further, in future, due to increasing number of sulfotyrosine sites in proteins. 
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1. INTRODUCTION 

 Proteins are the diverse macromolecules in living organ-
isms and have an important role in all biological develop-
ment of organisms [1]. Proteins, as an enzyme, boost chemi-
cal reaction within a cell and produce movement, broadcast 
nerve force and increase muscle growth. These proteins are 
comprised of amino acid residues, joined by a peptide bond 
to make a polypeptide chain in protein. The amino acid resi-
dues, in protein, undergo post-translation modification 
(PTM) during protein synthesis, a process of chemical and 
physical change in an amino acid that in turn alters 
behavioural properties of proteins [2, 3]. The process of pro-
tein synthesis starts from the nucleus where ribonucleic acid 
(RNA) copies code for specific proteins from Deoxyribonu-
cleic acid (DNA) then messenger ribonucleic acid(mRNA) 
takes the copy to protein-making factory namely ribosome in 
the cytoplasm. The ribosome with transfer ribonucleic acid 
(tRNA) continues to add a correct sequence of amino acid 
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till it receives ending codon from mRNA thus making the 
protein ready to function. PTM could occur during or after 
protein synthesis to enhance proteomics range, control cell 
action and to use the same proteins for various cell functions 
[4, 5].  

 Tyrosine sulfation is a ubiquitious posttranslation 
modificaiton which is known to be associated with the 
regulation of various biological functions including protien-
protein interactions, transportation modulation, and the 
proteolysis [6, 7]. Besides all this, the tyrosine sulfaction is 
linked with various pathalogical processes includng HIV 
infection, atheroscielerosis, and numerous lung diseases [4, 5, 
8]. This depicts the dire need of idnetifying the mechanism 
of tyrosine sulfation which cannot be understood without the 
identification of tyrosine sulfation sites [6, 9, 10]. Thus, 
identification of tyrosine sulfation sites is of great 
importance. Although, the sites can be identified through 
various experimetnal techniques including site directed 
mutagenesis and high throughput mass spectrometery, 
however, all these techniques are laborius, time taking and 
costly. Therfore, the identification of sulfotyrosine sites 
through computaitonal predictors is one of the most optimal 
approaches and for this purpose, various researchers have 
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propsed different methods previously for the identification of 
sulfotyrosine site. Also, the use of computaitonal predictors 
for the identification of sulfotyrosine sites can help process 
large scale proteomic data as well. Computational predictors 
using the neural network and statistical moments for feature 
extraction has been developed and used previously. In the 
last few years, many studies have been reported by the pre-
vious investigators in the field of bioinformatics and compu-
tational biology, which help in identifying the function and 
characteristics of proteins [3, 10-25]. Besides these, various 
papers have been reported targeting the prediction of PTM 
[3, 11-16, 18-62]. 

 Yu and coworkers [63] used position specific scoring 
matrix (PSSM) to predict the sulfotyrosine sites in proteins. 
Later on, Sulfinator [64] named predictor was proposed by 
Monigatti and coworkers to identify sulfotyrosine sites using 
hidden markov models and sequence alignment information. 
A further improvement in sulfotyrosine predictors was 
observed with the development of SulfoSite [65], by 
incorporating acessible surface area and prositional weighted 
matrix for the prediction of tyrosine sulfation sites. Niu and 
coworkers [66] proposed another predictor for sulfotyrosine 
sites based on sequence and amino acid level information. In 
2012, PredSulSite [67] was prposed by Huang et al. which 
incorported various features such as secondary strucutre 
inforamtion, physiochemcial characteristics and residue 
postion information. Various models were trained while SVM 
outperforemd the counterparts. Later on, in 2014, another 
SVM based method named SulfoTyrP [68] was propsoed by 
Jia et al. which is supposed to be the most accurate method for 
prediction of sulfotyrosine to date. Although, these predictors 
have been propsoed for sulfotyrosine sites, still there are 
limitations in the accuracy of prediction.  
 Herein, we propose a computational model named iSul-
foTyr-PseAAC for the prediction of Sulfotyrosine sites in 
proteins. The dataset used in this model is experimentally 
verified and updated. The feature vectors are constructed 
using statistical moments of protein amino acid sequences 
and various position/composition relative features. These 
features are incorporated into PseAAC [69]. The whole pro-
cess is carried out by the aid of Chou’s 5-step rule [70] 
which are followed by current studies [12, 27, 28, 52, 71-
77]. As demonstrated by a series of recent publications [12, 
14, 17, 18, 20, 23, 49, 57, 59, 73, 78-94] and summarized in 
two comprehensive review papers [69, 95], to develop a real-
ly useful predictor for a biological system, one needs to fol-
low Chou’s 5-step rule to go through the following five 
steps: (1) select or construct a valid benchmark dataset to 
train and test the predictor; (2) represent the samples with an 
effective formulation that can truly reflect their intrinsic cor-
relation with the target to be predicted; (3) introduce or de-
velop a powerful algorithm to conduct the prediction; (4) 
properly perform cross-validation tests to objectively evalu-
ate the anticipated prediction accuracy; (5) establish a user-
friendly web-server for the predictor that is accessible to the 
public. Papers presented for developing a new sequence-
analyzing method or statistical predictor by observing the 
guidelines of Chou’s 5-step rules have the following notable 
merits: (1) crystal clear in logic development, (2) completely 
transparent in operation, (3) easily to repeat the reported re-

sults by other investigators, (4) with high potential in stimu-
lating other sequence-analyzing methods, and (5) very con-
venient to be used by the majority of experimental scientists. 

2. MATERIALS AND METHODS 

 This section elaborates the first three phases of Chou’s 5-
step rule. Fig. (1) explains that at first stage raw data with the 
standard format is collected from online protein database 
known as UniProt. Raw data undergoes the process of filtra-
tion at the second stage. The filtration process removes du-
plicated data and extracts sequences which are most suitable 
for sulfotyrosine. After the process of filtration, features are 
extracted of selected sequences. At the last stage filtered data 
are used for training purpose then the trained neural network 
is tested with different dataset. 

2.1. Dataset Collection 

 The data used for the prediction of sulfotyrosine sites was 
taken from the UniProt Protein database. The UniProt data-
base is verified and contains complete features of all pro-
teins. Dataset was downloaded in the XML format, which 
was processed to extract sequences along accession number. 
For purposed technique Data of two types, i.e. positive and 
negative type was gathered from the UniProt. Preprocessing 
was performed on both sets of data to remove any duplica-
tion. The data have only alphabetic sequences. The positive 
dataset contained all the sequences which have experimental 
evidence of sulfotyrosine sites. The positive dataset con-
tained those protein sequences which were explained with 
the field PTM/Processing. Dataset quality was enhanced by 
removing proteins which were not reviewed. On both sides 
of tyrosine (Y), 20 amino acid residues were selected. 
 Taking into account Chou’s scheme [70], a protein con-
taining tyrosine site can be expressed as: 

ρρρρρ +−+++−−−−− ΜΜΜΜΜΜΜΜ=ΒΚ )1(2112)1()(  Y           (1) 

 Amino acid code Y is the targeted tyrosine residue in this 
equation, the character ρ is an integer, ρ−Μ  represent ρ -

th upstream amino acid residue from the centre, ρ+Μ  repre-
sents ρ +th downstream amino acid residue from the centre.

)12( +ρ  a tuple can be illustrated in 2 types: 
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 The following condition )(Y+Κν  holds if the centre is 

sulfotyrosine site, it is not true than )(Y−Κν holds. Set theory 
represents Ԑ symbol as “a member of”. 

 Testing and training dataset is developed for the 
statistical prediction model. The model is trained using train-
ing dataset then tested using testing dataset. The matter is 
extensively illustrated in [32], explaining that there is no 
compelling reason to isolate a benchmark dataset into two 
subsets if jackknife and cross-validation tests are used for 
testing prediction model because result acquired in the way 
is from a combination of many different independent dataset 
results. In this research paper, the ideal value of ρ  for test 
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is 20, meanwhile, the dataset has )12( +ρ =41 residues. 
Considering all, the dataset was minimized to 

−+ Τ∪Τ=Τ                                                                        (3) 

 In the equation +Τ  hold 200 positive sample, −Τ  holds 
420 negative sample and ∪  represents “union of two set”. 
In total 200+420 = 620 samples are included in benchmark 
dataset (Supplementary information S1). 

2.2. Feature Vector Construction 

 With the explosive growth of biological sequences in the 
post-genomic era, one of the most important but also most 
difficult problems in computational biology is how to ex-
press a biological sequence with a discrete model or a vector, 
yet still keep considerable sequence-order information or key 
pattern characteristic. This is because all the existing ma-
chine-learning algorithms (such as “Optimization” algorithm 
[96], “Covariance Discriminant” or “CD” algorithm [97, 98], 
“Nearest Neighbor” or “NN” algorithm [99], and “Support 
Vector Machine” or “SVM” algorithm [99, 100] can only 
handle vectors as elaborated in a comprehensive review [56]. 
However, a vector defined in a discrete model may com-
pletely lose all the sequence-pattern information. To avoid 
completely losing the sequence-pattern information for pro-
teins, the pseudo amino acid composition [97] or PseAAC 
[101] was proposed. Ever since the concept of Chou’s Pse-
AAC was proposed, it has been widely used in nearly all the 
areas of computational proteomics [102-112] as well as a 
long list of references cited in [113]. Because it has been 
widely and increasingly used, four powerful open access 
soft-wares, called ‘PseAAC’ [114], ‘PseAAC-Builder’ [115], 
‘propy’ [116], and ‘PseAAC-General’ [117], were estab-
lished: the former three are for generating various modes of 
Chou’s special PseAAC [118]; while the 4th one for those of 
Chou’s general PseAAC, including not only all the special 
modes of feature vectors for proteins but also the higher lev-
el feature vectors such as “Functional Domain” mode (see 
Eqs. 9, 10 of [69]), “Gene Ontology” mode (see Eqs. 11, 12 
of [69]), and “Sequential Evolution” or “PSSM” mode (see 
Eqs. 13, 14 of [69]). Encouraged by the successes of using 
PseAAC to deal with protein/peptide sequences, the concept 
of PseKNC (Pseudo K-tuple Nucleotide Composition) [119] 
was developed for generating various feature vectors for 
DNA/RNA sequences [120-122] that have proved very use-
ful as well. Particularly, recently a very powerful web-server 
called ‘Pse-in-One’ [123] and its updated version ‘Pse-in-
One2.0’ [124] have been established that can be used to gen-
erate any desired feature vectors for protein/peptide and 
DNA/RNA sequences according to the need of users’ stud-
ies. 

 For the help in feature vector construction, Chou’s com-
putational model sample formation was implemented. A fea-
ture is a numerical and computable property of Protein rep-
resented as n-dimension by the vector. A feature vector 
represents multiple properties relevant to protein sequence. 
For studying the properties of the protein, construction of 
feature vector holds the primary position. An array of the 
amino acids is utilized to develop a feature vector that in-
creases the probability of site prediction in protein. Proteins’ 
performance is determined by amino acid location and little 
change in location modifies protein qualities. Feature vector 
sequences represented by feature vector is broadly utilized in 
predicting different structural characteristic [27, 28, 49, 53, 
57, 85, 87, 125-127].  

2.2.1. Site Vicinity Vector 

 Many elements make some sites in protein sensitive to 
post-translational modification. Most elements are environ-
mental while neighbouring resides in peptide chain makes 
sites more sensitive to modification [35]. Supposing xζ  to be 
PTM site, then neighbouring resides is represented as: 

{ }nxxxxxxT ζζζζζζζζ ……… ,,,,,, 321121 +++−−=               (4) 

 Substructure in a primary sequence which contains pos-
sible sites and its neighbour help in making site vicinity vec-
tor such as, 

rxxxxxxrx +++−−− ζζζζζζζ ……… ,,,,, 2112                              (5) 

 In this equation, r is an integer chosen through testing 
and experiments. In feature vector, site vicinity vector form 
sections that are awarded various numerical value replacing 
every residue position. Only 20 amino acids are important 
for protein synthesis and for calculating feature vector, every 
amino acid is given special integral value. If the values are 
changed, sections are allocated regularly and it doesn't make 
a difference which number is assigned to which amino acid. 

2.2.2. Statistical Moments 

 The numerical quantity that describes various 
characteristics or distribution of data is called Statistical 
moments. These moments explains the shape of data's histo-
gram and provides data which is enough for making fre-
quency distribution function. It helps to quantify the sym-
metry of data in a set by the use of variation and skewness. 
Mathematicians and analysts have shaped different moments 
in the light of certain outstanding polynomials. Raw, central 
and Hahn moments are utilized to illustrate their polynomial 
tasks. A raw moment is the mean of all number in a set with 

 
Fig. (1). Detailed step for proposed methodology. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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order k, before taking mean each number is raised to the kth 
power. The first raw moment is the mean of all addition, se-
cond is average of squared number, while third the average of 
the cubed number. Change and unevenness made by the com-
posed dataset are calculated by these moments [126-129]. 
 The central moments are also used for the same purpose. 
A central moment is dependent at the average of the 
difference between numbers from their mean. The second 
central moment is achieved by the squared differences before 
averaging, while the third central moment is achieved by 
cubing difference before averaging. Hahn moments is used 
widely for feature extraction. These moments are dependent 
at Hahn polynomials [129]. It is used as an input in a neural 
network for providing an asymmetric grouping of feature 
selection beside classification.  
 Merely 20 amino acids are present, for calculating mo-
ments every amino acid is allocated exclusive numerical 
value. Since the values are distinctive, numerical values are 
allocated again and again, so any value can be allocated to 
any amino acid. The 1-dimensional grouping of the 
amino acid is changed into 2-dimensional form. 
 Suppose S stand for series of protein and sequence is 
given as: 

},,,,,{ 1321 mmS βββββ −= …                                                  (6) 

m residue exists in the primary sequence of the protein, 
where iβ is the ith amino acid residue, also let, 

⎡ ⎤mz =   
 All amino acid component of protein S are held by ma-
trix 'S  created with  mm×  dimensions. 
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 The 2-dimensional matrix 'S  corresponds to the matrix 
S . The matrix S  is converted to 'S by using ν  as the 

mapping function. 

pqx αβν =)(                                                                          (8) 

Where 1+=
d
cp  and dcq mod= if 'S is populated in 

row-major order. 

 Moments till 3 degrees are calculated using a 2D matrix
'S , the following equation is used for calculating raw mo-

ments. 
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Where m+n denotes the order of moments. Moments till lev-
el three are calculated as Z00, Z01, Z02, Z10, Z11, Z12, Z20, Z21, 
Z30 and Z03. 

 The data centre is similar to the centre of gravity. Data is 
fairly distributed at the data’s central point with reference to 
average weight. It is calculated after calculation of raw mo-
ments. It is known as an argument ( )wv, where, 
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 Central moments are calculated with the help of centroid. 
Central moments lies at data central point where centroid 
acts as data’s centre of gravity. Following equation is used to 
calculate central moments. 
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 In order to calculate Hahn moment, 1-dimensional inter-
pretation S was converted to a square matrix interpretation S′. 
Two-dimensional input data is needed by two dimensional 
Hahn moments. The Hahn polynomial of order n is given as: 
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 The above expression uses the Pochhammer symbol gen-
eralized as: 

)1()1.()( −++= lbbbb l …                                                      (13) 

And is simplified using the Gamma operator. 
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 The raw values of Hahn moments are usually scaled us-
ing a weighting function and a square norm is given as: 
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 The orthogonal normalized Hahn for the two-
dimensional discrete data are computed using the following 
equation: 
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 The central moments and the Hahn moments are comput-
ed up to order 3. 

2.2.3. Position Relative Incidence Matrix 

 Informational series is the root of a mathematical model 
that predict that role of proteins. Location of amino acid 
plays a key role in determining the physical properties of the 
protein. It is also important to minimize placement of amino 
acid in the polypeptide chain. Position relative incidence 
matrix (PRIM) extracts location information of amino acid in 
the polypeptide chain. The matrix of PRIM is made with 
20x20 dimensions as given below. 
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 An item bdQ →  holds the total of bth residue against the 
first occurrence of dth residue. Prim makes 400 coefficient 
which is a large number. For reducing the coefficient more, 
moments. 

2.2.4. Reverse Position Relative Incidence Matrix 

 Machine learning algorithm accuracy mostly depends on 
the perfection of data’s feature extraction and the algorithm 
is able to change itself for understanding data’s unclear pat-
tern. The relative positioning of amino acid in the 
polypeptide chain is extracted by PRIM matrix. Similar 
workflow at the reverse primary sequence is followed by 
Reverse Position Relative Incident Matrix (RPRIM). Addi-
tion of RPRIM reveals more hidden pattern and uncertainties 
among proteins in the polypeptide sequence. Similar to 
PRIM, RPRIM also has 400 elements with 20x20 dimension. 
RPRIM matrix is represented as: 
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 The dimension of RPRIM matrix is minimized by calcu-
lating raw, central and Hahn moments. 

2.2.5. Frequency Matrix 

 The amino acid sequence makes the native shape of the 
protein and their number of occurrence is calculated by the 
frequency matrix. Frequency matrix has a vital role in pro-
tein alignment. The amino acid series information is re-
trieved by PRIM and frequency matrix does not hold series 
information. The frequency matrix is calculated by the given 
formula: 

{ }204321 ,,,,, τττττξ …=                                                     (20) 

 In this formula iτ  represents the frequency of ith native 
amino acid. 

2.2.6. Accumulative Absolute Position Incidence Vector 

 Amount of Amino acid residue in the polypeptide chain 
is represented by a frequency matrix and it also gives infor-
mation relevant to protein formation. The frequency matrix 
lacks information relevant to the position of amino acid resi-
dues in the polypeptide chain and this deficit is accommo-
dated by Accumulative Absolute Position Incidence Vector 
(AAPIV). AAPIV represent relevant positioning of amino 
acid residues in the polypeptide chain. A vector containing 
20 elements is made where every element has a numerical 
ordered value that represents relevant residue in the primary 

sequence. Primary sequence showing the occurrence of spe-
cific residue in the structure is represented as: 
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 It shows that residue kυ  
located at a position 

nrrrr ,,, 321   

Let AAPIV be represented as: 

{ }204321 ,,,,, ννννν =T                                                     (22) 

Therefore the ith element of AAPIV is calculated as: 
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2.2.7. Reverse Accumulative Absolute Position Incidence 
Vector 

 As prior discussion, feature extraction is efficient in de-
tecting an ambiguous pattern. Reverse accumulative absolute 
position incidence vector (RAAPIV) performs the same task, 
it is made from reversed AAPIV string. RAAPIV contain 20 
elements is shown as: 

{ }2054321 ,,,,,, οοοοοοδ =                                                (24) 

Specific residue in the Reversed sequence is shown as: 
k
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k
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k
m

k
m ωωωω  321                                                     (25) 

 In the sequence above residue kω
 
occur in reverse se-

quence and nmmmm ,,,, 321 …  are their ordered location. The 
value of any element is calculated as: 
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2.3. Neural Network 

 The neural network is one of the most important tools for 
solving the problem discussed in this paper, it simulates pro-
cessing information as shown in Fig. (2). Neural network 
explains the basic shape of each residue in a given protein. 
For training the network, negative and positive samples are 
made that are used to calculate feature vector which repre-
sents 2-dimensional protein structures by using raw, central 
and Hahn moments. 

2.3.1. Gradient Descent and Adaptive Learning 

 Different algorithms with different characteristic and 
performance are available to train the neural network. 
Among all, Gradient Decent algorithm performs the best. It 
is an iterative minimization method that finds out best set of 
weight which is used for making a prediction during neural 
network training. The main objective of algorithms is to find 
weights that reduce the error of the model on the training 
dataset. The training process is started by randomly guessing 
set of weight, the weight set whose loss function has more 
steps down value is selected. The process is repeated follow-
ing a negative gradient until a satisfied lowest point is found 
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and then the gradient of the loss function is calculated 
against all parameters. A gradient is a multidimensional vec-
tor containing the slope of loss function along every axis 
[126, 127]. 
 The weight W is updated with the help of learning rate 
R, objective function F(W) and its gradient £F(W). The 
central goal of the algorithm is to find the ideal weight W by 
minimizing F(W). Depending on this algorithm, the parame-
ters are iteratively computer at every stage by given equa-
tion. 
W=W-R. £F(W)                                                                 (27) 

 Algorithm execution depends at learning rate R and it is 
mostly kept constant. It defines the time for function mini-
mization and small learning rate requires more time to reach 
an optimal point whereas high learning rate may lead func-
tion to never reach the optimal point, thus, learning rate 
should have the ideal value to reach the optimal point. Most-
ly the starting process starts with a higher learning rate 
which slowly decreases as training proceeds. The learning 
rate may change at each layer which reduces the chance of 
gradient vanish. Weights stop to change at the first layer. 
Considering Wi and Wi+1 calculated sequentially parameters. 
Using this parameter weight, output and expected error are 
calculated. Comparing with the previous iteration if the error 
is greater than the learning rate is decreased or if the error is 
smaller than the learning rate is increased, weights are ex-
cluded and new weight Wi+1 is calculated. Weight calcula-
tion at each iteration is represented as ( W1, W2, W3, W4 
…). The following equation is used to calculate weight for 
the successive epoch. 

Wt+1=Wt-Rt. £L ( Wt )                                                        (28) 
 In the equation, Rt is used for tth epoch. The adaptive al-
gorithm guarantees normalization of learning rate while min-
imizing function at each epoch. Following condition is ful-
filled before choosing the learning rate. 
L (W0) ≥ L (W1) ≥ L (W2) . .                                             (29) 

3. RESULTS AND DISCUSSION 

3.1. Accuracy Estimation 

 The objective evaluation of a newly developed predictor 
is a very important aspect, which helps to assess the success 
rate of that model [69]. However, for such objective evalua-
tion, one needs to consider two important factors which are 
(i) selection of accuracy metrics and (ii) the testing method 
employed to validate the model. Herein, firstly we will for-
mulate the metrics for objective evaluation, then we will 
employ various validation methods. 

3.2. Formulation of Metrics 

 For objective evaluation, one needs to consider the met-
rics of evaluation and method of evaluation. The most ob-
served practice for the objective evaluation of the predictor is 
the use of accuracy metrics which are (1) Accuracy (Acc), 
which is used for the estimation of the overall accuracy of 
that perdition model, (2) Sensitivity (Sn), which is used for 
the estimation of positive sample prediction capability, (3) 
Specificity (Sp), which is used for the estimation of negative 
sample prediction capability, and (4) Mathews Correlation 
Coefficient (MCC), which is used for the estimation of pre-
diction model stability. Either the set of traditional metrics 
copied from math books or the intuitive metrics derived from 
the Chou’s symbols [70, 130, 131] are valid only for the sin-
gle-label systems (where each sample only belongs to one 
class). Initially, these measures have been introduced in 
[132], and a set of four intuitive equation have been derived 
in [133, 134] for all these measures, which are: 
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Fig. (2). Architecture of the artificial neural network for the iSulfoTyr-PseAAC. 
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Where !! represents the total number of non-sulfotyrosine 
sites, correctly predicted as non-sulfotyrosine sites by iSul-
foTyr-PseAAC. !!

! represents the total number non-
sulfotyrosine sites which are predicted incorrectly as sulfoty-
rosine sites by iSulfoTyr-PseAAC. Moreover, !! is the 
total number of sulfotyrosine sites which are correctly pre-
dicted as sulfotyrosine sites by iSulfoTyr-PseAAC and !!

! 
is the total number of sulfotyrosine sites which are predicted 
incorrectly as the non- sulfotyrosine sites by iSulfoTyr-
PseAAC. Thus, Eq. (30) gives the explanation of specificity, 
sensitivity, overall-accuracy, and stability more easy to un-
derstand and intuitive, particularly when we talk about MCC 
[135-137]. 
 This set of perceptive metrics have been used by a num-
ber of modern publications [14-16, 20-23, 30, 80, 89, 133, 
138-158], but only for binary labelled data. Multi-label pre-
diction is a completely different problem, which has been 
more popular in computational biology [159-161] and bio-
medicine [162]. Thus, it requires a different kind of metrics 
[163]. For the multi-label systems (where a sample may sim-
ultaneously belong to several classes), whose existence has 
become more frequent in system biology [73, 164-170], sys-
tem medicine [171, 172] and biomedicine [35], a completely 
different set of metrics as defined in [173] is absolutely 
needed. 

3.3. Self-consistency Testing 

 To test the proposed prediction model accuracy, self-
consistency testing was performed in which same training 
and testing datasets were used through using which the mod-
el was built. There is a reason for doing the self-consistency 
test and that is, we already know the actual true positive of 
benchmark dataset. The results of self-consistency are shown 
in Table 1; it can be observed that the proposed model has 
the 99.23% Acc, 99.10% Sp, 99.75% Sp, and 0.99 MCC.  

3.4. Validation of Model 

 In general, prediction models are trained using experi-
mentally proven dataset for prediction but some of the time 
we don’t have experimentally proven datasets for model pre-
diction testing. Interestingly, if somehow we have the exper-
imentally proven dataset, it might be possible that data is not 
suitable or not sufficient for model testing against the predic-
tion accuracy. To check the score four metrics of Eq. (30), 

what kind of testing method should be used to check the ac-
curacy reliability of prediction model? Normally, a predic-
tion model can be tested using Leave-one-out (jackknife), k-
folds (Subsampling) and independent test [174].  

3.4.1. Jackknife Testing 

 In jackknife testing, every time model is trained on N – 1, 
where N is a total number of instances of benchmark dataset 
and testing is done by the rest of the 1 instance of benchmark 
dataset. Each time data for training and testing is selected 
randomly and the model is trained and tested according to 
that datasets.  

 In jackknife validation of prediction model, training and 
testing both datasets are open and every sample of the 
benchmark dataset is used for training and testing, it’s very 
exhaustive because of huge turn in and out of data samples 
and it excludes the memory effects. Its validation always 
gives different output for given benchmark dataset instances. 
The arbitrariness problem caused by independent test and 
subsampling completely avoided by using jackknife. Using 
jackknife, perdition model validation gives 97.07% accuracy 
as shown in Table 2. It has been widely used to validate the 
prediction model by investigators [78, 145, 175-184].  

3.4.2. K-fold Cross-Validation 

 Cross-validation is one of the best available methods to 
validate model prediction, cross-validation is the best option 
to choose and to give the validation that the proposed model 
is predicting true Sulfotyrosine sites. 

 Using cross-validation, the benchmark dataset is distrib-
uted into total k number of unique folds, where k is the num-
ber in which the benchmark dataset is divided, for now, 
k=10. In each round of validation, a different subset of data 
is selected randomly for validation across the rest of the data, 
by this, each part of the dataset is used for training and test-
ing both. At the end of last round of cross-validation, the 
cumulated accuracy for k=10 is calculated by adding the 
accuracy of each validation round and dividing it by 10 and 
it's 94.26% in this study as shown in Table 3.  

 This shows that the accuracy of the proposed method is 
higher than the other previously proposed methods for sul-
fotyrosine site prediction, as shown in Fig. (3).  

Table 1. Results for self-consistency testing for iSulfoTyr-PseAAC. 

Predictor 
Accuracy Metrics 

Acc (%) Sp (%) Sn (%) MCC 

iSulfoTyr-PseAAC 99.23 99.10 99.75 0.99 

 
Table 2. Results for jackknife testing of iSulfoTyr-PseAAC (Average of n-iterations). 

Predictor 
Accuracy Metrics 

Acc (%) Sp (%) Sn (%) MCC 

iSulfoTyr-PseAAC 97.07 97.39 96.96 0.92 
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 Using graphic approaches to study biological and medi-
cal systems can provide an intuitive vision and useful in-
sights for helping analyze complicated relations therein, as 
indicated by many previous studies on a series of important 
biological topics, [185-198], particularly in enzyme kinetics, 
protein folding rates [192, 199-201], and low-frequency in-
ternal motion [199-204] (Table 4). 

3.5. Comparative Analysis 

 In a comparative analysis of iSulfoTyr-PseAAC, the re-
sults of iSulfoTyr-PseAAC for the metrics of Eq. (30) are 
compared with already existing methods. For this purpose, 
an independent dataset of 80 positive and 80 negative sam-
ples was used.  

 Numerous imperative highlights make the proposed ap-
proach dignified and detailed from previous methods. First 

of all standard and balanced dataset has been included, 
which is experimentally verified and is of discrete nature. 
Secondly, the data is non repetitive, precise and complete in 
scope. Moreover, performance evaluation of proposed model 
is performed with 10 fold cross validation. The proposed 
model uses artificial neural networks which carefully handle 
dependence. 

 iSulfoTyr-PseAAC applies a novel approach and uses the 
compositional and positional features of primary sequences 
of protein to perform the prediction of Sulfotyrosine sites. In 
first, it uses PseAAC and cut the sequence by modified resi-
due from 20 downstream and upstream, then calculate the 
AAPIV, RAAPIV, PRIM, RPIRM, and statistical moments, 
using the compositional and positional features of primary 
sequences of protein, iSulfoTyr-PseAAC outperforms its 
counterparts. 

Table 3. Results for 10-fold cross-validation of iSulfoTyr-PseAAC (Average of 10-folds). 

Predictor 
Accuracy Metrics 

Acc (%) Sp (%) Sn (%) MCC 

iSulfoTyr-PseAAC 94.26 94.55 94.16 0.86 

 

 
Fig. (3). 10-fold cross validation of iSulfoTyr-PseAAC. (A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 

Table 4. Comparison with existing models. 

Predictor 
Accuracy Metrics Number of Proteases 

Acc (%) Sp (%) Sn (%) MCC !! !!
! !!

! !! 

iSulfoTyr-PseAAC 85.63 88.75 82.50 0.71 71 9 14 6 

Sulfinator [64] 68.13 71.25 65.00 0.36 57 23 28 52 

SulfoSite [65] 73.13 76.25 70.00 0.46 61 19 24 56 

PredSulSite [67] 76.88 81.25 72.50 0.54 65 15 22 58 

SulfoTyrP [68] 80.00 83.75 76.25 0.60 67 13 19 61 
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4. WEB SERVER 

 The final step of Chou’s 5-steps rule is the development 
of user-friendly publicly available web-server for the ease of 
users and biologists as explained in recent publications by 
various authors [33, 136, 143, 146, 165, 166, 169, 171]. As 
pointed out in [203] and demonstrated in a series of recent 
publications [18, 31, 33, 59, 71-74, 78, 81, 82, 87, 88, 93, 
153, 158, 164-170, 205], user-friendly and publicly accessi-
ble web-servers represent the future direction for developing 
practically more useful prediction methods and computation-
al tools. Actually, many practically useful web-servers have 
significantly increased the impacts of bioinformatics on 
medical science [56], driving medicinal chemistry into an 
unprecedented revolution [206]. Accordingly, in our future 
work, we shall strive to establish a web-server for the new 
method presented in this paper. 

CONCLUSION 

 In this study, using Chou's 5-step rule we have developed 
a model for sulfotyrosine sites prediction based on ANN. 
Due to its strong biological importance, the finding of sul-
fotyrosine sites positions is a primary and essential task. The 
aim of the study is to develop an efficient and more accurate 
sulfotyrosine sites predictor and enhance it in usage. By im-
plementing the PseAAC we have used many positional and 
compositional features of proteins samples. After model de-
velopment, the prediction model was tested and validated 
against various exhaustive validation methods and tech-
niques i.e. self-consistency, cross-validation, and jackknife. 
The self-consistency validation gives the 99.23% accuracy, 
for cross-validation the accuracy is 94.26% and jackknife 
gives 97.07% accuracy. The prediction models give overall 
97.07% accuracy, sensitivity value 96.96% and specificity 
97.39%. Using the above-mentioned accuracy and other val-
ues it concludes, the proposed model iSulfoTyr-PseAAC for 
prediction of sulfotyrosine site has the great ability to predict 
these sites in given proteins. In computational ways, the pro-
posed model still can be improved as the number of protein 
sequences is rapidly growing, day to day. 
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