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ABSTRACT
Recent years have seen the emergence of immunotherapy as a promising modality for treating a variety of 
cancers. However, the initial data have led to the ultimate reality that such a treatment does not work 
effectively in all cancers, nor does it universally result in long-lasting benefits, which can be partly attributed 
to the development of drug resistance- itself a major challenge. Worse, in some cases, immunotherapy can 
lead to accelerated tumor growth known as hyperprogression. Tumor sensitization is being pursued as 
a means to circumvent resistance to immunotherapy, and perhaps as a means to prevent hyperprogression. 
Such approaches aim to counteract features of immune resistance demonstrated by refractory tumors, 
paving the way for improved treatment effectiveness when standard immunotherapies such as immune 
checkpoint inhibitors are utilized. Sensitizing agents can be categorized by whether their target is a tumor- 
intrinsic or a tumor cell-extrinsic factor. Tumor-intrinsic sensitization strategies act directly on cancer cells, 
suppressing their anti-immune tendencies, whereas tumor cell-extrinsic sensitization strategies target the 
tumor microenvironment to more effectively mediate the desired therapeutic effects of immunotherapy.
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Introduction

Immunotherapy has emerged as an effective treatment modality 
for some cancers. The targeting of immune checkpoints in 
cancer therapy has resulted in strong anti-cancer effects, leading 
to long-term remission and increased patient survival in select 
cancers.1 Immune checkpoint therapies have gained significant 
prominence in the field of Oncology with Science naming cancer 
immunotherapy as the “Breakthrough of the Year” in 2013.2 

Indeed, the Nobel Prize in Physiology or Medicine was awarded 
to James P. Allison and Tasuko Honjo in 2018 for advances in 
the understanding of immune checkpoints and for the ultimate 
development of immunotherapy for cancer.

However, immunotherapy is not universally effective across 
cancers. While there is a high response rate in some tumor types 
(e.g. lung cancer, melanoma, bladder cancer, and microsatellite 
unstable colorectal and other cancers), the effects are not uni
versally long-lasting in the majority of patients. Combination 
therapy with ipilimumab (anti-CTLA-4) and nivolumab (anti- 
PD-1) used to treat metastatic renal cell carcinoma has shown 
remarkably durable response, with a complete response rate of 
11% in one trial.3 Cervical cancers treated with checkpoint inhi
bition show similar response rates with a range of 10–25%, and 
potentially higher when used in combination with other immu
notherapies or conventional therapies.4 However, in some tumor 
types (e.g., sarcoma and ovarian cancer), response rates to immu
notherapy are dismal, with many exhibiting resistance patterns 

that may be intrinsic to the tumor cells or that may be influenced 
by their microenvironment.1 Novel therapeutic strategies 
attempt to circumvent resistance to immunotherapy and sensi
tize tumors to immunotherapeutic approaches in order to 
expand the clinical benefits to a broader patient population.

Tumors often exhibit primary, adaptive, or acquired resis
tance to immunotherapy. Typically, primary resistance to immu
notherapy is due to a lack of T-cell recruitment to tumor sites or 
lack of T-cell recognition caused by a lack of antigen expression.5 

Factors like loss of HLA expression, constitutive PD-L1 expres
sion, and alteration of signal transduction pathways aid in this 
type of resistance.5 Adaptive resistance may also contribute to 
primary resistance, where immune recognition of tumor cells can 
occur, but the immune response is avoided.5 Tumors which stop 
responding to immunotherapy demonstrate acquired resistance, 
where selection pressure from the immune system and tumor cell 
interaction drive preservation of resistant traits.5

A small subset of tumors responds to treatment by exhibit
ing accelerated tumor growth known as hyperprogression, 
where treatment leads to more rapid proliferation and wor
sened clinical outcomes.6 Upon treatment, these tumors exhi
bit an accelerated growth potentially indicative of another 
complication of immunotherapy.6 The mechanisms of hyper
progression have been under investigation as it would be 
important to predict and address such aggressive tumor beha
vior with undesirable clinical outcomes. A study of six patients 
with various stage IV cancers treated with immunotherapy 
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identified the risk of hyperprogression occurring in patients 
receiving checkpoint inhibitors as associated with MDM2 gene 
family amplification.6 Such MDM2 gene family amplification 
and EGFR aberration appeared in this study to be linked to the 
hyperprogression outcome.6 Anti-PD-1 or anti-PD-L1 treat
ment through these cases appears to be the most susceptible to 
lead to hyperprogression (defined as treatment failure within 
2 months), though anti-CTLA-4 treatment administered either 
alone or in conjunction with PD-1/PD-L1 inhibition was also 
shown to possibly lead to treatment failure in the same interval 
or slightly thereafter.

Another subset of tumors, initially discovered with anti- 
CTLA-4 treatment, exhibit pseudoprogression.7 

Pseudoprogression occurs after immune checkpoint therapy 

in tumors that ultimately respond to the therapy, though treat
ment responses appear delayed by radiographic measurements 
where initially tumors can appear larger. This has led to the 
adoption of immune RECIST (iRECIST) criteria for assess
ment of response to immunotherapy. Differentiating pseudo
progression from hyperprogression can be difficult although 
with hyperprogression new metastatic lesions are often 
observed including at new organ sites of metastases, along 
with an apparent acceleration of growth of tumor size as 
compared to before treatment with immune checkpoint ther
apy. Molecular and cellular mechanisms associated with the 
immune response against cancer within the tumor microenvir
onment, immune checkpoints and their therapeutic blockade 
are shown in Figure 1.

Figure 1. Graphical summary of immunotherapeutic treatment strategies that target the tumor microenvironment. Offset (top left) depicts the interaction between 
a CD8 + T cell and both an APC and tumor cell without treatment. The main figure depicts various treatment strategies and their modulation of the tumor 
microenvironment. Various cytokines are also depicted in their most common and relevant roles within the tumor microenvironment.
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Tumor cell–intrinsic and extrinsic factors for immune 
evasion

With the backdrop of immunotherapy resistance or immu
notherapy-induced hyperprogression, sensitizing tumors to 
immunotherapy becomes not only a new avenue to improve 
clinical outcomes but also a way to potentially limit therapy- 
induced tumor progression or metastasis. Especially as CTLA- 
4 and PD-1/PD-L1 treatments become more widespread for 
many various cancer types and novel immunotherapies are 
investigated, finding ways to induce tumor vulnerability to 
immunotherapy becomes more important.

Direct targeting of the tumor with sensitizing agents is one 
strategy toward mitigating immune evasion or subversion of 
the immune response to accelerate tumor growth. Many che
motherapies, for instance, show a direct effect on expressed 
antigens, with multiple studies on BRAF-targeted therapy in 
melanoma showing increased antigen and HLA expression.5

A different, emerging strategy to accomplish this sensitiza
tion to enhance immunotherapy involves targeting the tumor 
microenvironment (Figure 1). Such a strategy, when used to 
complement traditional immunotherapy or even other tumor- 
cell sensitizing agents, could help address some limitations of 
immunotherapy.

Direct targeting of tumor cells

Direct targeting of tumor cell-intrinsic factors is expected to 
sensitize tumor cells to immunotherapy and may overcome 
primary and acquired immunotherapy resistance.

We recently explored the use of a mouse double minute 2 
homolog (MDM2) inhibitor, AMG-232, to sensitize tumor 
cells to immunotherapy. High MDM2 expression was found 
to be involved in immune evasion by blocking T-cell mediated 
tumor cell killing, and inhibition of MDM2 by the small mole
cule or by gene knockdown led to an increase in the T-cell 
killing of MDM2-overexpressing tumor cells.8 This finding 
could partially explain the recent clinical study suggesting 
that MDM2/MDMX (MDM4) amplification can predict poor 
response to immune checkpoint inhibitors (ICIs).9 Interleukin 
6 (IL-6) has previously been shown to increase MDM2- 
mediated p53 degradation.10 Our study demonstrated that 
targeting MDM2 attenuates IL-6 expression in tumor cells 
which may play an important role in sensitizing tumor cells 
to T-cell-mediated killing.8 A different study identified ephrin- 
A receptor 2 (EPHA2) as a tumor-intrinsic factor in immuno
suppression, and showed EPHA2 deletion to successfully sen
sitize tumor cells for immunotherapy, ultimately calling for 
further investigation on EPHA2/TGF-β/PTGS2 inhibitors as 
sensitizers for immunotherapy.11

Various other tumor-cell-intrinsic factors have been identi
fied to correlate with T cell infiltration, a key marker of immu
notherapy susceptibility. c-Myc expression, for instance, 
coupled with epigenetic modulation was found to be associated 
with low tumor inflammation secondary to CXCL1 expression, 
a chemokine implicated in immunosuppression by recruiting 
myeloid cells.12 Other chemo-attractants such as CCL4 and 
CXCL10 are associated with immune infiltration, though cer
tain tumor characteristics such as a Wnt phenotype can 

interfere.13 Macrophage infiltration is also associated with 
immune responsivity, with TGF-β secreting M2 macrophages 
promoting lessened inflammation and self-antigen tolerance, 
and IFNγ and TNF secreting M1 macrophages promoting an 
immune response phenotype.14

Chemotherapeutic agents, radiation therapy, and metabolic 
modification have also been shown to contribute to 
immunogenicity.1,15 The specific mechanisms vary with the 
different therapeutic modalities. Chemotherapy, for instance, 
can lead to the release of tumor antigens by massive cell death, 
priming an anti-tumor immune response.16 Radiation therapy 
acts similarly but has an added effect of enhanced antigen 
presentation and tumor-infiltrating lymphocytes (TILs) 
infiltration.17 Radiation therapy, in fact, has been suggested to 
cause an “abscopal effect”, where local radiation to one site 
induces systemic anti-tumor responses.18 Finally, altering 
tumor metabolism by interfering with the Warburg effect, 
lactate production, or glucose uptake (among others) has 
been shown to create favorable conditions for immunotherapy 
response.19–22

The immune system and the tumor microenvironment

The efficacy of immunotherapy is contingent in part upon the 
ability of the immune system to gain access to the tumor micro
environment. Tumor microenvironments are typically categor
ized according to their degree of immune cell infiltration, with 
“inflamed” environments with a high CD8 + T cell infiltration 
boasting better overall clinical outcomes when compared to 
“immune excluded” (no CD8 + T cell infiltration in the tumor 
parenchyma but in stroma) and “immune-desert” (extremely 
low CD8 + T cell infiltration) tumor microenvironments.23

While immune cell infiltration into the tumor microenvir
onment is associated with better efficacy against some immu
notherapies, certain immunotherapies show promise for 
directly increasing the degree of immune infiltration. In parti
cular, ipilimumab treatment appears to have clinical outcomes 
more strongly associated with post-treatment immune infiltra
tion over baseline immune infiltration.24 Regardless, the role of 
the tumor microenvironment in immunotherapy response is 
extremely important and shown to be a better predictor than 
tumor intrinsic factors.1

Bolstering T-cell infiltration to the tumor 
microenvironment is the focus of current research

Many of the checks and balances built into the immune system 
to prevent autoimmunity and destructive inflammation are 
capitalized upon by tumor cells in the microenvironment to 
suppress the native immune response. In particular, tumor 
cells often express or release signaling molecules into the 
tumor microenvironment that mitigate effector T-cell activity. 
An immunotherapy sensitization strategy emerges in overcom
ing this tendency, either through overpowering the inhibitory 
signals of the tumor cells through exogenous stimulatory sig
naling or through suppressing inhibitory signals directly.

ICIs provide one manner to do this, with PD-1/PD-L1 and 
CTLA-4 inhibition being the two currently most-researched 
examples. Such ICIs block immune system inhibition signals 
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readily present in the tumor microenvironment, secreted by 
tumor cells to inactivate the anti-cancer immune response. 
More ICI targets are being explored, such as lymphocyte- 
activation gene 3 (LAG-3), the inhibition of which has shown 
favorable results in mouse models and is currently undergoing 
clinical trial testing.25 T-cell immunoglobulin and mucin-domain 
-containing molecule 3 (TIM-3), which plays various important 
roles in T cell regulation, has been shown to lead to worsened 
clinical outcomes when upregulated on TILs, and has been pur
ported to be involved with PD-1 blockade secondary resistance, 
and is also being explored as an ICI target in clinical trials.26

Such ICIs are complemented by direct immune-system 
stimulation. Co-targeting of a co-stimulatory target and an 
immune checkpoint leads to promising outcomes. Inducible 
T-cell costimulatory (ICOS) activation with an agonist was 
shown to compliment anti-CTLA-4 therapy in vivo and its 
synergy with anti-PD-1 therapy is being investigated.27

Exogenous cytokine administration is another potential 
method to increase immune cell activation in the tumor micro
environment, however this treatment strategy was not shown 
to be effective enough to overcome its toxic effects in most 
cases.1 Recent advances may be able to make exogenous cyto
kines viable once again, particularly through the emergence of 
NKTR-214 (an IL-2 analog with less toxic effects), which 
showed promise in increasing immune effector function in 
the tumor microenvironment and is currently going to trial 
alongside PD-1 blockades and CTLA-4/PD-1 co-inhibition.28

Even more strategies are currently being explored and may 
increase T-cell infiltration and promote an immune effector 
phenotype in the tumor microenvironment. Bispecific antibodies, 
for instance, are being used to make enhancements to the tumor 
microenvironment, for example by bringing together a tumor cell 
and T-cell, while innate immune agonists and antagonists are 
being tested for synergy with other immunotherapy strategies.29

Enhancing the tumor microenvironment through 
vaccines and oncolytic viruses

Anti-cancer vaccines constitute perhaps the most experimental 
of anti-cancer therapies. While hindered by concerns of 
expense and practical difficulties, various agents are being 
investigated.30–32 Current approaches involve developing per
sonalized vaccines, which takes advantage of next-generation 
sequencing of tumor cells and surrounding cells to identify 
tumor-specific antigens to prime the immune system toward 
eliminating cancer cells.33

Such an approach has demonstrated promising results in 
small studies, indicating that anti-cancer vaccination may 
one day prove an effective immunotherapy and tumor cell 
sensitization tool.34

Oncolytic viruses, which target tumor cells, have shown pro
mise in their anti-cancer effects.35 The FDA-approved talimogene 
laherparepvec (T-VEC) has demonstrated an increase in T-cell 
response systemically following direct intra-tumoral 
administration.36,37 Moreover, combination therapy with ICIs 
has shown promise in tumor microenvironment modification 
with increased therapeutic efficacy.37 T-VEC works by releasing 
granulocyte-macrophage colony-stimulating factor from tumor 
cells via tumor cell lysis, whereas alternative oncolytic viruses 

disrupt the tumor microenvironment through direct interference, 
for instance in damaging tumor cell vasculature.38 Oncolytic 
viruses expressing granulocyte-macrophage colony-stimulating 
factor (GM-CSF) are also under investigation, and have been 
shown to produce better anti-tumor effects in vivo through favor
able modulation of the immune environment (with increased 
immune-cell activation and proinflammatory cytokines in the 
tumor microenvironment).39

Sensitization to immune checkpoint blockade 
through epigenetic influence

Epigenetic factors may decrease immunogenicity exhibited by 
tumor cells, potentially through downregulation of tumor 
antigens.40 Immune checkpoint proteins such as PD-L1 are 
also under epigenetic control and their expression may be 
enhanced within tumors by epigenetic therapy. Through tar
geting this pathway by inhibiting DNA methylation with DNA 
methyltransferase inhibitors or HDAC inhibitors, immu
notherapy may be enhanced.

Moreover, ICI-mediated reactivation of T-cells is associated 
with chromatin remodeling, indicating that epigenetic manip
ulation may be useful in the process of T-cell reactivation 
directly.41 HDAC inhibitors have been explored in conjunction 
with ICI therapy to enhance T-cell activation and overall 
immune responses to tumor cells.42

Minimizing regulatory cell activity in the tumor 
microenvironment

Regulatory T cells are used by the normal immune system 
to mediate the activity of effector T-cells to promote self- 
tolerance. Through a variety of different mechanisms, 
including direct competition with effector T-cells for cyto
kines, the presence of these cells reduces effector T-cell 
function.43,44 Other cells may play important roles in this 
pathway, such as myeloid-derived suppressor cells 
(MDSCs), defective antigen presenting cells (APCs), and 
tumor-associated macrophages.45

Targeting of regulatory cells in the tumor microenviron
ment is an emerging approach to increase anti-cancer efficacy 
of the immune system. A variety of agents approved by the 
FDA for trials have shown reduction in MDSCs in cancer 
patients, which has been shown in animal models to be asso
ciated with improved anti-tumor immunity.45

Intra-tumoral administration of molecules such as IL-12 
have also shown therapeutic promise. While systemic admin
istration of recombinant IL-12 is limited by cytotoxicity, intra- 
tumoral administration of IL-12 mRNA led to tumor 
regression.46 Combination treatment with anti-PD-L1 therapy 
was also shown to be effective in tumor microenvironment 
transformation, and in vivo evidence suggests that local admin
istration may lead to systemic anti-tumor effects.46

Ex vivo T-cell therapies – avoiding the tumor 
microenvironment

The propensity of the tumor microenvironment to suppress 
the immune effector response raises the question of whether 
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engineering cells ex vivo to be tumor-specific can allow for 
improved immunotherapeutic results. Such an approach effec
tively sensitizes tumors to immunotherapy by avoiding their 
microenvironment altogether, thereby avoiding any co- 
inhibitory immune signals that are produced by tumor cells 
in the region.

TIL infusions is one way to accomplish this and this has 
been studied at the National Cancer Institute for decades by 
Steven Rosenberg and colleagues. Due to association with 
a stronger anti-tumor microenvironment, harvesting and 
artificially selecting lymphocytes from tumor tissue for pro
pagation and re-infusion has shown promise in trials.47 

Moreover, this TIL infusion coupling with other treatments 
to alter the tumor microenvironment in a phase 
I melanoma has shown to be potentially beneficial, though 
use of this strategy may be limited by practicality of TIL 
harvest.48,49

CAR T-cell therapy is another means to the same end 
and has been studied by Carl June and others over the 
past two decades. CAR T cells made to target CD19 is 
currently an FDA approved treatment for B-cell acute 
lymphocytic leukemia and some B-cell lymphomas, and 
investigations are ongoing to expand the range of targets 
for CAR T-cell therapy.50 This strategy is, however, largely 
ineffective against solid tumors and comes with increased 
toxicity in its creation of a more immunogenic 
microenvironment.50

T-cell receptor (TCR) therapy may be used to avoid many 
complications of the tumor microenvironment. While it does 
require MHC presentation, which is often downregulated in 
immune-resistant tumor cells, TCRs are able to respond to 
a low density of antigen and recognize both intracellular and 
extracellular antigens, unlike CAR T-cells.51 Early clinical trial 
data is promising, with a phase I/II study of a TCR therapy 
resulting in an 80% response rate, though potential toxicity must 
be explored.52

A recent study also explored locoregional delivery of 
immune checkpoint blockade, finding this to increase immu
notherapy efficacy.53 Directed delivery of these mAb blockades 
was found to enhance T-cell responses and overall anti-tumor 
immunity due to a more favorable mAb biodistribution for 
anti-tumor immunity and immunomodulation in tumor 
draining lymph nodes.53 More testing in a clinical setting is 
needed to fully explore this.

Natural killer cells in cancer immunotherapy

Natural Killer (NK)-cells can have powerful effects against 
tumor cells and are part of the host innate immune system 
for immunosurveillance of cancer. NK-cells kill their target 
cells by different mechanisms including granzyme and 
TRAIL mediated apoptosis. There are currently approaches 
to use NK-cells in cancer therapy either through NK-cell 
infusions (Nanthealth), bispecific antibodies that recruit NK 
cells to tumor antigens (Dragonfly), or through the engi
neering of CAR NK-cells. CAR NK-cells are under clinical 
investigation.54

Conclusion

As tumor cell response to immunotherapy can be limited, 
or with phenomena such as hyperprogression, strategies as 
those explored above need to be further investigated for 
their ability to treat and sensitize tumors. While direct 
sensitization strategies exist and should be explored, tar
geting the tumor microenvironment is a promising 
approach to increase anti-cancer immune responses.
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