
Rapid intraoperative histology of unprocessed surgical 
specimens via fibre-laser-based stimulated Raman scattering 
microscopy

Daniel A. Orringer1,*, Balaji Pandian1, Yashar S. Niknafs1, Todd C. Hollon1, Julianne Boyle1, 
Spencer Lewis1, Mia Garrard1, Shawn L. Hervey-Jumper1, Hugh J.L. Garton1, Cormac O. 
Maher1, Jason A. Heth1, Oren Sagher1, D. Andrew Wilkinson1, Matija Snuderl2,3, Sriram 
Venneti4, Shakti H. Ramkissoon5,6, Kathryn A. McFadden4, Amanda Fisher-Hubbard4, 
Andrew P. Lieberman4, Timothy D. Johnson7, X. Sunney Xie8, Jay K. Trautman9, Christian 
W. Freudiger9, and Sandra Camelo-Piragua4,*

1Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA

2Department of Pathology, New York University, New York, NY 10016, USA

3Department of Neurology, New York University, New York, NY 10016, USA

4Section of Neuropathology, Department of Pathology, University of Michigan Medical School, 
Ann Arbor, MI 48109, USA

5Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 
02115, USA

6Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana Farber 
Cancer Institute, Boston, MA 02115, USA

7Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 
48109, USA

8Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, 
USA

9Invenio Imaging Inc, Santa Clara, CA 95051, USA

Abstract

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding authors. dorringe@med.umich.edu, sandraca@med.umich.edu. 

AUTHOR CONTRIBUTIONS
D.A.O., B.P., Y.S.N., C.W.F., J.K.T., T.C.H., and S.C.P. conceived the study, designed the experiments, and wrote the paper, and were 
assisted by M.G. X.S.X. provided guidance on study design. D.A.O., S.L., and M.G. performed SRH imaging of all specimens. C.W.F. 
and J.K.T. built the SRS microscope. B.P., Y.S.N., J.B., and T.D.J. analyzed the data. S.C.P., K.A.M., S.H.R., M.S., S.V., A.P.L., and 
A. F.-H. interpreted microscopic images and revised the manuscript. T.D.J., D.A.W., and Y.S.N. performed statistical analyses. D.A.O, 
S.H.J, H.J.L.G., J.A.H., C.O.M., and O.S. provided surgical specimens for imaging. All authors reviewed and edited the manuscript.

COMPETING FINANCIAL INTERESTS
X.S.X. and D.A.O. are advisors and shareholders of Invenio Imaging, Inc., a company developing SRS microscopy systems. C.W.F. 
and J.K.T are employees and shareholders of the same company.

HHS Public Access
Author manuscript
Nat Biomed Eng. Author manuscript; available in PMC 2017 September 25.

Published in final edited form as:
Nat Biomed Eng. 2017 ; 1: . doi:10.1038/s41551-016-0027.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conventional methods for intraoperative histopathologic diagnosis are labour- and time-intensive, 

and may delay decision-making during brain-tumour surgery. Stimulated Raman scattering (SRS) 

microscopy, a label-free optical process, has been shown to rapidly detect brain-tumour infiltration 

in fresh, unprocessed human tissues. Here, we demonstrate the first application of SRS 

microscopy in the operating room by using a portable fibre-laser-based microscope and 

unprocessed specimens from 101 neurosurgical patients. We also introduce an image-processing 

method – stimulated Raman histology (SRH) – which leverages SRS images to create virtual 

haematoxylin-and-eosin-stained slides, revealing essential diagnostic features. In a simulation of 

intraoperative pathologic consultation in 30 patients, we found a remarkable concordance of SRH 

and conventional histology for predicting diagnosis (Cohen's kappa, κ > 0.89), with accuracy 

exceeding 92%. We also built and validated a multilayer perceptron based on quantified SRH 

image attributes that predicts brain-tumour subtype with 90% accuracy. Our findings provide 

insight into how SRH can now be used to improve the surgical care of brain tumour patients.

The optimal surgical management of brain tumors varies widely depending on histologic 

subtype. Though some tumors of the central nervous system (CNS) have a distinct gross 

appearance, others are difficult to differentiate. Consequently, the importance of 

intraoperative histopathologic diagnosis in brain tumor surgery has been recognized for over 

85 years1.

Existing intraoperative histologic techniques, including frozen sectioning and cytologic 

preparations, require skilled technicians and clinicians working in surgical pathology 

laboratories to produce and interpret slides2. However, the number of centers where brain 

tumor surgery is performed exceeds the number of board-certified neuropathologists, 

eliminating the possibility for expert intraoperative consultation in many cases. Even in the 

most advanced, well-staffed hospitals, turnaround time for intraoperative pathology 

reporting may delay clinical decision-making during surgery, highlighting the need for an 

improved system for intraoperative histopathology.

The ideal system for intraoperative histopathology would deliver rapid, standardized, and 

accurate diagnostic images to assist in surgical decision-making. Improved access to 

intraoperative histologic data would enable examination of clinically relevant histologic 

variations within a tumor and the assessment of the resection cavity for residual tumor. In 

addition, given that the percentage of tumor removed at the time of surgery is a major 

prognostic factor for brain tumor patients3, intraoperative techniques to accurately identify 

residual tumor are essential.

The development of stimulated Raman scattering (SRS) microscopy in 2008 created the 

possibility of rapid, label-free, high-resolution microscopic imaging of unprocessed tissue 

specimens4. While SRS has been shown to reveal key diagnostic histologic features in brain 

tumor specimens5-7, major technical hurdles have hindered its clinical translation. SRS 

microscopy requires two laser pulse trains that are temporally overlapped by less than the 

pulse duration (ie, <100fs) and spatially overlapped by less than the focal spot size (ie, 

<100nm). Achieving these conditions typically requires free-space optics mounted on 

optical tables and state-of-the-art, solid-state, continuously water-cooled lasers that are not 

suitable for use in a clinical environment4.
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However, leveraging advances in fiber-laser technology8, we have engineered a clinical SRS 

microscope, allowing us to execute SRS microscopy in a patient care setting. Light guiding 

by the optical core of the fiber and the unique polarization-maintaining (PM) 

implementation of the laser source have enabled service-free operation in our operating 

room for over a year. The system also includes improved noise cancellation electronics for 

the suppression of high relative intensity noise, one of the major challenges of executing 

fiber-laser-based SRS microscopy.

Using this system, we show that SRS microscopy can serve as an effective, streamlined 

alternative to traditional histologic methods, eliminating the need to transfer specimens out 

of the operating room to a pathology laboratory for sectioning, mounting, dyeing, and 

interpretation. Moreover, because tissue preparation for SRS microscopy is minimal, key 

tissue architectural details commonly lost in smear preparations and cytologic features often 

obscured in frozen sections are preserved. We also report a unique method for SRS image 

processing that simulates hematoxylin and eosin (H&E) staining, called stimulated Raman 

histology (SRH), which highlights key histoarchitectural features of brain tumors and 

enables diagnosis in near-perfect agreement with conventional H&E-based techniques. 

Finally, we demonstrate how a supervised machine learning approach, based on quantified 

SRH image attributes, effectively differentiates among diagnostic classes of brain tumors. 

Our study demonstrates that SRH may provide an automated, standardized method for 

intraoperative histopathology that can be leveraged to improve the surgical care of brain 

tumors in the future.

Engineering a Clinical SRS Microscope

To eliminate reliance on optical hardware incompatible with the execution of SRS 

microscopy in an operating room, we created a fully-integrated imaging system with 5 major 

components: 1) a fiber-coupled microscope with a motorized stage; 2) a dual-wavelength 

fiber-laser module; 3) a laser control module; 4) a microscope control module; and 5) a 

computer for image acquisition, display, and processing. The entire system is mounted in a 

portable, self-contained clinical cart, utilizes a standard wall plug, and does not require 

water-cooling (Fig. 1A).

The dual-wavelength fiber-laser is based on the fact that the difference frequency of the two 

major fiber gain media, Erbium (Er) and Ytterbium (Yb), overlaps with the high 

wavenumber region of Raman spectra. As previously described8, the two synchronized 

narrow-band laser pulse-trains required for SRS imaging are generated by narrow-band 

filtering of a broad-band super-continuum derived from a single fiber-oscillator and, 

subsequently, amplification in the respective gain media (Fig. 1B).

For clinical implementation, we developed an all-fiber system based on PM components, 

which greatly improved stability over the previous non-PM system. The system described 

here was stable throughout transcontinental shipping (from California to Michigan), and 

continuous, service-free, long-term (>1 year) operation in a clinical environment, without 

the need for realignment. To enable high-speed diagnostic-quality imaging (1Mpixel in 2sec 

per wavelength) with a signal-to-noise ratio comparable to what can be achieved with solid-
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state lasers, we scaled the laser output power to approximately 120mW for the fixed 

wavelength 790nm pump beam and approximately 150mW for the tunable Stokes beam over 

the entire tuning range from 1010nm to 1040nm at 40MHz repetition rate and 2 picosecond 

transform-limited pulse duration. We also developed fully custom laser controller electronics 

to tightly control the many settings of this multi-stage laser system based on a micro-

controller. Once assembled, we determined that the SRS microscope had a lateral resolution 

of 360nm (full width of half maximum) and axial resolution of 1.8μm (Fig. S1).

While development of an all-fiber system was necessary for clinical implementation of SRS, 

relative intensity noise intrinsic to fiber lasers vastly degrades SRS image quality (Fig. 1C). 

To improve image quality, we developed a noise-cancelation scheme based on auto-balanced 

detection8, in which a portion of the laser beam is sampled to provide a measure of the laser 

noise that can then be subtracted in real-time. Here we demonstrate that we can achieve 

~25x improvement in the signal-to-noise ratio in a clinical setting, without the need for 

adjustment, which is essential for revealing microscopic tissue architecture (Fig. 1D).

Processing of Clinical SRS Images

Histologic images of fresh, unstained surgical specimens are created with the clinical SRS 

microscope by mapping two Raman shifts: 2845cm−1, which corresponds to CH2 bonds that 

are abundant in lipids (Fig. 2A), and 2930cm−1, which corresponds to CH3 bonds that 

predominate in proteins and DNA (Fig. 2B). Assigning a subtracted CH3-CH2 image (Fig. 

2C) to a blue channel and assigning the CH2 image to the green channel results in an image 

with contrast that is suitable for brain tumor detection (Fig. 2D)9. However, given the 

ultimate goal of creating an imaging system that produces histologic images that are familiar 

to clinicians10-12, we devised SRH, a method of processing SRS images that is reminiscent 

of H&E staining (Fig. 2E). Unlike previous methods for achieving virtual H&E images 

through hyperspectral SRS microscopy12, SRH relies on only two Raman shifts (2845cm−1 

and 2930cm−1) to generate the necessary contrast. Though the colors in SRH images do not 

correspond exactly with the staining of acidic (hematoxylin) or basic (eosin) moieties, there 

is strong overlap between the two methods (Fig. 2F), simplifying interpretation. To produce 

SRH images, fields-of-view (FOVs) are acquired at a speed of 2 sec per frame in a mosaic 

pattern, stitched, and recolored. The end result is an SRH mosaic (Fig. 2G) resembling a 

traditional H&E-stained slide. The time of acquisition for the mosaic shown in Figure 2G is 

2.5 min and it can be rapidly transmitted to any networked workstation directly from an 

operating room.

Detection of Diagnostic Histologic Features with SRH

We assessed the ability of SRH to reveal the diagnostic features required to detect and 

classify tumors of the CNS by imaging fresh surgical specimens from 101 neurosurgical 

patients (Table S1) via an institutional review board (IRB)-approved protocol (UM IRB 

HUM00083059). Like conventional H&E images, SRH images reveal the cellular and 

architectural features that permit differentiation of non-lesional (Fig. 3A-C) and lesional 

(Fig. 3D-I) and tissues. When imaged with SRH, architecturally normal brain tissue from 

anterior temporal lobectomy patients (patients 6, 11, and 93) demonstrates neurons with 
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angular cell bodies containing lipofuscin granules (Fig. 3A), and lipid-rich axons that appear 

as white linear structures (Fig. 3A-B). Non-neoplastic reactive changes including gliosis 

(Fig. 3B) and macrophage infiltration (Fig. 3C) that may complicate intraoperative diagnosis 

are also readily visualized with SRH. Key differences in cellularity, vascular pattern, and 

nuclear architecture that distinguish low-grade (Fig. 3D; patient 3) from high-grade (Fig. 3E-

F; patient 21) gliomas are apparent as well. Notably, SRH suggests that the perinuclear halos 

of oligodendroglioma cells (Fig. 3D), not typically seen on frozen section and thought to be 

an artifact of fixation13, are reflective of abundant protein-rich tumor cell cytoplasm. In 

addition, by highlighting the protein-rich basement membrane of blood vessels, SRH is 

well-suited for highlighting microvascular proliferation in high-grade glioma (Fig. 3F; 

patient 37).

SRH also reveals the histoarchitectural features that enable diagnosis of tumors of non-glial 

origin (Fig. 3G-I), including the whorled architecture of meningiomas (Fig. 3G; patient 26), 

the discohesive monomorphic cells of lymphoma (Fig. 3H; patient 31), and the glandular 

architecture, large epithelioid cells, and sharp borders of metastatic adenocarcinoma (Fig. 3I; 

patient 57). SRH is also capable of visualizing morphologic features that are essential in 

differentiating the three most common pediatric posterior fossa tumors–juvenile pilocytic 

astrocytoma, medulloblastoma, and ependymoma–each of which have divergent goals for 

surgical management14. In pilocytic astrocytomas, SRH detects piloid (hair-like) architecture 

and Rosenthal fibers, which appear dark on SRH due to their high protein content (Fig. S2A; 

patient 98). SRH also reveals the markedly hypercellular, small, round, blue cell appearance 

and rosettes in medulloblastoma (Fig. S2B; patient 101), as well as the monomorphic round-

to-oval cells forming perivascular pseudorosettes in ependymoma (Fig. S2C; patient 87).

Detection of Intratumoral Heterogeneity with SRH

Gliomas often harbor histologic heterogeneity, which complicates diagnosis and treatment 

selection. Heterogeneity is particularly common in low-grade gliomas suspected of having 

undergone malignant progression, and demonstration of anaplastic transformation is 

essential for making a diagnosis. SRH was successful in detecting heterogeneity of tumor 

grade within a specimen collected from a patient with a recurrent oligodendroglioma of the 

right frontal cortex. In that specimen, SRH revealed both low-grade architecture and areas of 

high-grade architecture characterized by hypercellular, anaplastic, and mitotically active 

tumor (Fig. 4A, patient 41).

In other tumors, such as mixed glioneuronal tumors, histologic heterogeneity is a necessary 

criterion for diagnosis: while any single histopathologic sample may reveal glial or neuronal 

architecture, the identification of both is necessary for diagnosis. In a patient with suspected 

ganglioglioma, a glioneuronal tumor, intraoperative SRH images of a superficial specimen 

(Fig 4B; patient 96) revealed clustered dysplastic neurons, while a deep specimen revealed 

hypercellular piloid glial architecture. Consequently, by providing a rapid means of imaging 

multiple specimens, SRH reveals intratumoral heterogeneity needed to establish clinically 

relevant variations in both grade and histoarchitecture during surgery.
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Quantitative Evaluation of SRH-Based Diagnosis

Given its ability to reveal diagnostic histologic features, we hypothesized that SRH could 

provide an alternative to existing methods of intraoperative diagnosis. To test this 

hypothesis, we imaged specimens from 30 neurosurgical patients where intraoperative 

diagnosis was rendered using routine frozen sectioning or cytological techniques (Table S1, 

patients 72-101). Adjacent portions of the same specimens were utilized for both routine 

histology and SRH.

To simulate the practice of intraoperative histologic diagnosis, a computer-based survey was 

created, in which three board-certified neuropathologists (K.A.M., S.R., M.S.), each 

practicing at different institutions, were presented with SRH or routine (smear and/or frozen) 

images, along with a brief clinical history regarding the patient’s age group (child/adult), 

lesion location, and relevant past medical history. The neuropathologists responded with an 

intraoperative diagnosis for each case the way they would in their own clinical practices. 

Responses were graded based on: 1) whether tissue was classified as lesional or non-

lesional, 2) for lesional tissues, whether they had a glial or non-glial origin, and 3) whether 

the response contained the same amount of diagnostic information (lesional status, grade, 

histologic subtype) as the official clinical intraoperative diagnosis.

Assessing the pathologists’ diagnostic performance when utilizing SRH versus clinical 

frozen sections revealed near-perfect concordance (Cohen’s kappa) between the two 

histological methods for distinguishing lesional and non-lesional tissues (κ=0.84-1.00) 

(Table 1) and for distinguishing lesions of glial origin from non-glial origin (κ=0.93-1.00) 

(Table 1). There was also near-perfect concordance between the two modalities in predicting 

the final diagnosis (κ=0.89-0.92) (Table 1). Inter-rater reliability among reviewers and 

concordance between SRH and standard H&E-based techniques for predicting diagnosis 

was also nearly perfect (κ=0.89-0.92). Notably, with SRH, the pathologists were highly 

accurate in distinguishing lesional from non-lesional tissues (98%), glial from non-glial 

tumors (100%), and predicting diagnosis (92.2%). These findings suggest that pathologists’ 

ability to derive histopathologic diagnoses from SRH images is both accurate and highly 

concordant with traditional histological methods.

While both methods were highly accurate in predicting diagnosis, six of the SRH-based 

diagnostic discrepancies occurred in the classification of glial tumors (Table 1, Fig. 5C and 

Fig. S3A). In three separate instances, pathologists were able to correctly identify a 

specimen as being glioma, but did not provide a specific grade. Two specimens classified as 

“Glioma” with SRH were classified as “High-Grade Glioma” with H&E based techniques. 

High-grade features in gliomas include: significant nuclear atypia, mitotic activity, 

microvascular proliferation and necrosis. Assessment of nuclear atypia and mitotic figures is 

subjective and requires ample expertise based on review of hundreds of cases to set up a 

threshold of “normal” vs atypical morphology in a specimen. Given the subtle difference in 

appearance of nuclear architecture in H&E and SRH, pathologists may have been more 

conservative in terms of rendering atypical and mitotic attributions to tumor cells with SRH.
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Differences in tissue preparation between conventional techniques (i.e., sectioning) and SRH 

(i.e., gentle squash) result in differences in the appearance of vascular architecture. 

Microvascular proliferation is defined as intraluminal endothelial proliferation (several 

layers of endothelial cells in a given vessel) and is essential in grading gliomas at the time of 

intraoperative consultation. This can be easier to observe when tissue is sectioned and 

analyzed in two dimensions (Fig. S3B). In contrast, while SRH is able to highlight basement 

membranes nicely, in some cases, it does not reveal the classic architectural features of 

microvascular proliferation (Fig. S3C).

Undersampling from specimens may have also contributed to the discrepancies observed. In 

three survey items, pathologists misdiagnosed ependymoma as “pilocytic astrocytoma” or 

gave a more general description of the tumor as “low-grade glioma” using SRH images (Fig. 

S3A). Ependymomas and pilocytic astrocytomas may have similar nuclear morphology of 

monotonous elongated nuclei embedded in a background composed of of thin glial 

processes (piloid-like). In the absence of obvious perivascular pseudorosettes, ependymal 

rosettes or hyalinized vessels, which were not obvious in the survey items, and may be 

unevenly distributed throughout a tumor, it is understandable that an ependymoma could be 

misclassified as a pilocytic astrocytoma. Given the concordance of SRH-images with 

traditional H&E images in our patients, we hypothesize that these errors might have been 

avoided if larger specimens were provided to reviewers.

Machine Learning-Based Tissue Diagnosis

Intraoperative image data that is most useful for clinical decision-making is that which is 

rapidly obtained and accurate. Interpretation of histopathologic images by pathologists is 

labor- and time-intensive and prone to inter-observer variability. Consequently, a system 

rapidly delivering prompt, consistent, and accurate tissue diagnoses would be greatly helpful 

during brain tumor surgery. While we have previously shown that tumor infiltration can be 

predicted by quantitative SRS images through automated analysis of tissue attributes6, we 

hypothesized that more robust computational processing would be required to predict tumor 

diagnostic class.

We employed a machine learning process called a multilayer perceptron (MLP) for 

diagnostic prediction because it is 1) easy to iterate, 2) easy to verify, and 3) efficient with 

current computational power. To create the MLP, we incorporated 12,879 400×400μm SRH 

FOVs from our series of 101 patients. We used WND-CHRM, an open-source image 

classification program that calculates 2,919 image attributes for machine learning15 to assign 

quantified attributes to each FOV. Normalized quantified image attributes were fed into the 

MLP for training, iterating until the difference between the predicted and observed 

diagnoses was minimized (see Methods section).

To test the accuracy of the MLP, we used a leave-one-out approach, wherein the training set 

contained all FOVs except those from the patient being tested. This method maximizes the 

size of the training set and eliminates possible correlation between samples in the training 

and test sets. The MLP makes predictions on an individual FOV level, yielding probabilities 

that a given FOV belongs to one of the four diagnostic classes: non-lesional, low-grade glial, 
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high-grade glial, or non-glial tumor (including metastases, meningioma, lymphoma, and 

medulloblastoma) (Fig. 6A). The four diagnostic classes were selected because they provide 

critical information for informing decision-making during brain tumor surgery.

Given the histoarchitectural heterogeneity of CNS tumors and the fact that some specimens 

may contain a mixture of normal and lesional FOVs, we judged the diagnostic accuracy of 

the MLP based on the most common or modal-predicted diagnostic class of FOVs within 

each specimen (Fig. 6B). For example, while the specimen from patient 87 exhibited some 

features of all diagnostic classes in various SRH FOVs (Fig. 6A), the MLP assigned the low-

grade glial category as the highest probability diagnosis in a preponderance of the FOVs 

(Fig. 6B), resulting in the correct classification of this specimen as a low-grade glial tumor.

To evaluate the MLP in a test set of cases read by multiple pathologists, we applied the 

leave-one-out approach on each of the 30 cases included in the survey administered to 

pathologists, as described above. Based on modal diagnosis, the MLP accurately 

differentiated lesional from non-lesional specimens with 100% accuracy (Fig. 7A). 

Additionally, the diagnostic capacity of the MLP for classifying individual FOVs as lesional 

or non-lesional was excellent, with 94.1% specificity and 94.5% sensitivity (AUC=0.984 

[Fig. S4]). Among lesional specimens, the MLP differentiated glial from non-glial 

specimens with 90% accuracy at the sample level (Fig. 7B). The modal diagnostic class 

predicted by the MLP was 90% accurate in predicting the diagnostic class rendered by 

pathologists in the setting of our survey (Fig. 7C).

The cases misclassified by the MLP included a minimally hypercellular specimen with few 

Rosenthal fibers from a pilocytic astrocytoma (patient 84) classified as non-lesional, rather 

than low-grade glioma. In this specimen, many of the FOVs resemble normal glial tissue 

(Fig. S5A). Another misclassified specimen from a patient with leptomeningeal metastatic 

carcinoma (patient 72) contained only 2 FOVs containing tumor (Fig. S5B). The 

glioblastoma specimen from patient 82 (Fig. S5C), misclassified as a non-glial tumor by the 

MLP, contained protein-rich structural elements that resembled the histoarchitecture of 

metastatic tumors imaged with SRH (Fig. S5D, patient 85). Despite these errors, the 

accuracy and overall ability of the MLP in automated detection of lesional status and 

diagnostic category provides proof-of-principle for how the MLP could be used for 

automated diagnostic predictions.

DISCUSSION

Accurate intraoperative tissue diagnosis is essential during brain tumor surgery. Surgeons 

and pathologists rely on trusted techniques such as frozen sectioning and smear preparations 

that are reliable but prone to artifacts that limit interpretation and may delay surgery. A 

simplified standardized method for intraoperative histology would create the opportunity to 

use intraoperative histology to ensure more efficient, comprehensive sampling of tissue 

within and surrounding a tumor. By ensuring high quality tissue is sampled during surgery, 

SRH raises the yield on testing biopsies for molecular markers (e.g. IDH and ATRX 

mutation, 1p19q co-deletion, MGMT and TERT-promoter alteration) that are increasingly 

important in rendering final diagnosis. In this manuscript, we report the first demonstration 
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of SRS microscopy in a clinical setting and show how it can be used to rapidly create 

histologic images from fresh specimens with diagnostic value comparable to conventional 

techniques.

Fluorescence-guided surgery16, mass spectrometry17, Raman spectroscopy18, coherent anti-

Stokes Raman scattering microscopy19,20, and optical coherence21 tomography, which 

exploit histologic and biochemical differences between tumor-infiltrated and normal tissues, 

have been proposed as methods for guiding excision of brain and other types of tumors22,23. 

To date, however, no microscopic imaging modality tested in a clinical setting has been 

successful in rapidly creating diagnostic-quality images to inform intraoperative decision-

making. Here we show that by leveraging advances in optics and fiber-laser engineering, it is 

possible to create an SRS microscope that is easy to operate, durable, and compatible with a 

patient care environment, which rapidly provides diagnostic histopathologic images.

SRH is well-suited for integration into the existing workflow for brain tumor surgery. A 

surgical instrument that can simultaneously collect biopsies for SRH and be tracked by a 

stereotactic navigational system would enable the linkage of histologic and positional 

information in a single display, as previously suggested24. Integration of SRH and surgical 

navigation would create the possibility of verifying that maximal safe cytoreduction has 

been executed throughout a surgical cavity. In situations where tumor is detected by SRH 

but cannot be safely removed, it might be possible to serve as a way to better focus the 

delivery of adjuvant therapies.

As medical data become increasingly computer-based, the opportunity to acquire virtual 

histologic sections via SRS microscopy creates numerous opportunities. For example, in 

many clinical settings where brain tumor surgery is carried out, neuropathology services are 

not available. Currently there are 785 board-certified neuropathologists serving the 

approximately 1,400 hospitals performing brain tumor surgery in the United States (Table 

S2). A networked SRS microscope, like the prototype introduced here, streamlines both 

sample preparation and imaging and creates the possibility of connecting expert 

neuropathologists to surgeons–either within the same hospital or in another part of the 

world–to deliver precise intraoperative diagnosis during surgery.

Computer-aided diagnosis may ultimately reduce the inter-reader variability inherent in 

pathologic diagnosis and might provide guidance in settings where an expert 

neuropathologist is not available. Our results and the work of others suggest that machine 

learning algorithms can be used to detect and diagnose brain tumors. Prior work in 

computer-aided diagnosis in neuropathology has shown promise in differentiating diagnostic 

entities in formalin-fixed, paraffin-embedded, H&E-stained whole slide images25,26. The 

ideal computer-aided diagnostic system for intraoperative histology would reliably predict 

diagnosis in small fresh tissue samples. The classifier reported here is capable of 

distinguishing lesional from non-lesional tissue samples and in predicting diagnostic class 

based on pooled tile data. In the future, we anticipate that a machine learning approach will 

be capable of finer diagnostic classification. We also hypothesize that the accuracy of 

diagnostic classifiers might also be improved via 1) exploring alternative neural network 

configurations and systems for convolution; 2) employing feature-based classification; 3) 
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utilizing support vector machines or statistical modeling approaches; and 4) applying rules 

for data interpretation that account for demographic factors and medical history.

OUTLOOK

SRS microscopy can now be utilized to provide rapid intraoperative assessment of tissue 

architecture in a clinical setting with minimal disruption to the surgical workflow. SRH 

images may ultimately be used to render diagnosis in brain tumor specimens with a high 

degree of accuracy and near-perfect concordance with standard intraoperative histologic 

techniques. Prospective, randomized clinical studies will be necessary to validate these 

results and define how SRH can be used to expedite clinical decision-making and improve 

the care of brain tumor patients.

METHODS

Study Design

The inclusion criteria for this study were as follows: 1) males and females; 2) subjects 

undergoing brain tumor resection at the University of Michigan Health System (UMHS); 3) 

subjects (or designee) able to provide informed consent; and 4) subjects in which there was 

excess tumor tissue beyond what was needed for routine diagnosis. The sample size was 

estimated at 100 patients to ensure adequate representation of all major tumor types for 

analysis and based on the design of prior studies comparing SRS and H&E. The central 

goals of this study were: 1) to build and verify the first clinical SRS microscope; 2) to judge 

SRH as a means of providing diagnostic histopathologic images; 3) to determine if machine 

learning could accurately classify SRH images fresh human brain tumor specimens. We 

began by collecting biopsies (N=125) from neurosurgical patients undergoing tumor 

resection (n=98) or anterior temporal lobectomy (n=3). Each specimen was imaged 

immediately after removal with SRS microscopy. A trained neuropathologist (S.C.P) then 

classified each biopsy based on WHO diagnostic criteria13. We then quantified the 

correlation between SRH and H&E tissue imaging through a survey administered to 

neuropathologists (S.R., M.S., K.M.). To quantify the SRH images, we utilized WND-

CHRM, which assigns 2,919 attributes to each image. We then used the quantified image 

attributes to build and train an MLP to classify the images based on diagnostic class. 

Diagnostic predictions were rendered based on the diagnostic class predicted most 

commonly by the MLP for FOVs in a given specimen.

Tissue Collection and Imaging

All tissues were collected in the context of a University of Michigan Medical School IRB-

approved protocol from patients who provided informed consent (HUM0000083059). 

Tissues in excess of what was needed for diagnosis were eligible for imaging. In a subset of 

patients where the frozen section was large enough to split (patients 72-101), half of the 

specimen was routed for SRH imaging, while half of the specimen became the tissue for 

clinical frozen section diagnosis.

To image tissue with the clinical SRS microscope, a small (approximately 3mm thick) 

portion of fresh tissue was placed on a standard uncoated glass slide in the center of a small 
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piece of two-sided tape and flattened to a thickness of 120μm in a manner similar to a 

standard squash preparation. Normal saline (50μL) was applied to the tissue and a coverslip 

was applied to the tissue and adhered to the slide, creating a chamber for imaging. This slide 

was then placed on a motorized stage and focused using standard transmission light 

microscopy. Using custom scripts in μ-Manager software and ImageJ software, two-channel 

(2845cm−1 and 2930cm−1) images were obtained in a mosaic fashion.

Our prototype system is built on an Olympus microscope body, and we developed a fully 

custom beam-scanning unit that seamlessly integrates the laser source through fiber delivery. 

We also developed control electronics for both the laser and the microscope. Our custom 

imaging software is based on the open-source microscopy platform μ-Manager. The imaging 

system appears as a “camera,” allowing us to leverage all the automated microscopy features 

provided by the μ-Manager environment to enable multi-color mosaic imaging.

Virtual H&E Coloring

Generating a virtual H&E image from the 2845cm−1 and 2930cm−1 images acquired from 

the SRS microscope utilizes a simple linear color-mapping of each channel. After channel 

subtraction and flattening (described in the following section), a linear color remapping is 

applied to both the 2845cm−1 and the 2930cm−1 channel. The 2845cm−1 image, a grayscale 

image, is linearly mapped such that a strong signal in the 2930cm−1 image maps to an eosin-

like reddish-pink color instead of white. A similar linear mapping is applied to the 2930cm−1 

image with a hematoxylin-like dark-blue/violet color mapped to a strong signal. Finally, 

these two layers are linearly added together to result in the final virtual-colored H&E image.

The exact colors for the H&E conversion were selected by a linear optimization based on a 

collection of true H&E-stained slides created by the UMHS Department of Pathology. An 

initial seed color was chosen at random for both H&E conversions. The previously described 

linear color-mapping and addition process was completed with these initial seed colors. The 

ensuing image was hand-segregated into a cytoplasmic and nuclear portion. These portions 

were compared with the true H&E images and a cytoplasmic and nuclear hue difference 

between generated false-colored H&E and true H&E was elucidated. The H&E seed colors 

were modified by these respective hue differences and the process was repeated until the 

difference between generated and true images was less than 1% different by hue.

Image Acquisition and Stitching

The procedure for generating a virtual-colored H&E image from the SRS microscope 

consists of 6 discrete steps:

1. A mosaic acquisition script is started on the control computer that acquires an 

(NxN) series of 1024×1024 pixel images from a pre-loaded tissue sample. These 

images are acquired at the 2845cm−1 and 2930cm−1 Raman shifts and saved as 

individual two-channel FOVs to a pre-specified folder.

2. The two-channel image is duplicated and a Gaussian blur is applied to the 

duplicated image. The original two-channel image is then divided by the 

Gaussian blur to remove artifacts of acquisition and tissue preparation.
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3. The 2845cm−1 channel is subtracted from the 2930cm−1 channel in each FOV.

4. New FOVs are created with the 2845cm−1 channel and the 2930cm−1 minus 

2845cm−1 channel.

5. The virtual-color H&E script (described in the above section) is run to create an 

H&E version of the subtracted and flattened tile.

6. The original tile is stitched as previously described27. The user is presented with 

an option to re-stitch with different stitching parameters if the initial stitch 

produces an unacceptable image. Upon successful stitching, a layout file is 

generated from the terminal positions of the individual tiles in the stitched image.

7. The virtual-color H&E images are stitched using the layout file generated in step 

#6, a significantly faster process than re-computing the stitching offsets and 

merges from scratch.

Survey Methodology

A computer-based survey consisting of 30 patients was developed and given to blinded 

neuropathologists (K.A.M, S.R., M.S.), who were presented with standard frozen H&E 

images and SRH images. All cases included in the survey were judged to have SRH and 

conventional H&E preparations that contained the essential architectural features required 

for diagnosis. Each image was accompanied by a short clinical history that included age 

group, sex, and presenting symptom(s). Survey responses were recorded automatically by 

the survey software. The intraoperative frozen and final pathologic diagnoses determined by 

standard clinical protocol employed by the UMHS Department of Pathology were also 

recorded. The survey responses were scored for accuracy on four levels: 1) for all 

specimens, whether tissue was lesional vs. non-lesional; 2) for lesional tissues, whether the 

origin was glial or non-glial; 3) for glial tumors, whether the tumor was low- or high-grade; 

and 4) for all tumors, the predicted diagnosis. Responses were considered concordant if 

accuracy scores were equal. The maximum possible score for each case was determined by 

the clinical frozen section diagnosis. For each case, the following diagnoses were used for 

statistical analysis: UMHS frozen section diagnosis, survey frozen section diagnosis, survey 

SRH diagnosis.

Statistical Analysis

For each pathologist, we calculated Cohen’s kappa28 for SRH vs. H&E for lesion/no lesion 

and for glioma/no glioma. This provides information on how well SRH and H&E agree. 

Kappa was also calculated for final diagnosis from SRH vs. truth (clinical frozen section 

diagnosis) and for H&E vs. truth (clinical frozen section diagnosis), where final diagnosis 

was one of eleven categories, which tells us how well each pathologist was able to detect the 

truth from either SRH or H&E. Lastly, we calculated the three-reader inter-rater reliability 

(Fleiss’ kappa29) for SRH lesion/no lesion, SRH glioma/no glioma, H&E lesion/no lesion, 

and for H&E glioma/no glioma. R software was used for all statistical analyses.
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No distributional assumptions are necessary for the kappa statistic. The only assumption is 

that the data are categorical and that SRH and H&E are measured on the same data, which 

they are. There is no estimate of variance for groups.

Generation of the MLP

The MLP was programmed with two software libraries: Theano and Keras. Theano (http://

deeplearning.net/software/theano/index.html) is a high-performance low-level mathematical 

expression evaluator used to train the MLP. Keras (http://keras.io) is a high-level Python 

framework that serves as a wrapper for Theano, allowing rapid iteration and testing of 

different MLP configurations.

The MLP is designed as a fully-connected, 1,024-unit, 1 hidden layer, neural network. It 

comprises 8 sequential layers in the following order: 1) dense input layer with uniform 

initialization; 2) hyperbolic tangent activation layer; 3) dropout layer with dropout 

probability 0.2; 4) dense hidden layer with uniform initialization; 5) hyperbolic tangent 

activation layer; 6) dropout layer with dropout probability 0.2; 7) dense output layer with 

uniform initialization; and 8) a softmax activation layer corresponding to the number of 

classifications (Fig. S6).

Training of the MLP was performed using a training set that was exclusive from the survey 

test set. Loss was calculated using the multiclass log-loss strategy. The selected optimizer 

was the “Adam” optimizer. The optimizer’s parameters were as follows: learning rate= 

0.001, beta_1=0.9, beta_2=0.999, and epsilon=1×10−8.

Image Processing and Analysis by the MLP

The process to convert a raw SRH image to a probability vector for each of the diagnoses is 

as follows:

1. Use FIJI to subtract the CH2 layer from the CH3 layer and flatten the image as 

described in the subsection “Tissue Collection and Imaging.”

2. Use FIJI to split the two-channel image into a separate CH2 layer and a CH3-

CH2 layer.

3. For each of the previous tiles, create 4 duplications of the tile with 90-degree 

rotations (“rotamers”).

4. Use WNDCHRM (http://scfbm.biomedcentral.com/articles/

10.1186/1751-0473-3-13) to generate signature files for each of the tiles from the 

previous step.

5. Normalize the signature files such that all of the feature values are uniformly and 

linearly mapped to the range (−1.0, 1.0).

6. (CH2). For each of the tiles that correspond to CH2-channel tiles, run the MLP as 

described above.
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7. (CH2). Gather all of the rotamers for a given tile and average (arithmetic mean) 

the prediction values from them to create one consolidated diagnosis-probability 

vector for a given CH2-channel tile.

8. Repeat steps 6-7 for the CH3-CH2 channel.

9. For a given tile, compare the CH2-channel and the CH3-CH2 channel and discard 

the diagnosis-probability vector for the tile that has a lower maximal probability 

value.

10. For a case-by-case diagnosis, group all of the tiles for a case, remove any tile that 

doesn’t have a diagnosis probability of >0.25, and diagnose the case with the 

most prevalent (mode) diagnosis among the set of tiles.

MLP Evaluation with the Leave-One-Out Approach

To test the diagnostic accuracy of the MLP, we used a leave-one-out approach for the 30 

patients that were used in the survey administered to neuropathologists. For each of the 30 

patients used to evaluate the MLP, all FOVs (n) from that patient were placed in the test set. 

The training set was composed of the 12,879-n remaining FOVs. The 12,879 FOVs were 

screened by a neuropathologist to ensure they were representative of the diagnosis they were 

assigned to. FOVs were classified as non-lesional, pilocytic astrocytoma, ependymoma, 

oligodendroglioma, low-grade diffuse astrocytoma, anaplastic oligodendroglioma, anaplastic 

astrocytoma, glioblastoma, meningioma, lymphoma, metastatic tumor, and 

medulloblastoma.

The MLP was trained for 25 iterations, with the following 26 iteration weights recorded to 

use for validation of the test set. The test set was fed into each of these 26 weights with the 

resulting probabilities of each of the 12 diagnostic classes averaged to create a final 

probability for each diagnosis for each FOV. The 12 diagnoses were condensed to four 

classes (non-lesional, low-grade glial, high-grade glial, and non-glial) to achieve diagnostic 

predictions. The low-grade glial category included FOVs classified as pilocytic astrocytoma, 

ependymoma, oligodendroglioma, and low-grade diffuse astrocytoma. The high-grade glial 

category included FOVs classified as anaplastic oligodendroglioma, anaplastic astrocytoma, 

and glioblastoma. The non-glial category included FOVs classified as meningioma, 

lymphoma, metastatic tumor, and medulloblastoma.

Nationwide Inpatient Sample Query

The Nationwide Inpatient Sample (NIS) database, obtained from the Healthcare Cost and 

Utilization Project of the Agency for Healthcare Research and Quality, was queried for years 

2010 and 2011. The NIS for these years contains discharge data for all discharges from a 

sample of hospitals representing 20% of all nationwide discharges from nonfederal hospitals 

using a stratified random sampling technique.

Brain tumor resections or biopsies were identified using combinations of International 

Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM) diagnosis and 

treatment codes that were previously used for studies of adult tumors30, pediatric tumors31, 

and pituitary tumors32. Primary tumor ICD-9 diagnosis and procedure code codes used 
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include 191.0-191.9, 225.0, 237.5, and 01.53, 01.59, 01.13, 01.14, respectively. Meningioma 

ICD-9 diagnosis and procedure codes used include 225.2, 192.1, 237.6, and 01.51, 01.13, 

and 01.14, respectively. Diagnosis code 198.3 and procedure codes 01.53, 01.59, 01.13, and 

01.14 were used for metastases. Diagnosis code 225.1 and procedure code 04.01 was used 

for vestibular schwannomas. Diagnosis code 227.3 and procedure codes 07.62 and 07.65 

were used for pituitary tumors.

The SRS microscopy system described in this publication is a prototype system that is 

intended for research use only. It does not comply with international safety standards nor has 

it received approval or clearance from any government agency such as the U.S. Food and 

Drug Administration (FDA).

Code availability

The computer code used to generate the results of this study is available upon reasonable 

request from the corresponding author, with the exception of proprietary portions of code 

used for the generation of the virtual H&E color scheme.

Data Availability

All raw and processed-image data generated in this work, including the representative 

images provided in the manuscript, are available from the corresponding author upon 

reasonable request.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Engineering a clinical SRS microscope
(A) SRS microscope in the UMHS operating room. (B) Key components of the dual-

wavelength fiber-laser-coupled microscope required to create a portable, clinically 

compatible SRS imaging system. The top arm of the laser diagram indicates the scheme for 

generating the Stokes beam (red), while the bottom arm generates the pump beam (orange). 

Both beams are combined (purple) and passed through the specimen. (C) Raw 2845cm−1 

image of human tissue before, and (D) after balanced-detection-based noise cancellation. 

HNLF = highly non-linear fiber; PPLN = periodically poled lithium niobate; PD = photo 

diode.
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Fig. 2. Creating virtual H&E slides with the clinical SRS microscope
(A) CH2 and (B) CH3 images are acquired and (C) subtracted. (D) The CH2 image is 

assigned to the green channel, and CH3-CH2 image is assigned to the blue channel to create 

a two-color blue-green image. Applying an H&E lookup table, SRH images (E) are 

comparable to a similar section of tumor (F) imaged after formalin-fixation, paraffin-

embedding (FFPE), and H&E staining. (G) Mosaic tiled image of several SRH FOVs to 

create a mosaic of imaged tissue. Asterisk (*) indicates a focus of microvascular 

proliferation, dashed circle indicates calcification, and the dashed box demonstrates how the 

FOV in (E) fits into the larger mosaic. Scale bars = 100μm.
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Fig. 3. Imaging of key diagnostic histoarchitectural features with SRH
(A) Normal cortex reveals scattered pyramidal neurons (blue arrowheads) with angulated 

boundaries and lipofuscin granules, which appear red. White linear structures are axons 

(green arrowheads). (B) Gliotic tissue contains reactive astrocytes with radially directed fine 

protein-rich processes (red arrowheads) and axons (green arrowheads). (C) A macrophage 

infiltrate near the edge of a glioblastoma reveals round, swollen cells with lipid-rich 

phagosomes. (D) SRH reveals scattered “fried-egg” tumor cells with round nuclei, ample 

cytoplasm, perinuclear halos (yellow arrowheads), and neuronal satellitosis (purple 

arrowhead) in a diffuse 1p19q-co-deleted low-grade oligodendroglioma. Axons (green 

arrowhead) are apparent in this tumor-infiltrated cortex as well. (E) SRH demonstrates 

hypercellularity, anaplasia, and cellular and nuclear pleomorphism in a glioblastoma. A large 

binucleated tumor cell is shown (inset) in contrast to smaller adjacent tumor cells. (F) SRH 

of another glioblastoma reveals microvascular proliferation (orange arrowheads) with 

protein-rich basement membranes of angiogenic vasculature appearing purple. SRH reveals 

(G) the whorled architecture of meningioma (black arrowheads), (H) monomorphic cells of 

lymphoma with high nuclear:cytoplasmic ratio, and (I) the glandular architecture (inset; 

gray arrowhead) of a metastatic colorectal adenocarcinoma. Large image scale bars = 

100μm; inset image scale bars =20μm.
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Fig. 4. SRH reveals structural heterogeneity in human brain tumors
(a) An MRI of a patient with a history of low-grade oligodendroglioma who was followed 

for an enlarging enhancing mass (yellow arrowhead) in the previous resection cavity (red 

circle). SRH imaging of the resected tissue reveals areas with low-grade oligodendroglioma 

architecture in some regions (left column) with foci of anaplasia (right column) in other 

areas of the same specimen. (b) Gangliogliomas are typically composed of cells of neuronal 

and glial lineage. SRH reveals architectural differences between a shallow tissue biopsy at 

the location indicated with a green arrowhead on the preoperative MRI where disorganized 

binucleated dysplastic neurons predominate (left), and a deeper biopsy (blue arrowhead) 

where architecture is more consistent with a hypercellular glioma (right). FFPE H&E images 

are shown for comparison.
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Fig. 5. Simulation of intraoperative histologic diagnosis with SRH
A web-based survey consisting of specimens from 30 patients (patients 72-101) imaged with 

both SRH and conventional H&E methods was administered to three neuropathologists. 

Neuropathologists recorded free-form responses as they would during a clinical 

intraoperative histologic consult. Responses were graded based on whether tissue was 

judged as (A) lesional or non-lesional, (B) glial or non-glial, and (C) on the accuracy of 

diagnosis. SRH and H&E preparations for six examples of portions of specimens presented 

in the survey are shown: gliotic brain tissue (patient 91), medulloblastoma (patient 101), 

anaplastic astrocytoma (patient 76), meningioma (patient 95), glioblastoma (patient 82), and 

metastatic carcinoma (patient 74). Scale bars = 50μm.
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Fig. 6. MLP classification of SRH images
The specimen from patient 87, a low-grade ependymoma, was classified by the MLP as a 

low-grade glial tumor. (A) An SRH mosaic depicting the low-grade glial tumor diagnostic 

class with individual FOVs designated by dashed lines (center). Four individual FOVs are 

depicted at higher scale, with the MLP diagnostic probability for all four categories listed 

above: P(NL) = probability of non-lesional; P(LGG) = probability of low-grade glial; 

P(HGG) = probability of high-grade glial; P(NG) = probability of non-glial. Representative 

FOVs include a FOV with a small number of ovoid tumor cells (arrowhead) classified as 

low-grade glioma (top left, orange outline), a FOV with high cellularity with frequent 

hyalinized blood vessels (arrowheads) classified as non-glial tumor (top right, green outline), 

a FOV with moderate cellularity and abundant piloid processes (bottom right, yellow 

outline) classified as a low-grade glioma, and a FOV with higher cellularity and several 

prominent vessels (arrowheads) classified as high-grade glial tumor (bottom left, blue 

outline). Scale bars are 100μm for the individual FOVs and 500μm for the mosiac image. (B) 

Probability heatmaps overlaid on the SRH mosaic image indicate the MLP-determined 

probability of class membership for each FOV across the mosaic image for the four 

diagnostic categories. Colored boxes correspond to the FOVs highlighted in A.
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Fig 7. MLP-based diagnostic prediction
(A) Heat map depiction of the classification of cases as lesional or non-lesional via MLP. 

Green checks indicate correct MLP prediction, red circles indicate incorrect prediction. (B) 

Heat map depiction of the classification of cases as glial or non-glial via MLP. Green checks 

indicate correct MLP prediction, red circles indicate incorrect prediction. (C) Summary of 

MLP results from test set of 30 neurosurgical cases (patients 72-101). The fraction of correct 

tiles is indicated by the hue and intensity of each heat map tile, as well as the predicted 

diagnostic class.
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Table 1

SRH vs Conventional Histology Survey Results

Specimen Type Imaging Modality NP1 NP2 NP3 Combined Accuracy

Correct Incorrect Correct Incorrect Correct Incorrect

Differentiating Non-lesional and Lesional Specimens

Normal SRH 4 1 5 0 5 0 93%

H&E 3 2 5 0 5 0 86%

Glial Tumor SRH 15 0 15 0 15 0 100%

H&E 15 0 15 0 15 0 100%

Non-Glial Tumor SRH 10 0 10 0 10 0 100%

H&E 10 0 10 0 10 0 100%

Total SRH 29 1 30 0 30 0 98%

H&E 28 2 30 0 30 0 97.7%

Combined accuracy 90% 100% 100% 95%

Concordance (k) 0.84 1 1

Differentiating Glial and Non-glial Tumors

Glial Tumor SRH 15 0 15 0 15 0 100%

H&E 15 0 15 0 15 0 100%

Non-Glial Tumor SRH 10 0 10 0 10 0 100%

H&E 10 0 10 0 10 0 100%

Total SRH 25 0 25 0 25 0 100%

H&E 25 0 25 0 25 0 100%

Combined accuracy 100% 100% 100% 100%

Concordance (k) 1 1 1

Differentiating Diagnostic Subtypes

Normal SRH 4 1 5 0 5 0 93%

H&E 3 2 5 0 5 0 86%

Glial Tumor SRH 14 1 12 3 13 2 86.6%

H&E 14 1 14 1 15 0 95.5%

Non-Glial Tumor SRH 10 0 10 0 10 0 100%

H&E 10 0 9 1 10 0 96.6%

Total SRH 28 1 27 3 28 2 92.2%

H&E 27 3 28 2 30 0 94.4%

Combined accuracy 91.6% 91.6% 97% 94%

Concordance (k) 0.924 0.855 0.923
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