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Background: The etiological profile of viruses among adult patients with community-acquired

pneumonia (CAP) has not been characterized yet. The aim of this study was twofold: first,

investigate the pathogen profiles and the molecular epidemiology of respiratory viruses

among Japanese CAP patients; and second, explore the clinical significance of viral infections.

Methods: A cross-sectional observational study was conducted at Kyorin University Hospital.

To identify respiratory pathogens, hospitalized CAP patients were enrolled, and reverse

transcriptase–polymerase chain reaction technology was applied alongside conventional

microbiological methods. Phylogenetic and pairwise distance analyses of 10 viruses were

performed. CAP patients were divided into four etiological groups (virus alone, bacteria alone,

co-detection of virus and bacteria, and not detected) and the clinical findings were compared.

Results: Seventy-six patients were enrolled. Bacteria alone were detected in 39.5% (n¼30) of

CAP patients. Virus alone or co-detection were found in 10.5% (n¼8) and 11.8% (n¼9) of cases,

respectively. Streptococcus pneumoniae and human metapneumovirus were the most frequently

detected bacterium and virus, respectively. Phylogenetic analyses of human metapneumo-

virus, human rhinovirus, and human respiratory syncytial virus showed that different

subgroups and genotypes might be associated with CAP. Respiratory failure was more

common when a virus was detected (both virus alone and co-detection groups; n¼17, 100%,

po0.05) than when a bacteria alone was detected (n¼17, 56.7%).

Conclusion: Prevalence of respiratory virus infection in CAP inpatients was 22.3%. The detected

viruses display high genetic divergence and correlate with increased respiratory failure.

& 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

www.elsevier.com/locate/resinv
www.elsevier.com/locate/resinv
http://crossmark.crossref.org/dialog/?doi=10.1016/j.resinv.2016.01.001&domain=pdf
http://dx.doi.org/10.1016/j.resinv.2016.01.001


r e s p i r a t o r y i n v e s t i g a t i o n 5 4 ( 2 0 1 6 ) 2 5 5 – 2 6 3256
1. Introduction

Community-acquired pneumonia (CAP) is a life-threatening
respiratory disease of worldwide importance [1]. According to
several studies from developed countries, the annual incidence
of CAP in adults is in the range of 0.5–1.1%, and the mortality
rate of hospitalized CAP patients is 4–14% [2]. Previous reports
have suggested that various pathogens including bacteria,
fungi, and viruses are associated with CAP [3]. Among these,
Streptococcus pneumoniae (pneumococcus) is a major cause of
CAP in adult patients, particularly in those with severe diseases
[2–5]. Bacteria such as Haemophilus influenzae, methicillin-
sensitive Staphylococcus aureus (MSSA), Legionella pneumophila,
and Moraxella catarrhalis are associated with CAP in adult
inpatients [2–5], while other types such as Mycoplasma pneumo-
niae are detected in relatively mild CAP in outpatients [6].

Until recently, respiratory viruses such as human respira-
tory syncytial virus (RSV), human rhinovirus (HRV), human
parainfluenza virus (HPIV), and human metapneumovirus
(HMPV) have been mainly associated with lower respiratory
tract infections (LRTI) including bronchitis, bronchiolitis, and
pneumonia in children [7–9].

Respiratory viruses such as RSV, HRV, HMPV, and adeno-
virus are present in two-thirds of children with CAP [10].

Apart from causing LRTI, these viruses can exacerbate asthma
and chronic obstructive pulmonary disease (COPD) [11–14]. For
example, Dowell et al. showed that RSVwas associated with 4.4%
of adult cases of LRTI during winter [15]. Recent molecular
epidemiological studies suggest that these viruses can be classi-
fied into numerous phylogenetic subtypes and genotypes. Spe-
cifically, there are over 150 genotypes of HRV species A to C
(HRV-A to -C). Similarly, RSV and HPIV species can be subclassi-
fied into several genotypes. Recent studies have demonstrated
the presence of these respiratory viruses and/or bacteria in adult
patients with CAP [16,17]. However, the molecular epidemiology
in adult CAP Japanese patients is poorly understood.

We conducted pathogen profiling and phylogenetic ana-
lyses of various respiratory viruses detected in hospitalized
CAP patients in Japan and characterized these patients in
terms of infectious viral and/or bacterial pathogens.
2. Patients and methods

2.1. Patients and study design

In this cross-sectional observational study, we recruited
consecutive patients admitted to Kyorin University Hospital
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(Tokyo, Japan) between August 2012 and August 2014 with a
diagnosis of CAP. Pneumonia was defined as the presence of

new infiltrates on chest X-rays along with other suggestive
signs and symptoms: cough, sputa, fever, chills, dyspnea,
pleuritic chest pain, disturbance of consciousness, and
crackles. Exclusion criteria included the following: (a) resi-
dence in a long-term nursing home or healthcare home;

(b) hospitalization within the preceding 90 days; (c) elderly
persons or physically disabled persons who needed health-
care; (d) continuous endovascular therapy (i.e., hemodialysis,
anti-cancer, or immunosuppressive drugs); (e) onset of pneu-
monia 48 h after admission; and (f) active tuberculosis.
2.2. Clinical data collection

The following data were recorded on admission: age, sex,
comorbid illnesses (chronic heart diseases, COPD, asthma,
other lung diseases, diabetes mellitus, or active cancer),
immunodeficiency status (i.e., use of immunosuppressive
drugs or prednisolone dose of Z5 mg/day, and HIV-positive
patients), use of anti-microbial drugs (anti-bacterial or anti-

influenza) before admission, and clinical or laboratory find-
ings. Respiratory failure was defined as PaO2 o60 mmHg or
SpO2 o90% in room air. In patients who underwent home
oxygen therapy, respiratory failure was diagnosed at the
point when further oxygen supply was needed to maintain
the patient’s previous condition.

The severity of pneumonia was assessed using the pneu-
monia severity index (PSI), a prediction rule with points
assigned based on age, coexisting diseases, and abnormal
physical findings. PSI stratifies CAP patients into five classes
(I–V) to predict their risk of mortality [18]. Severe pneumonia
is defined as PSI class IV or V. Follow-up variables included

the need for mechanical ventilation (invasive and non-inva-
sive) within 5 days of admission, and mortality within
30 days.
2.3. Samples

Samples collected on admission included sputum, nasophar-
yngeal swab (NPS), bronchoalveolar lavage fluid (BALF), blood,

and urine. Serological tests for Mycoplasma pneumoniae were
performed on admission and after several weeks, when
possible. Invasive diagnostic methods were conducted accord-
ing to clinical judgment. Respiratory samples for PCR-based
detection of respiratory viruses, Mycoplasma pneumoniae, and

Chlamydophila pneumoniae were collected separately from those
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intended for bacterial culture and were stored at �80 1C
until use.

2.4. Ethical approval

Samples were collected after written informed consent was
obtained from the subjects or their legal representatives. The
study protocol was approved by the Ethics Committee on
Human Research of Kyorin University Hospital (H24-021) on
July 31, 2012. The protocols were carried out in accordance
with approved guidelines.

2.5. Bacteriological examination

Acceptable sputum and BALF samples were cultured on 5%
blood agar, chocolate agar, and modified Conradi-Drigalski
agar for the isolation and identification of bacterial patho-
gens. Blood cultures were incubated under aerobic and
anaerobic conditions using the BacT/Alert system (bioMér-
ieux, Marcy, l'Etoile, France). Urine samples were used for the
detection of pneumococcus and L. pneumophila antigens using
BinaxNOWs (Alere Medical Co., Ltd., Shinjuku, Japan).

2.6. RNA extraction, PCR, and gene sequencing of the
pathogens

Samples were centrifuged at 3000g at 4 1C for 30min. Viral
RNA and DNA were extracted from supernatants using the
QIAamp Viral RNA Mini Kit (Qiagen, Valencia, CA, USA).
Reverse transcription was performed using PrimeScript™ RT
reagent Kit (Takara Bio, Otsu, Japan), according to the manu-
facturer’s instructions. Using PCR, we aimed to detect various
respiratory viruses such as HMPV, HRV, enterovirus, RSV,
influenza viruses A, B, and C (InfV-A, B, and C), HPIV, human
coronavirus, adenovirus, Mycoplasma pneumoniae, Chlamydo-
phila pneumoniae, cytomegalovirus (CMV), human parvovirus
B19, varicella zoster virus, and human bocavirus as described
previously [19–26]. PCR products were purified using MonoFas
DNA Purification Kit I (GL Sciences Inc., Shinjuku, Tokyo,
Japan). The purified products were sequenced with a BigDye
Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,
Foster City, CA, USA) using the above primers [19–26].
Sequence analysis was performed on an ABI 3130 Genetic
Analyzer (Applied Biosystems). The nucleotide sequences thus
obtained were given GenBank accession numbers from
LC020476 to LC020488.

2.7. Diagnostic criteria of causative pathogens

We considered that infection was caused by a specific
pathogen if one or more of the following criteria were met.
(1) Positive bacterial culture was obtained from acceptable
sputum samples with a predominant species and compatible
results from Gram staining. Samples were considered accep-
table when 425 polymorphonuclear cells were observed
under low-power magnification [27]. (2) The pathogen was
cultured from blood samples and, except for the lungs, no
other organs were known to be involved. (3) A urinary antigen
test was positive for pneumococcus or L. pneumophila. (4) A
fourfold increase in complement fixation titers for
Mycoplasma pneumoniae was detected from paired sera.
Finally, (5) respiratory viruses Mycoplasma pneumoniae or
Chlamydophila pneumoniae were detected in respiratory sam-
ples by PCR [28]. CAP patients were classified into 4 etiological
groups: virus alone, bacteria alone, co-detection of virus and
bacteria, and not detected. Clinical characteristics including
respiratory failure were compared between the groups.

2.8. Phylogenetic analyses by the neighbor-joining (NJ)
method and genotyping of HMPV, RSV, and HRV

We performed phylogenetic analyses using Molecular Evolu-
tionary Genetics Analysis (MEGA) software, version 5.0. Phy-
logenetic analysis of HMPV, RSV, and HRV were based on
parts of the F gene (317 bp), G gene (240–312 bp on RSV-A, 234–
294 bp on RSV-B), and VP4/VP2 coding region (390 bp), respec-
tively. Evolutionary distances were estimated using Kimura
two-parameter method, and phylogenetic trees were con-
structed using the NJ method. Reliability of the trees was
estimated using 1000 bootstrap replications.

2.9. Calculation of pairwise distances of detected
respiratory viruses

We calculated pairwise distances (p-distance) of the HMPV,
RSV, and HRV species detected in this study using MEGA
software, version 5.0. Calculations were based on the nucleo-
tide sequence of each virus, as described in Section 2.8.

2.10. Statistical analysis

Data was analyzed using StatView 5.0 (SAS Institute, Cary,
NC, USA). Differences in proportions between the groups
were assessed using Fisher’s exact test (2 groups) and the
chi-squared test (4 groups). Other comparisons between
groups were done using Mann–Whitney U (2 groups) and
Kruskal–Wallis (4 groups) tests. Statistical significance was
defined by a two-sided α-level of 0.05.
3. Results

3.1. Data obtained from patients

Seventy-six patients were enrolled in this study. Forty-eight
respiratory samples (sputum n¼46, BALF n¼2) were accep-
table for bacterial culture and identification. Respiratory
samples (NPS n¼59, BALF n¼2, sputum n¼15) were used to
detect viral and atypical pathogens by PCR-based methods.
Urine antigen tests and blood cultures were examined in 66
and 72 patients, respectively.

3.2. Pathogen profiles of inpatients with CAP

In this study, 76 CAP inpatients were enrolled between August
2012 and August 2014, as detailed in Tables 1 and 2. Bacteria
alone were detected in 30 patients (39.5%). Pneumococcus was
the most frequently detected bacterium (n¼11, 14.5%) followed
byMycoplasma pneumoniae (n¼4), MSSA (n¼4), H. influenzae (n¼2),
M. catarrhalis (n¼2), and Streptococcus anginosus (n¼2). Neither



Table 1 – Summary of patient characteristics.

　 All patients Virus alone Bacteria alone Co-detection Not detected p value

Number of patients 76 (100) 8 (10.5) 30 (39.5) 9 (11.8) 29 (38.2)
Agen 71.5 (58.3–78.0) 76.5 (69.5–78.0) 67.5 (48.8–74.8) 68.0 (64.0–77.0) 73.0 (52.0–78.0) NS
Male 51 (67.1) 4 (50.0) 22 (73.3) 5 (55.6) 20 (69.0) NS

Severe pneumonia (PSI class IV or V) 39 (51.3) 4 (50.0) 15 (50.0) 6 (66.7) 14 (48.3) NS

Wheezing 20 (26.3) 2 (25.0) 8 (26.7) 5 (55.6) 5 (17.2) NS
Respiratory failure 51 (67.1) 8 (100) a, b 17 (56.7) a, c 9 (100) c, d 17 (58.6) b, d o0.05
Mechanical ventilation 7 (9.2) 1 (12.5) 2 (6.7) 2 (22.2) 2 (6.9) NS
(Invasive mechanical ventilation) 5 (6.6) 0 (0) 1 (3.3) 2 (22.2) 2 (6.9) NS

Mortality within 30 days# 3/64 (4.7) 0/8 (0) 1/22 (4.5) 1/8 (12.5) 1/26 (3.8) NS

Duration of respiratory failure (days) 5.0 (0–10.0) 7.0 (5.0–11.3) 3.0 (0–8.8) 7.0 (4.0–16.0) 3.0 (0–10.0) NS

Laboratory findings
White blood cell count, 106 cells/mLn 11.1 (7.9–15.4) 7.7 (6.8–9.7) 13.1 (9.0–15.3) 9.4 (5.8–15.3) 11.1 (8.6–15.6) NS
C-reactive protein, mg/dLn 11.4 (4.1–23.1) 4.1 (2.8–11.3) 13.0 (6.8–22.0) 6.6 (2.7–20.2) 17.1 (2.7–25.9) NS

Procalcitonin, ng/mLn 0.39 (0.09–2.46) 0.13 (0.06–0.60) 0.80 (0.11–2.84) 0.29 (0.09–4.89) 0.41 (0.11–0.94) NS

Comorbidity
Asthma 8 (10.5) 1 (12.5) 3 (10.0) 3 (33.3) 1 (3.4) NS
COPD 20 (26.3) 2 (25.0) 9 (30.0) 2 (22.2) 7 (24.1) NS
Chronic heart disease 18 (23.7) 3 (37.5) 5 (16.7) 1 (11.1) 9 (31.0) NS
Immunodeficiency 10 (13.2) 0 (0) 2 (6.7) 2 (22.2) 6 (20.7) NS
Diabetes mellitus 13 (17.1) 2 (25.0) 6 (20.0) 1 (11.1) 4 (13.8) NS
Malignancy 4 (5.3) 0 (0) 3 (10.0) 0 (0) 1 (3.4) NS
Other lung disease 8 (10.5) 1 (12.5) 3 (10.0) 0 (0) 4 (13.8) NS

Antimicrobials
Anti-bacterial drug 22 (28.9) 5 (62.5) e, f 4 (13.3)e, g 0 (0)f, h 13 (44.8)g, h o0.05
Anti-influenza drug 4 (5.3) 1 (12.5) 1 (3.3) 0 (0) 1 (3.4) NS

Data are expressed as number (percentage) unless otherwise stated.
n Data are expressed as median (IQR).
# Data are expressed as number of deaths/n (percentage) and missing date was excluded. NS: not significant.
a p¼0.035: virus alone vs bacteria alone.
b p¼0.036: virus alone vs not detected.
c p¼0.018: co-detection vs bacteria alone.
d p¼0.036: co-detection vs not detected.
e p¼0.010: virus alone vs bacteria alone.
f p¼0.010: virus alone vs co-detection.
g p¼0.016: bacteria alone vs not detected.
h p¼0.010: co-detection vs not detected.
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Mycoplasma pneumoniae nor Chlamydophila pneumoniae were

detected by PCR. All patients infected with Mycoplasma pneumo-

niae were diagnosed using paired sera.
In 8 of the 76 patients (10.5%), viral infections alone were

detected; they included HMPV (n¼3), CMV (n¼2), RSV (n¼1),

InfV-A (n¼1), and HPIV (n¼1). Furthermore, bacterial and

viral co-detection was found in 9 (11.8%) patients, and in all

those with HRV, where the main pathogenic pattern was

HRVþpneumococcus (n¼2). No pathogens were detected in

29 (38.2%) patients. Three patients (MSSA/Pseudomonas aeru-

ginosa, n ¼1; unknown, n¼1; HRV/pneumococcus, n¼1) died

within 30 days of admission. The first two patients died of
respiratory failure on days 3 and 17, while the third died on
day 2 from severe sepsis.

3.3. Proportion of patients with severe pneumonia among
the groups

No significant differences were found between the etiological
groups (virus alone, bacteria alone, co-detection, or not
detected) and the proportions of patients with severe pneu-
monia (PSI IV or V) in each of them (Table 1).

However, significant differences between the groups were
found in relation to rates of respiratory failure and antibiotics use.



Table 2 – Distribution of detected pathogens.

Virus alone 8
HMPV 3
CMV 2
RSV 1
InfV-A 1
HPIV 1

Bacteria alone 30
Pneumococcus 11
M. pneumoniae 4
MSSA 4
M. catarrhalis 2
H. influenzae 2
S. anginosus 2
P. aeruginosa 1
E. coli 1
S. marcescens 1
PneumococcusþH. influenzae 1
P. aeruginosaþMSSA 1

Virusþbacteria 9
HRV
Pneumococcus 2
Group G Streptococcus 1
PneumococcusþH. influenzae 1

HMPV
Pneumococcus 1
MSSA 1
PneumococcusþH. influenzae þMSSA 1

RSV
Pneumococcus 1
CMVþpneumococcus 1

HMPV: human metapneumovirus; CMV: cytomegalovirus; RSV:
respiratory syncytial virus; InfV-A: influenza virus A; HPIV: human
parainfluenza virus; HRV: human rhinovirus; Pneumococcus:
Streptococcus pneumoniae; MSSA: methicillin sensitive Staphylococcus
aureus.
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3.4. Virus-positive (virus alone and co-detection groups)
vs bacteria alone groups

Among CAP patients, the frequency of respiratory failure was

more common when a virus was detected (both virus only

and co-detection groups, n¼17, 100%, po0.05) than in bac-

teria alone cases (n¼17, 56.7%; Table 1).
Respiratory failure in the virus-positive groups (virus

alone, median 7, interquartile range (IQR) 5–11.3 days; co-

detection, median 7, IQR 4–16 days) lasted longer than in the

bacteria alone group (median 3, IQR 0–8.8 days).
3.5. Co-detection group vs bacteria alone group

The co-detection group (100%) was more susceptible to

respiratory failure than the bacteria alone group (56.7%,

po0.05). The combinations of pathogens found in the co-

detection group are shown in Table 2. The need for invasive
mechanical ventilation was higher in the co-detection group

(n¼2, 22.2%) than in the bacteria alone (Mycoplasma pneumo-

niae) group (n¼1, 6.7%), but this result was not statistically

significant (p¼0.06). The combinations of causative
pathogens in the co-detection group were HRVþpneumococ-
cus (n¼1), and HRVþpneumococcusþH. influenzae (n¼1).

3.6. Genetic and phylogenetic properties of respiratory
viruses detected in CAP inpatients

We constructed phylogenetic trees based on the nucleotide
sequences of genes from the various viruses. Phylogenetic
trees constructed by the NJ method are shown in Fig. 1a–c.
The most commonly detected virus was HMPV (HMPV alone,
3 patients; HMPVþbacteria, 3 patients). Phylogenetic analysis
confirmed the HMPV subgroups to be A2 (2 strains), B1
(1 strain), and B2 (3 strains), which may be prevalent in Japan.
Three RSV strains (RSV alone, 1 patient; RSVþbacteria, 2
patients) were detected among inpatients, and their geno-
types were confirmed as ON1 (1 strain) and BA9 (2 strains). In
addition, 4 HRV strains (HRVþbacteria) were detected, all of
which belonged to HRV-A genotypes (HRV-A1, HRV-A29,
HRV-A103, and HRV-A71).

The p-distance values between the detected HMPV, RSV,
and HRV strains were 0.09670.061, 0.4770.40, and 0.2270.031,
respectively. These results indicate that the viruses belonged
to various subgroups and genotypes, and the strains displayed
relatively high genetic diversity.
4. Discussion

We conducted pathogen profiling of Japanese inpatients (76
cases) with CAP and performed genetic analyses of the
various respiratory viruses detected such as HMPV, RSV,
and HRV. Bacteria alone were detected in 39.5% patients (30
cases), while viruses alone were detected in 10.5% patients (8
cases). Co-detection was noted in 11.8% patients (9 cases).
Pneumococcus and HMPV were the most commonly detected
bacterium and virus, respectively. In addition, phylogenetic
analyses of HMPV, RSV, and HRV indicate that different
subgroups and genotypes of the viruses may be associated
with CAP inpatients in Japan.

Many previous reports have suggested that pneumococcus
is a major causative pathogen in CAP [2–5,28]. For example,
Lim et al. showed that pneumococcus was the predominant
causative bacterium in hospitalized CAP patients in the
United Kingdom, followed by Chlamydophila pneumoniae and
H. influenzae [29]. Ishida et al. reported that the bacterial
pathogens in Japanese CAP patients were pneumococcus,
H. influenzae, and Mycoplasma pneumoniae, in descending order
of prevalence [30]. The detection frequencies of the isolated
bacteria were similar to those in the present study.

Few studies have been reported on pathogen profiles,
including respiratory viruses, in adult Japanese CAP patients
[31]. In addition, the molecular epidemiology of CAP-
associated viruses is poorly understood; although, some
CAP-associated respiratory viruses such as HMPV and HRV-
C have recently been confirmed [32–34]. Our results show that
HMPV, RSV, HRV, and HPIV are associated with CAP in adult
inpatients. The viruses were classified into subgroups and
genotypes based on genetic divergence in the phylogenetic
trees (Fig. 1a–c). This indicates that viruses such as HMPV,
RSV, and HPIV could have been associated with over 10% of
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CAP inpatients. Although we found no correlation between
the phylogenies of these viruses and disease severity, the
estimate was inferred from the seasonal prevalence of these
strains [35]. Regarding CMV detection, it is not possible to
distinguish between active respiratory infection and asymp-
tomatic/latent infection, especially in clinically ill patients
[36,37].

The present study confirmed two previous observations.
First, bacteria (alone) were the most frequently detected
pathogens among CAP patients (39.5%), and there was equal
prevalence of virus only (10.5%) and co-detection (11.8%), as
reported before [28,38,39]. Thus, viral infections should be
considered major pathogens of CAP, even in adult patients.

Second, respiratory failure on admission was significantly
more common (po0.05) and lasted longer in the virus or co-
detection groups than in the bacteria alone group. Similarly,
Johansson et al. reported that co-infected CAP patients
suffered from tachypnea and required oxygen therapy over
a longer period compared with subjects infected with bacteria
alone [40].

Bacterial and viral co-infections may increase the severity
of pneumonia. Several mechanisms have been proposed such
as alteration of the host immune response, deterioration of the
respiratory status following co-infection with pneumococcus
and influenza virus in mice [41], and increased susceptibility to
bacterial (pneumococcus) and/or viral infection (HMPV) caused
by previous viral (HMPV/influenza virus) infections in mice
and in vitro [42,43].

Here, we show that 2 of the 4 patients in the co-detection
group with HRV and bacteria (pneumococcus or pneum-
ococcusþH. influenzae) required mechanical ventilation. Pre-
vious studies reported that HRV caused secondary bacterial
infections in up to 60% of COPD patients due to cleavage of
antimicrobial peptides, secretory leukoprotease inhibitor or
elafin, by virus-induced neutrophil elastase, supporting a
hypothesis that co-detection (HRVþbacteria) itself is vulner-
able to more severe respiratory status. [44–46]. Here, bacteria
were co-detected in all 4 HRV patients, which might explain
the high frequency of invasive mechanical ventilation.
Comorbidity may have an impact on the etiology of CAP;
some studies have shown that patients with cardiovascular
Fig. 1 – (a) Phylogenetic tree of HMPV nucleotide sequences base
by the neighbor-joining method using MEGA software 5.0. Dista
method. Bootstrap values Z80% are shown at the branch node
strains (n¼12). The following references strains were used: NL/0
CAN97-83 (AY145296), O0601 (EF589610), JPS03-240 (AY530095),
(EU814623), JTY06-1 (EU127917), CAN98-75 (M18761), and NL/1/9
sequences based on the G gene (240–312 bp). The phylogenetic
MEGA software 5.0. Distances were calculated according to Kim
shown at the branch nodes. The tree includes the present strains
strains were used: A2 (M11486), Long (AY911262), AL19452-2 (A
(AF348808), LLC242-282 (AY114150), NY_CH09_93 (AF065254), M
(AB470478), MY-2444006-11 (JX256871), 18537 (M17213), Ken_2_0
(AF233929), BA4128_99B (AY333364), RSV/YOK/07/4 (AB551076),
nucleotide sequences based on VP4/VP2 coding region (390 bp).
joining method using MEGA software 5.0. Distances were calcula
values Z80% are shown at the branch nodes. The tree includes
sequences of the reference strains were obtained from picornav
disease are vulnerable to viral CAP [47,48]. However, we found

that the proportions of comorbid illnesses (i.e., COPD,

asthma, and chronic heart disease) did not differ between

groups (virus alone, bacteria alone, co-detection) (Table 1).
Thus, we conclude that viral and bacterial co-infection

could lead to deterioration of respiratory status in adult CAP

patients.
The rate of detection of influenza virus in CAP patients

(1.3%) was lower than previously reported (4.4–9.5%) [14,28,39].

This might reflect the high frequency of neuraminidase

inhibitors (NAIs) administered to patients with influenza in

Japan [49].
Our study had the following limitations. First, it was

conducted at a single tertiary center in the west side of

Tokyo; hence, results may be affected by both anti-bacterial

and anti-influenza drugs prescribed prior to admission by

doctors in that area. Second, seasonal influenza virus was

detected in only one case. This may be a result of the

characteristic facilities of a university hospital. Hence, there

may have been some bias in the selection of the present

subjects.
Finally, upper respiratory samples, such as NPS, were used

for viral detection in this study. It has been suggested that

some respiratory viruses such as HRV and HMPV can be

detected in these samples in up to 2.1% of healthy adults

[17,50]; however, we did not examine healthy adult controls.

Self et al. reported that any respiratory virus could be

associated with adult CAP; therefore, the viruses detected in

this study were possible pathogens.
To the best of our knowledge, this is the first genetic and

phylogenetic investigation of viral infections in Japanese

adult CAP patients.
5. Conclusion

This study demonstrates that respiratory viruses (i.e., HMPV,

RSV, or HRV) displaying high genetic divergence are present

in approximately 22.3% of adult CAP patients in whom viral

infections can accelerate respiratory failure.
d on F gene (317 bp). The phylogenetic tree was constructed
nces were calculated according to Kimura’s two-parameter
s. The tree includes the present strains (n¼6) and reference
0/1 (AF371337), CAN99-81 (M18759), NL/17/00 (AY304360),
NL/1/99 (AY304361), JPS03-194 (AY530094), CAN97-82
4 (AY304362). (b) Phylogenetic tree of RSV nucleotide
tree was constructed by the neighbor-joining method using
ura’s two-parameter method. Bootstrap values Z80% are
(n¼3) and reference strains (n¼20). The following references
F233901), NY20 (AF233918), MO02 (AF233910), SA99V1239
O55 (AF233915), LLC235-267 (AY114149), NG-016-04
0 (AY524575), NY01 (AF233931), CH93_9b (AF065251), MO35
and NG-040-07 (AB470478). (c) Phylogenetic tree for HRV-A
The phylogenetic tree was constructed by the neighbor-
ted according to Kimura’s two-parameter method. Bootstrap
the present strains (n¼4) and reference strains (n¼12). The
iridae.com (URL: http://www.picornaviridae.com/).

http://www.picornaviridae.com/
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