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Abstract

MrBayes, using Metropolis-coupled Markov chain Monte Carlo (MCMCMC or (MC)3), is a popular program for Bayesian
inference. As a leading method of using DNA data to infer phylogeny, the (MC)3 Bayesian algorithm and its improved and
parallel versions are now not fast enough for biologists to analyze massive real-world DNA data. Recently, graphics
processor unit (GPU) has shown its power as a coprocessor (or rather, an accelerator) in many fields. This article describes
an efficient implementation a(MC)3 (aMCMCMC) for MrBayes (MC)3 on compute unified device architecture. By dy-
namically adjusting the task granularity to adapt to input data size and hardware configuration, it makes full use of GPU
cores with different data sets. An adaptive method is also developed to split and combine DNA sequences to make full use
of a large number of GPU cards. Furthermore, a new “node-by-node” task scheduling strategy is developed to improve
concurrency, and several optimizing methods are used to reduce extra overhead. Experimental results show that a(MC)3

achieves up to 63� speedup over serial MrBayes on a single machine with one GPU card, and up to 170� speedup with
four GPU cards, and up to 478� speedup with a 32-node GPU cluster. a(MC)3 is dramatically faster than all the previous
(MC)3 algorithms and scales well to large GPU clusters.

Key words: MrBayes, GPU, adaptive task decomposition, task scheduling.

Introduction
Phylogeny means the sequence of events involved in the
evolutionary development of a species or taxonomic group
of organisms. And it is typically formulated as phylogenetic
trees. A great number of numerical methods have been pre-
sented for using DNA data to infer phylogenetic trees, includ-
ing parsimony method (Swofford 1999), numerous distance
matrix methods (Saitou and Nei 1987), maximum likelihood
method (Olsen et al. 1994; Lewis 1998; Schmidt et al. 2002),
and Bayesian method (Rannala and Yang 1996; Mau and
Newton 1997; Yang and Rannala 1997; Mau et al. 1999; Li
et al. 2000). The Bayesian method outstrips other methods in
terms of phylogenetic inference, including easy interpretation
of results, the capability to incorporate prior information (if
any), and several computational advantages (Larget and
Simon 1999).

Bayesian phylogenetic inference is an optimization-based
method similar to maximum likelihood method (Huelsen-
beck et al. 2001). The phylogenetic tree with the highest pos-
terior probability might be chosen as the best estimate of
phylogeny. (MC)3 algorithm is one of the numerical methods
available to approximate the posterior probability. The de-
tailed algorithm can be found in Altekar et al. (2004). (MC)3

runs H (usually H> 1) Markov chains, (H� 1) of which are
heated. Compared with a cold (or unheated) chain, a heated
chain is more likely to accept new trees (a new tree is

proposed by stochastically perturbing an old tree). The pro-
cedure of (MC)3 is as follows:

1) Let ’i denotes the current tree of Markov chain i. If this is
the first iteration, randomly choose an initial value for ’i.
This is done for all H chains.

2) For all chains, i 2 {1,2, . . . , H},
a) Propose a new tree’i

0 by stochastically perturbing’i.
b) Calculate the acceptance probability Ri

0 for ’i
0.

R0i ¼ min
h
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where for the cold chain, �i = 1.
c) Draw a random variable Ui from a uniform distribu-

tion on the interval (0, 1). If Ui< Ri
0, then accept ’i

0,
namely, let ’i =’i

0.
3) After all chains have advanced a given number of itera-

tions, randomly choose two chains (j and k) to swap
states. The acceptance probability R for swapping
states is:

R ¼ min½1,ðf ’k j Xð Þ
�jf ’j j X
� ��k
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4) Draw a random variable U from a uniform distribution
on the interval (0, 1). If U< R, then accept the swap of
states, namely, chains j and k swap states.

5) Go back to step 2.

To calculate the acceptance probability of the proposed
new tree ’i

0, chain i should first compute the global likelihood
L, which is the most time-consuming part and is more often
optimized by most parallel versions. To calculate L, Felsenstein
presented a recursive algorithm (Felsenstein 1981). We
denote the length of a given alignment of DNA sequences
(i.e., the number of characters per taxa) M, the number of taxa
N, and the number of chains H. Transition probability matri-
ces Q = qXY are calculated for all the nodes, except the root
node of the new tree ’i

0. Q contains the instantaneous tran-
sition probabilities (qXY) for a certain DNA nucleotide X to
mutate into another nucleotide Y (X,Y 2 A-Adenine, C-Cyto-
sine, G-Guanine, T-thymine), according to the substitution
model that chain i adopts. Then chain i traverses ’i

0 in post
order and computes the conditional likelihoods of each in-
ternal node from the Qs and conditional likelihoods of its two
(left and right) child nodes. After the conditional likelihoods
of the root node have been figured out, chain i uses them to
calculate all the local likelihoods of ’i

0 and, in turn, L.
Next-generation DNA sequencing technology has proved

to decrease the cost and increase the throughput of DNA
sequencing significantly, while maintaining the high quality
of data, which gave rise to the “Big Bang” of DNA data. To
speedup original (MC)3 algorithm, some improved and par-
allel algorithms have been presented. p(MC)3 (pMCMCMC) is
a chain level coarse-grained parallel algorithm, which distrib-
utes all Markov chains involved among processes and then
runs these processes in parallel (Altekar et al. 2004). Moreover,
the p(MC)3 algorithm adopts a point-to-point synchroniza-
tion strategy and a swapping-heats mechanism to minimize
the interprocess communication overhead. However, the
concurrency of p(MC)3 is limited by the number of chains
used in the analysis, which is typically small for most of real-
world applications. Both parallel implementation of Bayesian
phylogenetic inference (Feng et al. 2003, 2006) and a hybrid
parallel algorithm h(MC)3 (hMCMCMC) (Zhou et al. 2010)
parallelize (MC)3 at two levels: the chain level and the DNA
subsequence level. The difference between these two algo-
rithms is how to implement the DNA subsequence level par-
allelism. Both algorithms improve the concurrency of (MC)3.

Recently, graphics processor unit (GPU) has become a
programmable many-core coprocessor with strong compu-
tational power and high memory bandwidth. A GPU has a
large number of cores grouped into “stream multiprocessors”
(SMs), which can run thousands of threads concurrently.
Many applications have been accelerated using GPU, from
general signal processing or physics simulation to computa-
tional finance or computational biology (NVIDIA 2009). The
compute unified device architecture (CUDA) introduced by
NVIDIA is the most important reason of the prosperity of
general purpose computing on graphics processing units. It is
a general purpose parallel computing architecture and a par-
allel programming model. It allows developers to program

NVIDIA GPU using a minimally extended version of C lan-
guage in a fashion very similar to central processing unit
(CPU) programming. The function of the GPU part of a
CUDA program is called “kernel,” which is executed by thou-
sands of threads organized into “blocks.” The threads in a
block are divided into “warps.” The warp is the basic sched-
uling unit of GPU, and the threads in a warp must run syn-
chronously on an SM. Another important consideration of
CUDA programming is memory hierarchy. Global memory is
the largest memory space but the slowest. So, loading data
into much faster but much smaller shared memory and then
accessing data in shared memory repeatedly is a common
strategy.

To use the powerful GPU to speed (MC)3 up, a DNA
subsequence level fine-grained parallel algorithm g(MC)3

(gMCMCMC) (Pratas et al. 2009) exclusively focuses on the
calculation of conditional likelihoods. Nonetheless, the
g(MC)3 algorithm is only a proof-of-concept work, because
it barely uses GPU to accelerate part of (MC)3 and pays no
attention to CPU–GPU communication overhead. The latest
parallel algorithm n(MC)3 (nMCMCMC) (Zhou et al. 2011)
on GPU is a CPU–GPU cooperative algorithm. It inherits part
of the idea of g(MC)3, putting calculation of conditional like-
lihoods into GPU to accelerate it. It is worth noticing that this
algorithm has resolved some significant drawbacks (e.g., too
much CPU–GPU communication) of g(MC)3.

New Approaches
This article proposes an adaptive algorithm a(MC)3 to im-
prove (MC)3 on the CUDA platform. First, compared with its
previous version, n(MC)3, a(MC)3 determines the task gran-
ularity dynamically, so as to make full use of computing
power with different data sets and different hardware config-
urations. n(MC)3 uses very fine grain parallelism, which guar-
antees high saturation of GPU computational units, but
causes heavy communication cost and a waste of free threads.
So, a(MC)3 uses fine-grain or coarse-grain tasks for different
environments to reduce memory accesses, synchronization,
or communication overhead, or redundant calculation.

a(MC)3 also develops a new task scheduling strategy to
improve concurrency. “Node-by-node” pipelining model
takes the place of “chain-by-chain” pipeline used in n(MC)3.
This scheduling strategy overlaps data transmission with
kernel execution and helps GPU units featuring computing
capability 2.x or higher to execute multiple kernels in different
streams concurrently. This will be introduced in detail in
Materials and Methods section.

Furthermore, several optimization methods are used to
reduce extra overheads. a(MC)3 also uses an adaptive
method to split and combine DNA sequences to make full
use of a large number of GPU cards. Experimental results
show that, a(MC)3 is faster than all the known (MC)3 algo-
rithms, either on a single machine with single or multiple GPU
cards, or on a GPU cluster.

Results and Discussion
We evaluate the performance of a(MC)3 on two kinds of
multi-GPU platforms, personal computer and GPU cluster.
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We first test it on a personal computer with four graphics
cards, compared with other typical parallel (MC)3 algorithms
in speed and scalability. And then experiments on a GPU
cluster show that a(MC)3 has good scalability. a(MC)3 is im-
plemented by modifying the parallel version of MrBayes ver-
sion 3.1.2 into a CUDA version. For the compilation of the
codes running on the GPU side, the compiler NVCC provided
by NVIDIA CUDA Toolkit Version 4.2 is used. The compiler
GCC version 4.46 with the -O3 flag is used to compile all the
CPU-side source codes. For the chain level parallelism on the
CPU side, MPICH2 version 1.2.1 is used. To get the result, we
run each experiment five times. Each execution uses the 4� 4
nucleotide substitution model with eight Markov chains and
lasts for 100,000 generations.

Speedup

This experiment is conducted on a computer equipped with
four NVIDIA GeForce GTX 480 graphics cards (table 1). As the
control group, the performance of the n(MC)3 and the CUDA
version of MrBayes 3.2.1 are also tested. The serial version of
MrBayes 3.1.2 is chosen as the “fastest known” serial algo-
rithm. Then, the speedups of other algorithms including
a(MC)3 are computed according to it. We use five real-
world data sets (table 2) and 10 artificial DNA data sets.
The first two real data sets come from GenBank (Xie et al.
2005, 2008) and others from Dr. Qiang Xie’s personal com-
munication. Artificial data sets are generated by replicating or
cutting real data sets, which remain the same number of taxa
(60) but have various DNA lengths from 1,000 to 10,000.

We compare the average execution time of the “fastest
known” serial algorithm MrBayes 3.1.2 and a(MC)3 with one
GPU card, using 10 artificial data sets (fig. 1). The new algo-
rithm improves calculation speed greatly, and the gap widens
as the scale of data set increases.

We also test the run time of processing real-world data sets
on the platforms and compute the speedup compared with

the serial MrBayes 3.1.2 (table 3). All algorithms use one GTX
480 card. We can see that a(MC)3 spends the least time. What
is more, with more taxa and a longer DNA sequence, a(MC)3

achieves higher speedup.
In addition, we can see speedups of several parallel algo-

rithms with one GPU card on artificial data sets (fig. 2). We
test both single- and double-precision versions of a(MC)3 and
test only single precision versions of the control group.
Double-precision a(MC)3 cannot analyze the last two data
sets because of the insufficient global memory. We can see
that a(MC)3 is much faster than the other two algorithms on
all data sets. Its single-precision version is, respectively, up to
2.86� and 6.23� faster than n(MC)3 and MrBayes 3.2.1, even
its double-precision version is up to 52% and 3.31� faster
than the single-precision versions of the other two algorithms.
Moreover, MrBayes 3.2.1 almost keeps a fixed speedup
around 8 on data 5 to data 10. Similar problem happens to
n(MC)3. a(MC)3, however, keeps smooth speedup improve-
ment until the problem size (the length of taxa) approaches
to 8,000, which implies that it can solve larger problems more
efficiently on fixed hardware configuration, that is, it could
well have good scalability.

Effectiveness of different strategies used by a(MC)3 is tested
while n(MC)3 is used as the base line (fig. 3). n(MC)3 stream
denotes the version only using “node-by-node” pipelining
model, and similarly n(MC)3 kernel denotes the version
only using dynamic task granularity.

We can see that n(MC)3-stream strategy achieves nearly
40% speedup and drops quickly when DNA length increases.
It is because n(MC)3 uses very fine-grain parallelism, which
guarantees enough threads saturation and utilization when
there is a larger DNA length and more taxa. This reduces the
benefit of overlapping data transmission of the pipelining
model.

On the other hand, the finer tasks granularity, the heavier
communication overhead. So, n(MC)3-kernel performs well
on big data sets, which remedies the disadvantage of the
pipelining model. As we can see, the two different strategies
cooperate and achieve almost three times faster than n(MC)3.
The next section explains the two strategies in detail.

Speedups of two fastest algorithms, a(MC)3 and n(MC)3,
are tested on multiple GPUs (fig. 4). As MrBayes runs eight
different Markov chains simultaneously, in this experiment,
both algorithms distribute eight chains evenly among eight
independent processes. And then these eight processes are
assigned evenly to multiple GPU cards to implement the
DNA subsequence level fine-grained parallelism. We can see

Table 1. Systems Setup.

Personal Computer

OS CentOS 6.2

CPU 1� Intel(R) Xeon(R) CPU E5645 processor

Memory 2� 2 GB DDR3 1333

GPU 4�NVIDIA GeForce GTX 480

Graphics driver NVIDIA device driver Version 295.41

Intel(R) Xeon(R) CPU E5645

Core family 6

No. of cores 6

Core clock 2.4 GHz

NVIDIA GeForce GTX 480

Compute architecture Fermi

No. of CUDA cores 480

Core clock 1.4 GHz

Global memory 1,536 MB GDDR5

No. of kernels run concurrency 16

Table 2. DNA Data Sets Used in Experiments on PC.

Data Set Taxa DNA Length(M)

1 26 1,546

2 37 2,238

3 111 1,506

4 234 1,790

5 288 3,386
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that a(MC)3 is far superior to n(MC)3 in both wall time and
scalability. It achieved up to 170� speedup over the serial
algorithm on a quad-GPU configuration.

Scalability

For any parallel algorithm (system), with a fixed problem size,
its speedup will decrease as the number of processors in-
creases because of the increasing ratio of communication
overhead to effective computation. If a parallel algorithm
achieves increasing speedup with increasing problem size
on a fixed number of processors, it is possible to keep a con-
stant efficiency (the ratio of speedup to the number of pro-
cessors) by increasing both problem size and the number of
processors, that is, the algorithm is scalable.

We can see that (fig. 4) the efficiency of a(MC)3 drops
slightly faster than that of n(MC)3 as the number of GPU
cards increases with the fixed length of taxa. However, with a
fixed number of GPU cards, the efficiency of a(MC)3 increases
much faster than that of n(MC)3 as the length of taxa in-
creases. Taken together, a(MC)3 has better scalability than
n(MC)3.

GPU Cluster

Experiments on GPU clusters use four large data sets that all
come from real-world DNA data (Regier et al. 2010; Soltis et al.
2011; Thuiller et al. 2011; Wiegmann et al. 2011) and can be
got freely from GenBank. To facilitate comparison with
others, all data sets are cut to 80 taxa (table 4).

To test a(MC)3 on GPU cluster, we choose Tianhe-1A (TH-
1A) as our experimental platform. Tianhe-1A is one of the few
Petascale supercomputers in the world, located at the
National Supercomputing Center in Tianjin, China. It once
became the world’s fastest supercomputer with a peak per-
formance of 2.507 petaflops in October 2010. Tianhe-1A is
now equipped with 2,048 NUDT FT1000 heterogeneous pro-
cessors, 14,336 Xeon X5670 processors, and 7,168 NVIDIA
Tesla M2050 GPU cards.

We conduct our experiments on 32 nodes of TH-1A, each
of which is equipped with one GPU card. Here, we use
NVIDIA CUDA Toolkit Version 4.0 and GCC version 4.12.

We can see from experimental results on Tianhe-1A (fig. 5)
that there is no result of the fourth data with one node be-
cause of the insufficient global memory. As expected, a(MC)3

shows good scalability. Even though the number of nodes
increases to 32, the speedup still keeps a smooth growth.

The efficiency remains a relatively stable value. a(MC)3

achieves 478� speedup over the serial algorithm with 32
nodes and the largest data set. This experiment tells us that
a(MC)3 has ability to analyze large DNA data on large scale
parallel systems efficiently.

Conclusion
An adaptive CUDA algorithm a(MC)3 has been proposed to
accelerate (MC)3 algorithm for Bayesian inference of phylog-
eny. By determining task granularity dynamically according to
the input data size and the hardware configuration, a(MC)3

can make full use of computing power of cores in a GPU card.
An adaptive DNA sequence splitting and combining method
is developed to improve scalability. A node-by-node task
scheduling strategy is also proposed to improve concurrency.
Experimental results show that a(MC)3 achieves up to 63�
speedup over serial MrBayes on a single machine with one
GPU card, and up to 170� speedup with four GPU cards. We
also test a(MC)3 on a GPU cluster, Tianhe-1A. a(MC)3 shows
good scalability and achieves up to 478� speedup with 32
nodes. To the best of the authors’ knowledge, a(MC)3 is
the first (MC)3 algorithm that analyzes massive real-world
DNA data on large GPU cluster efficiently. The source
codes and data sets used by a(MC)3 are available from:
http://sourceforge.net/projects/mrbayes-gpu/, last accessed
March 27, 2013.

In this article, a(MC)3 is implemented only for DNA data
and 4� 4 nucleotide substitution model. Bayesian phyloge-
netic inference using (MC)3 with other data types and

Table 3. Performance of a(MC)3 on Real-World Data Compared with Other Algorithms.

Data Set Generations Run Time (s) Speedup

MrBayes 3.1.2 MrBayes 3.2.1 GPU n(MC)3 a(MC)3 MrBayes
3.2.1 GPU

n(MC)3 a(MC)3

1 1,000,000 4,981 2,978 1,293 1,028 1.7 3.9 4.8

2 1,000,000 17,524 4,383 1,885 1,204 4.0 9.3 14.6

3 500,000 20,763 4,035 2,149 1,317 5.1 9.7 15.8

4 100,000 18,822 1,894 1,015 533 9.9 18.5 35.3

5 100,000 43,529 3,295 1,738 643 13.2 25.0 67.7

FIG. 1. Execution time of the serial version of MrBayes 3.1.2 and a(MC)3.
The horizontal axis represents the DNA length of 10 taxa, and the
vertical axis is the logarithm of execution time.
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evolutionary models can also be accelerated by means used in
a(MC)3. Besides, insufficient global memory of GPU becomes
an important limitation of performance and practicability.
Rational use of global memory maybe our future work.

Materials and Methods

Algorithm
Dynamic Task Decomposition and Mapping
a(MC)3 has two design goals:

1) With a single GPU card, achieves stably good efficiency
with different data sets.

2) Scales well from single GPU systems to multi-GPU sys-
tems or GPU clusters.

To realize these, we develop a new adaptive architecture of
a(MC)3 (fig. 6). First, similar to n(MC)3, a(MC)3 also uses a
CPU–GPU cooperative mechanism that parallelizes (MC)3 at
both chain level and DNA subsequence level. CPU is in charge
of the initial work preparation and the final global likelihood
computation, whereas heavy computation of conditional like-
lihoods and local likelihoods is assigned to GPU. We develop

dynamic task decomposition strategies at both chain level
and DNA subsequence level.

Because each CUDA kernel is responsible for calculating
conditional likelihoods or local likelihoods of all sites of a
unique node in the new tree, the total computation load of
each kernel is determined by the length M of a given align-
ment of DNA sequences (i.e., the number of sites per taxa). In
a fixed-grained algorithm, such as n(MC)3, M might impact
parallel efficiency seriously. The number of CUDA threads
invoked is linear with M, so when M is small, increasing M
will lead more CUDA threads to be invoked on GPU, which
will seriously improve parallel efficiency. However, as CUDA
cores of a GPU card are limited, too many CUDA threads will

FIG. 3. Effectiveness of different strategies (only using “node-by-node”
pipelining model, only using dynamic task granularity, and using both
two strategies) used by a(MC)3. The horizontal axis represents the DNA
length of 10 taxa, and the vertical axis is the speedup compared with
n(MC)3.

FIG. 2. Speedup of different parallel algorithms (a(MC)3 with single
precision, a(MC)3 with double precision, and n(MC)3, MrBayes 3.2.1,
on a single GPU card on artificial data sets. The horizontal axis repre-
sents the DNA length of 10 taxa, and the vertical axis is the speedup
compared with the “fastest known” serial algorithm MrBayes 3.1.2.

FIG. 4. Speedup of the two fastest algorithms, n(MC)3 and a(MC)3 on
1/2/4 GPUs. The horizontal axis is the DNA length of 10 taxa, and the
vertical axis is the speedup compared with the “fastest known” serial
algorithm MrBayes 3.1.2.

FIG. 5. Performance of a(MC)3 on GPU cluster, Tianhe-1A with four
real-world data sets. The horizontal axis represents the number of GPU
cards, and the vertical axis is the speedup compared with the “fastest
known” serial algorithm MrBayes 3.1.2.

Table 4. DNA Data Sets Used in Experiments on TH-1A.

Data Set Taxa (N) DNA Length (M)

1 80 15,106

2 80 19,976

3 80 25,260

4 80 41,976
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cause heavy interaction, and it will finally drop the perfor-
mance of the algorithm when M is too large.

To solve the problem, we rewrite the main CUDA kernel
functions. These new CUDA kernel functions are coarse
grained. Each thread is responsible for a long DNA subse-
quence, so that each thread is assigned enough computation
work, while maintaining a reasonable number of threads.
Moreover, this adaptive-grained task decomposition strategy
incurs less redundant computation and less communication
cost. It does improve the performance of the single kernel.
How to decide the threshold T of M is challenging, which
depends on the number of CUDA cores, global memory
bandwidth, and the capacity of shared memory. Therefore,
it is a simple and effective way to determine T by running a
series of tests when deploying the software package. By using
threshold T, we developed an adaptive task decomposition
method at DNA subsequence level. After receiving an input
instance, a(MC)3 compares its size M with a preset threshold
T. If M� T, fine-grained task decomposition is applied, that is,
each CUDA thread is responsible for a relatively short DNA
subsequence (i.e., relatively few sites). Otherwise, coarse-
grained tasks are generated.

Using this dynamic strategy, a(MC)3 always maintains an
appropriate concurrency (the number of CUDA threads),
which is high enough to hide memory latency effectively
without being too high to avoid heavy interaction overhead.
Moreover, for a large M, coarse-grained task decomposition
also helps to increase the ratio of effective computation to
bookkeeping operations, which benefits parallel efficiency.

The task decomposition strategy n(MC)3 applies at chain
level has a significant limitation, too. The smallest task gran-
ularity n(MC)3 assigned to each GPU card is one Markov
chain, which limits its concurrency. For example, a typical

real-world (MC)3 execution runs four to eight Markov
chains. Consequently, even if we have a cluster with hundreds
of GPU cards, n(MC)3 can only use up to eight of them to
calculate likelihoods. On the other hand, because n(MC)3

always invokes a single kernel for a single Markov chain,
when M is very small (although rarely in real-world phy-
logenetic inference), low concurrency may happen in each
GPU card even if adaptive-grained task decomposition is
applied.

To resolve these two difficulties, we develop an adaptive
method to split and combine DNA sequences from different
Markov chains according to M and the number of GPU cards
G. If G>H, for each Markov chain, a(MC)3 splits DNA se-
quences into segments of the same length, so as to create as
many tasks as the number of GPU cards. If M is extremely
small, a(MC)3 will combine DNA sequences from different
chains to create big enough tasks to make full use of com-
puting power of each GPU card. It is worth noticing that these
two cases may conflict. Consider a scenario in which we try to
run few Markov chains that contain very short DNA se-
quences on a large GPU cluster, should we split or combine
DNA sequences? However, it is a false dilemma. This input
instance is too small to be worth using massive parallel pro-
cessing. Nonetheless, if you decide to use the whole cluster to
run it, a(MC)3 will split DNA sequences, which brings you
shorter total running time but worse parallel efficiency. This
adaptive method remarkably improves scalability. Now
a(MC)3 can achieve good efficiency over quite different hard-
ware configurations, from desktop PCs with single or multiple
GPU cards to large GPU clusters.

By using adaptive-grained task decomposition and adap-
tive DNA sequence splitting and combining, we successfully
achieve the two design goals of a(MC)3.

FIG. 6. The algorithm architecture of a(MC)3. Q represents the instantaneous rate matrix, and ’i
0 is the new phylogenetic tree. Pi is transition probability

matrices; Xu denotes the DNA sequence data at site u; and �m denotes the base frequencies of nucleotide m 2 {A, C, G, T}. Lu is site likelihoods and cl is
conditional likelihoods. Global likelihood is ƒ(X j ’i

0).
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Likelihood Evaluation Procedure
The standard (MC)3 computational procedure is reorganized
as shown in Algorithm 1, where N denotes the number of
taxa. The whole flow consists of four main loops. The first
loop and last loop are executed in CPU side, whereas the
others run in GPU. In Loop1, all transition probability matrices
for the proposed new tree are transferred from CPU to GPU
after they have been figured out. Loop2 carries the majority of
computation, where kernels will be called to calculate the
conditional likelihoods for all internal nodes. This loop con-
sists of a dual loop: the outer processes “node-by-node” and
the inner “chain-by chain.” We can see that, similar to
n(MC)3, a(MC)3 also submits the first node of the first
chain to GPU in the first iteration. However, in the second
iteration, a(MC)3 submits the first node of the second chain
rather than the second node of the first chain, and then the
first node of the third chain, and so on. The second node of
the first chain cannot be submitted until the first node of the
Hth chain is submitted. That is, a(MC)3 changes the “chain-
by-chain” scheduling strategy used by n(MC)3 to a “node-by-
node” scheduling strategy. We will show how this strategy
improves the concurrency of CPU–GPU pipeline in detail
later. Because “node-by-node” scheduling order is used, com-
putation of conditional likelihoods and local likelihoods must
be broken into two loops. Loop3 uses the conditional likeli-
hoods of the root node just figured out by Loop2 to compute
the local likelihoods for the proposed new tree and, afterward,
transfers the results back to the CPU side. Because in Loop2
and Loop3, kernels responsible for computation of condi-
tional likelihoods and local likelihoods of each Markov
chain are invoked sequentially within a single CUDA
stream, true data dependency between computations is guar-
anteed. Finally, in Loop4, the global likelihood L of a Markov
chain is calculated by the accumulative product of local like-
lihoods Lu. Moreover, synchronization between CPU and GPU
has been added to ensure the correctness of the final results.
Notice that if DNA sequences have been split, partial results
will be collected from multiple computational nodes to cal-
culate L.

Algorithm 1: Likelihood evaluation in the proposed algorithm

Require: instantaneous rate matrix, tree ’i

Ensure: a more optimal tree ’i
0

for all chains, i 2 {1,2, . . . , H}, Loop1
propose a new tree ’i

0 by randomly perturbing ’i

for (k = 1; k� 2N� 2; k ++)
Calculate transition probability matrix Qk

end for
Transfer Qs from CPU to GPU

end for
for (k = N + 1; k� 2N� 1; k ++) Loop2

for i 2 {1,2, . . . , H} do
if M< T then

Call fine-grained kernel to calculate conditional like-
lihood of node k of chain i in parallel

else
Call coarse-grained kernel to calculate conditional
likelihood of node k of chain i in parallel

end if
end for

end for
for all chains, i 2 {1,2, . . . , H} Loop3

if M< T then
Call fine-grained kernel to calculate local likelihoods for
’i
0 in parallel

else
Call coarse-grained kernel to calculate local likelihoods
for ’i

0 in parallel
end if
Transfer local likelihoods from GPU to CPU

end for
for all chains, i 2 {1,2, . . . , H} Loop4

Synchronize with corresponding GPU stream
Set L = 1
for (u = 1; u�M; u++) do

L = L� Lu

end for
Calculate acceptance probability (R) for (’i

0) using L
Accept/Reject ’i

0

end for

A Pipelining Model with Node-by-Node Scheduling
Given that high CPU–GPU communication overhead has
resulted in the poor overall performance of previous algo-
rithms, a(MC)3 uses a pipelining model with “node-by-
node” scheduling, which further increases the concurrency
of (MC)3, and overlaps the communication overhead be-
tween CPU and GPU.

On the GPU side, the pipelining model views each Markov
chain as a CUDA stream composed of sequential subtasks,
uploading transition probability matrices onto GPU, calling
kernels to calculate conditional likelihoods and local likeli-
hoods on GPU, and downloading local likelihoods to CPU.
Without any pipelining model (fig. 7a), all chains are run
serially. For instance, chain i + 1 will not start the uploading
step until its immediate predecessor chain i has transferred all
the result data back to the CPU side.

A kind of pipelining model is used in n(MC)3 (fig. 7b),
where data transfers and kernel executions of different
chains can be done at the same time. We can see that
chain i + 1 can transfer its data while chain i is executing its
kernels. Especially, Fermi architecture allows at most 16 ker-
nels from 16 different streams to be executed at the same
time and Kepler even allows more. So we can also see overlap
among computations belonging to different chains. However,
not only kernel execution time but also kernel startup time
should be considered. Each kernel will enter the work queue
after being invoked and then wait to be executed.
Consequently, the predecessor chain will probably have fin-
ished before the successor is really executed, as if kernel
startup time is long enough and/or the input data size is
too small. As figure 7b shows, chain i has finished while the
first node of chain i + 2 is just at the beginning. There are only
two chains running simultaneously on the GPU side, which
does not make full use of GPU’s computing power.
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To increase concurrency further, we develop a new pipe-
lining model (fig. 7c). It invokes transmissions and kernels in a
“node-by-node” order rather than the “chain-by-chain” order
used by n(MC)3. In this new scheduling strategy, because
subtasks of different chains are invoked alternately, which
significantly reduces the time intervals between them, kernels
belonging to different chains have greater chance of running
simultaneously in the GPU side. In figure 7c, we can see that
the first nodes of chain i, chain i + 1, and chain i + 2 are
invoked firstly, and then all the second nodes, and so on.
By using “node-by-node” scheduling strategy, a(MC)3 runs
as many as possible CUDA kernels concurrently. On the
other hand, although it is declared that the Fermi architecture
supports 16 different kernels from different streams, and ul-
timately, all the kernels are scheduled into the same work
queue. Thus, dependent kernels within a stream are likely to
prevent kernels in other streams from executing, which is
called intrastream dependencies (NVIDIA 2012). For example,
there are three streams, and each stream has three tasks
(fig. 8). In “chain-by-chain” order, task A1, A2, A3 in stream 1
are scheduled first, then task B1, B2, B3 in stream 2, and finally,
task C1, C2, C3 in stream 3. Only (A3, B1) and (B3, C1) can run
concurrently, owing to intrastream dependencies. As men-
tioned earlier, when the length of a DNA sequence M is large,
coarse-grained tasks are applied, so that less CUDA threads
are invoked and less SMs are used. For kernels in a stream, less
SMs occupation means kernels in other streams can use more
resources. However, intrastream dependencies waste free SM.
Fortunately, by scheduling in “node-by-node” order, all
kernels from different streams have the chance to run

concurrently. As figure 8b shows (A1, B1, C1), the three con-
secutively invoked kernels from different streams can run
concurrently, so do (B1, C1, A2) and (C1, A2, B2). As shown in
the previous section, “node-by-node” scheduling strategy im-
proves inference speed dramatically. Kepler, NVIDIA’s next-
generation CUDA compute architecture, has resolved the
intrastream dependencies problem on hardware, but the
“node-by-node” scheduling is worth talking seriously.

Optimization
Memory Access Optimization
In CUDA architecture, global memory accessing is very
likely to be the performance bottleneck because its latency
is 400–600 clock cycles. Coalescing is the most important
factor affecting global memory accessing performance.
There is no bandwidth waste if data addressed by the threads
of a warp can be coalesced as few as one global memory
transaction. In a GPU card featuring Fermi architecture, 32
consecutive 4-byte words aligned to 128 bytes are fetched in a
single global memory transaction. In a(MC)3, threads in a
block access consecutive 4-byte words repeatedly, so we set
the block size to 96, which guarantees peak memory band-
width. Other block size might lead to poor effective band-
width. For instance, if each block consists of 80 threads, the
last 16 threads use only half of 32 consecutive 4-byte words
fetched in a transaction and cause misalignment in successive
accesses. Consequently, we use only 62.5% of peak bandwidth.

At shared memory level, bank conflict should be consid-
ered. In a Fermi GPU card, shared memory is divided into 32
banks, and successive 4-byte words are assigned to successive
banks. When different threads of a warp access addresses
belonging to the same memory bank, then a bank conflict
occurs, and the accesses have to be serialized, which decreases
performance seriously (Resios and Holdermans 2011). In
n(MC)3, each thread accesses 16 consecutive elements from
shared memory. So in each step, 16 threads in a warp conflict
on bank i and the other 16 threads in the same warp conflict
on bank i + 16. To avoid this serious 16-way bank conflict, we

FIG. 7. Different pipelining models: without pipelining, “chain-by-chain,”
and “node-by-node.” Ts denotes the kernel startup time of the s-th
internal node, Tk denotes the kernel execution time of the k-th internal
node, and h is the number of nodes in a chain.

FIG. 8. Two kinds of single hardware work queue: “chain-by-chain” and
“node-by-node.” The same letter denotes tasks from the same stream
and the subscripts are the sequence numbers. Tasks in an ellipse can run
concurrently.
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pad 1 dummy element to per 16 consecutive effective ele-
ments, which redirects all conflicted accesses to free banks.

Reduce Communication Overhead
Almost all GPU algorithms have to suffer from high CPU–
GPU communication overhead. As mentioned earlier, an in-
ternal node of the phylogenetic tree requires the transition
probability matrices and conditional likelihoods of its two
children to calculate its own conditional likelihoods.
Therefore, g(MC)3 naively launches two data transfers be-
tween CPU and GPU per node, which leads to poor overall
performance. Transmissions in n(MC)3 are reduced to twice
per chain: one transferring the transition probability matrices
of all the nodes from CPU to GPU and another transferring
the local likelihoods of the proposed new tree from GPU to
CPU. Because CPU–GPU communication time is largely dom-
inated by the number of transmissions, communication over-
head is reduced effectively. By carefully assigning tasks
between CPU and GPU, a(MC)3 reduces the number of trans-
mission to only twice for all chains, which further reduces
communication overhead. Besides optimization methods ear-
lier, we also perform some other conventional CUDA optimi-
zations. For example, a(MC)3 uses intrinsic math functions to
improve instruction throughput while keeping enough
precision.
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