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Abstract

Targeted environmental and ecosystem management remain crucial in control of dengue.

However, providing detailed environmental information on a large scale to effectively target

dengue control efforts remains a challenge. An important piece of such information is the

extent of the presence of potential dengue vector breeding sites, which consist primarily of

open containers such as ceramic jars, buckets, old tires, and flowerpots. In this paper we

present the design and implementation of a pipeline to detect outdoor open containers

which constitute potential dengue vector breeding sites from geotagged images and to cre-

ate highly detailed container density maps at unprecedented scale. We implement the

approach using Google Street View images which have the advantage of broad coverage

and of often being two to three years old which allows correlation analyses of container

counts against historical data from manual surveys. Containers comprising eight of the most

common breeding sites are detected in the images using convolutional neural network

transfer learning. Over a test set of images the object recognition algorithm has an accuracy

of 0.91 in terms of F-score. Container density counts are generated and displayed on a deci-

sion support dashboard. Analyses of the approach are carried out over three provinces in

Thailand. The container counts obtained agree well with container counts from available

manual surveys. Multi-variate linear regression relating densities of the eight container

types to larval survey data shows good prediction of larval index values with an R-squared

of 0.674. To delineate conditions under which the container density counts are indicative of

larval counts, a number of factors affecting correlation with larval survey data are analyzed.

We conclude that creation of container density maps from geotagged images is a promising

approach to providing detailed risk maps at large scale.
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Author summary

Providing detailed environmental information on a large scale to effectively target dengue

control efforts remains a challenge. In this paper we present the design and implementa-

tion of a pipeline to detect outdoor open containers which constitute potential dengue

vector breeding sites from geotagged images and to create highly detailed container den-

sity maps at unprecedented scale. Specifically, we use convolutional neural networks to

detect a variety of types of breeding site container types in Google street view images and

use the container counts to create container density maps. Evaluation of the approach is

carried out over three provinces in Thailand: Bangkok, Krabi, and Nakhon Si Thammarat.

Our evaluation shows that the object recognition network can accurately recognize several

of the most important types of containers in Thailand. The container counts obtained

from the street view images agree well with container counts from available manual sur-

veys. We further show that simple multi-linear models using container density values pro-

vide good predictions of Breteau index (number of positive containers per 100 houses

inspected) values. This is the first study to present results validating container counts

from image analysis against such data.

Introduction

Dengue is considered one of the most important mosquito-borne viral diseases in the world.

During the past five decades, the incidence of dengue has increased 30-fold, with a recent

study estimating global incidence at 390 million cases per year [1]. Dengue is now considered

endemic in more than 100 countries, with more than two thirds of the burden found in Asia.

Even in Europe, an outbreak in Madeira that began in 2012 resulted in over 2,000 cases, with

imported cases from travelers to Madeira detected in 13 other European countries [2].

One dengue vaccine (CYD-TDV or Dengvaxia) has now been registered in several coun-

tries. But with about 60% effectiveness and lack of approval for use in children under 9 years

old, it does not provide an effective line of defense [3]. Since there is also no curative treatment

for dengue, targeted environmental and ecosystem management continue to be crucial in con-

trolling the disease.

The Aedes aegypti and Aedes albopictus mosquitoes are the primary vectors of dengue and

are additionally responsible for the spread of chikungunya, Zika fever, and yellow fever [4].

The Aedes mosquitoes have adapted to human habitats and breed in relatively small containers

that can hold water such as ceramic jars, old tires, flower pots, and buckets. Studies of the dis-

persal of Aedes aegypti and Aedes albopictus indicate that the mosquitoes actively disperse over

only short ranges [5–7]. In an analysis of Aedes aegypti flight range and dispersal patterns from

21 mark-release-recapture experiments conducted over 11 years in Puerto Rico and Thailand,

Harrington et al (2005) [5] found that the majority of released mosquitos were recaptured in

the same house or adjacent house to where they were released. The mean dispersal distances

ranged from 28 to 199 meters. These results were consistent across the different experiments,

including indoor and outdoor release sites.

The combination of small-scale breeding sites and low level of mobility of the vector results

in highly localized sites of disease transmission with dengue transmission and dengue vector

abundance exhibiting substantial geographic variability [8]. Indeed, some studies have found

spatial heterogeneity of the dengue vector at the neighborhood level [9,10]. Others have even

found spatial heterogeneity of the dengue vector at the household level [11,12] and similarly

for dengue transmission [13,14].
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Two primary approaches have been taken to provide environmental data for dengue risk

mapping and prediction. The first is to use remote sensing [15] or proxies (e.g. per capita num-

ber of public small water wells [16], number of households having a rain water tank [17], and

the type of housing (individual house versus apartments, large residential area) [18]) to assess

local environmental conditions [19]. Proxies provide only indirect evidence about breeding

sites, and remote sensing, even from aerial photography, can be inaccurate due to canopy

cover and other issues [20]. A second approach is to carry out manual surveys in which con-

tainers with water or containers with water and larvae are counted [21] [22]. Results are then

reported in terms of numbers of containers of different types or in terms of larval indices: Bre-

teau Index (number of positive containers per 100 houses inspected), House Index (percentage

of houses infested with larvae and/or pupae), and Container Index (percentage of water hold-

ing containers infested with larvae or pupae) [23,24]. While this approach provides direct

information about breeding sites, it is not scalable due to its labor-intensive nature. Thus,

there is a need for an approach that can provide direct information on potential breeding sites

at high resolution and that is scalable to cover major cities and provinces.

In this study, we address this problem by using convolutional neural networks (CNN) to

detect breeding site container types in geotagged images and using the resulting container

counts to create container density maps. While our architecture can accommodate geotagged

images from a wide variety of sources, in this study we use Google Street View (GSV) images

due to the extensive geographic coverage and the historical nature of much of the image data,

which allows it to be temporally aligned with container and larval counts from previous man-

ual surveys for evaluation. Evaluation of the approach is carried out over three provinces in

Thailand: Bangkok, Krabi, and Nakhon Si Thammarat. Our evaluation shows that the object

recognition network can accurately recognize several of the most important types of contain-

ers in Thailand. We provide detailed statistics on GSV image coverage and container counts at

the district level. The container counts obtained from the GSV images agree well with con-

tainer counts from available manual surveys. We further show that simple multi-linear models

using container density values provide good predictions of Breteau index values. This is the

first study to present results comparing container counts from image analysis against container

and larval counts from manual surveys, providing evidence for their potential usefulness in

mapping suitable conditions for vector abundance.

Related work

In their review of dengue risk mapping modeling tools, Louis et al. [25] showed that social pre-

dictors such as education level, occupational status, and income are often used as proxies to

assess local environmental conditions and hygiene, which are normally difficult to assess

directly. Housing conditions are often used as a proxy to assess type and number of mosquito

breeding sites. Lack of access to running water has also been found to be a risk factor for den-

gue since residents in such areas tend to store water in ground-level containers [26–27].

Chang et al. [28] used satellite imagery from Google Earth to create a base map to which they

added information about larval infestation, locations of tire dumps, cemeteries, large areas of

standing water, and locations of homes of dengue cases, all of which were collected manually.

They found the resulting system allowed public health workers to prioritize control strategies

and target interventions to highest risk areas.

A number of researchers have developed applications for reporting or detecting mosquito

breeding sites, as well as other information related to dengue outbreaks. Agrawal et al. [29] use

a support vector machine and scale-invariant feature transform (SIFT) generated features to

classify individual images as being breeding sites or not. Their approach relies on users to take
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photos of individual sites. On a test set of 78 images they achieved a binary classification accu-

racy of 82%. Mehra et al. [30] present a technique for classifying images into those containing

puddles or not. They evaluate their technique on images taken with mobile phones, a hand-

held thermal imaging camera, and retrieved using Google image search. Using an ensemble of

naive Bayes classifiers and boosting they achieve a binary classification accuracy of 90% on

images that have both RGB and thermal information. Quadri et al. [31] present TargetZika, a

smartphone application for citizens to report breeding sites using photos and descriptions.

They provide no automated classification of the photos but rather rely on users to label them

from a menu. They use the data to produce risk maps but do not validate them. Mosquito

Alert [32] is a similar smartphone application that allows users to report breeding sites and

mosquitos with photos and descriptions. It uses crowdsourcing to identify photos. Reports are

displayed on a map on the Mosquito Alert website. All of these previous approaches either

require manual effort to first locate possible breeding sites in images or require users or the

crowd to manually identify them. In contrast, the approach presented in this paper performs

both object localization and classification and can be used on a wide variety of geotagged

images taken from a horizontal perspective.

Some researchers have manually extracted features from GSV data for environmental mon-

itoring purposes. Rundle et al. [33] manually extracted features from street view data to audit

neighborhood environments and compared the results to field audits. They found a high level

of concordance for features that are not temporally variable. Rousselet et al. [34] manually

extracted species occurrence data for the pine processionary moth from GSV images and com-

pared the results to field data. The two were found to be highly similar.

Runge et al. [35] made use of the scene recognition convolutional neural net of Zhou et al.

[36] to label GSV images and assembled them into maps to find scenic routes for autonomous

vehicle navigation. Although their application differs from ours, their pipeline and the struc-

ture of their feature maps are similar to those in this study. Since we are interested in obtaining

counts of numbers of breeding sites in a given region, in this study we make use of object

detection networks. Recently, region proposal methods have yielded the highest performance

in object detection [37]. Region proposal methods employ a mechanism that first iteratively

segments the image and groups the adjacent segments based on similarity to hypothesize

regions that may contain objects of interest and then use CNNs to identify objects in those

regions. Girshick [38] introduced Fast Region-based Convolutional Neural Networks (Fast

R-CNN) which reduced the running time of the detection network, making the region pro-

posal computation the bottleneck. Recently, Ren et al. [39] introduced Faster R-CNN, which

greatly improves the computational efficiency. By sharing convolutional features between the

region proposal and detection networks, they reduce the computational cost of region pro-

posal to near zero and achieve a frame rate of 5 frames per second on a GPU. Because of its

accuracy and computational efficiency, Faster R-CNN is the technique used in the current

study.

Methods

We describe details of the three main components of our pipeline to detect and map containers

in geotagged images, namely image retrieval, container detection, and data visualization.

Image retrieval

The region from which to retrieve images is defined using a GeoJSON file. The first step is to

generate points within the region from which to retrieve the GSV images. This is done by

obtaining the polyline of each road from the Openstreetmap Overpass API [40] and then
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plotting points along each road at 50 meter increments. A distance of 50 meters gives complete

image coverage without overlap.

With the points defined, images are downloaded using the GSV API [41]. Since the API

does not support retrieving the entire 360-degree scene as one image, five images are retrieved

72 degrees apart and at a field of view (FOV) of 75 and a pitch of -15 degrees. Each image has

resolution 640 × 500 pixels. In addition, the metadata for each image is retrieved, consisting of

the geo-coordinate and the year and month the image was taken. The Mapbox API is free of

charge if the number of dynamic maps the Javascript API calls is less than 50,000 per month

[42]. As of 2018, GSV images cost a maximum of 7 USD per 1000 panoramic images, depend-

ing on the monthly volume [43].

Container detection

Dengue vector breeding sites consist of open containers of varying size that can contain water.

The frequency of occurrence and the suitability of containers as breeding sites varies, with

ceramic containers generally more suitable than plastic containers. While the importance of

particular types of containers as breeding sites varies from country to country and even among

geographic regions in a country [44], analysis of the research literature [45–48] as well as publi-

cations of the Ministry of Public Health of Thailand [49,50] reveals six outdoor container types

that are consistently important across regions in Thailand. These are large ceramic jars, buck-

ets, old tires, potted plants, bins, and bowls, as shown in Fig 1. This list was confirmed through

consultation with local entomologists from Mahidol University. In general, large ceramic jars

are the most important outdoor container type [45,50], being commonly used to store water

near homes, particularly in rural areas.

Smaller containers such as bottles and cans are also possible breeding sites but are too small

to detect in GSV images with high accuracy. Some areas such as construction sites, garbage

dumps, and empty lots are commonly considered potential breeding sites [24,51] but GSV

images do not provide sufficient coverage to detect containers in them. They may be best

accounted for by using scene recognition techniques [36], like those used in the work of Runge

et al. [35] and are not the focus of this study. In addition, indoor breeding sites and sites in

backyards are not considered in this study due to the particular coverage of GSV images.

Drone surveillance could potentially be used to detect containers in backyards and other out-

door areas not covered by GSV images.

Finding containers in GSV images falls into the class of problems known as object detec-

tion. We do this using the Faster R-CNN object recognition network of Ren et al. [39] which

has state-of-the-art runtime performance. Object recognition networks employ region pro-

posal algorithms to hypothesize object locations. Faster R-CNN combines a region proposal

network (RPN) and object recognition network together by sharing the same common convo-

lutional layer. At the convolution layer, the filters are trained to extract the appropriate features

from the image, and convolution is computed by sliding the filters along the input image. The

result is a two-dimensional matrix called a feature map. The RPN takes convolutional feature

maps as inputs and predicts whether there is an object or not and also determines the bound-

ing box of that object as the region proposal. Another fully connected neural network takes the

regions proposed by the RPN and predicts object classes and creates bounding boxes sur-

rounding the objects. To implement the Faster R-CNN network, we use TensorFlow which

includes a number of architectural variations on Faster R-CNN that trade accuracy for speed

and memory usage [52]. We use the architecture of Faster R-CNN with ResNet-101 (101 layers

residual neural network) which has close to the highest accuracy on the Microsoft Common

Objects in Context (COCO) object detection dataset [53] yet still excellent runtime
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performance. Performing object detection on the close to 1 million images for the province of

Nakhon Si Thammarat in Thailand took 95 hours of processing time on a PC with a 3.6GHz

i7-7700 processor, 32 GB RAM, and a 1080 Ti graphics card.

Faster R-CNN includes the object categories bucket, potted plant, and bowl. In addition,

the existing network categories for cup and vase work well for capturing short open and tall

open containers, respectively. But the network does not include object categories for large jar,

bin, and old tire. We thus used transfer learning to detect these categories [54]. Transfer learn-

ing leverages the features encoded in internal network nodes to enable learning of new catego-

ries with far fewer labeled examples than would normally be required. This is commonly done

by stripping away the output layer of a pre-trained network, replacing it with the new catego-

ries to be learned, and then training the network on examples of those categories. In our case

this was done by replacing the entire output layer of Faster R-CNN with our desired set of

object categories, three of which were new and the remainder of which had been in the original

Faster R-CNN, as shown in Fig 2. This network was then trained with the training data for all

categories.

A training set of five thousand images was assembled from the COCO dataset [53], GSV

images from Bangkok, and images gathered using Google image search on Thai language

strings describing the container types. Data from COCO and Google image search was used to

provide a sufficient number of images and data from GSV was used in order to provide images

Fig 1. Common outdoor dengue vector breeding sites in Thailand (from left to right): large jar, bucket, old tire, potted plant, bin, ceramic bowl, cup, vase.

https://doi.org/10.1371/journal.pntd.0007555.g001

Fig 2. Performing transfer learning on a pre-trained model by replacing the output layer with new target classes.

https://doi.org/10.1371/journal.pntd.0007555.g002
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of the objects as they tend to appear in the particular context of the images to be processed.

Table 1 shows the proportion of images and containers of each source in the training set.

Containers in the GSV images and those collected by Google image search were manually

annotated by members of the research team with bounding boxes and container type labels by

using the LabelImg [55] tool. Since each image can contain more than one container object,

the collected images contained a total 10,345 containers: 2,318 old tires, 1,110 large jars, 1,385

buckets, 2,758 potted plants, 135 bins, 947 bowls, 930 cups, and 762 vases. Distinguishing a dis-

carded old tire from a tire attached to a vehicle is difficult, so we solved this problem by adding

vehicle as an object category and eliminating tires that have bounding boxes that substantially

overlap with the bounding box of a vehicle.

The dataset was randomly split into 90% of the images for training and 10% for testing. To

avoid overfitting the model to the training data, we applied the standard approach of early

stopping during training. Early stopping is a form of regularization used to avoid overfitting

when training a learner with an iterative gradient descent method like in Faster R-CNN.

Fig 3 shows examples of detected containers using the network resulting from transfer

learning. The lower left image in Fig 3. illustrates a circumstance where the algorithm does not

detect the containers correctly. The image contains four bins, but the algorithm is unable to

detect some of the bins due to occlusion, poor lighting conditions, and low contrast with the

background in the image. In addition, the algorithm incorrectly tagged one bin as a bucket

and one as a potted plant, with the probabilities of 0.78 and 0.84, respectively. Detailed evalua-

tion of the object detection accuracy is provided in the Result and Discussion section below.

Data visualization dashboard

The dashboard, shown in Fig 4, provides visualization of various data relevant to dengue risk,

including container density, dengue incidence, Breteau index, population demographics, rain-

fall, and temperature. The data is displayed in terms of choropleth maps and graphs using

Mapbox JS [41]. The maps are created by using a GeoJSON file as input and then applying a

data-driven styling approach which allows the visualization of polygons on the map with vary-

ing colors based on the data [41]. Three charts are visible on the right side of the dashboard.

The first chart displays statistics for the entire province while the other two charts display sta-

tistics for the selected sub-district. Users can filter the data to display only a certain year or sea-

son. Similarly, users can filter containers to display data for only certain types of containers.

Each map has an additional mouse hover overlay where the exact value of the variable is

shown.

Results

In this section, we evaluate the accuracy of the object recognition technique in detecting con-

tainers in GSV images. We then present detailed statistics on container counts over three prov-

inces in Thailand: Bangkok, Krabi, and Nakhon Si Thammarat. We compare container counts

from GSV images to available manual counts. Finally, we evaluate the correspondence between

Table 1. Number and percentage of images and containers from each source used for training and testing.

Source Container type Images % images Containers % Containers

GSV images All 2000 40.0 1901 18.4

Google image search tire, jar, bin, bucket 1000 20.0 3755 36.3

COCO dataset bowl, potted plant, cup, vase 2000 40.0 4689 45.3

https://doi.org/10.1371/journal.pntd.0007555.t001
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Fig 3. Examples of containers detected by using Faster R-CNN with new transferred categories.

https://doi.org/10.1371/journal.pntd.0007555.g003

Fig 4. Information visualization dashboard. The choropleth map displays container densities for all sub-districts in Nakhon Si Thammarat province. The top

chart on the right shows relative percentages of container types in the whole province. The second and third charts show statistics for the selected sub-district, in

this case Krung Ching. When hovering over a subdistrict the data for the subdistrict is displayed. The choropleth map in this figure was produced using ArcGIS

version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/

dataset/thailand-administrative-boundaries.

https://doi.org/10.1371/journal.pntd.0007555.g004
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container density values and Breteau index values from manual surveys in Nakhon Si Tham-

marat by computing correlations and creating multi-variate linear regression models.

Krabi province was chosen because it consistently has one of the highest dengue incidences

in Thailand. Nakhon Si Thammarat was chosen because it has the greatest availability of man-

ual larval survey data. Bangkok was chosen because, as the most urbanized and highly popu-

lated area of Thailand, it provides a contrasting environment to the other two provinces.

Evaluation of object recognition

We use two metrics to evaluate container detection: (1) detection of containers, grouping all

eight types together, and (2) detection along with categorization into one of the eight types.

For the measurement of object recognition accuracy, we use the standard approach of deter-

mining the agreement between each detection bounding box with ground truth boxes in an

image by calculating area of intersection over union (IoU). An IoU value of 0.5 or greater is

considered to be a true positive [56]. An undetected object is counted as a false negative and a

falsely detected object is counted as a false positive. Table 2 shows the performance on the test

set which was a randomly selected 10% of the entire dataset of five thousands images described

above. Accuracy is shown in terms of precision, recall and F1 score. Precision is defined as the

ratio of correctly predicted positive containers to the total predicted positive containers from

the images. Recall is defined as the ratio of correctly predicted positive containers to the total

containers in the images. F1-score is the weighted average of precision and recall. The results

for container detection are shown in the last column: precision is 0.90, recall is 0.92, and the F-

score is 0.91. Results for the detection along with classification are shown in the remaining

columns.

The highest F-scores are achieved for potted plant (0.91) and old tire (0.92). The bin cate-

gory has a high precision but low recall presumably because bins and buckets are very similar

in shape so that some bins are wrongly tagged as buckets; this also lowers the precision of the

bucket category. Note also that there is typically a tradeoff between precision and recall, so the

perfect precision of the bin category is obtained at the cost of low recall.

Analysis of container counts

Our software was used to retrieve GSV images from Bangkok (790,450 images), Nakhon Si

Thammarat (958,027 images) and Krabi provinces (386,819 images) at every 50 meters and to

detect all containers in those images. Details are shown in Tables A—C in the S1 Text. Percent-

age image coverage of the three provinces varied considerably. Bangkok had the best image

coverage at a mean of 77.06% of total area over all districts, followed by Nakhon Si Thammarat

at 8.40%, and Krabi at 7.31%. Although Bangkok has a smaller number of images than Nakhon

Si Thammarat, the image coverage is by far the highest because the land area is much smaller.

Fig 5 shows choropleth maps of percentage image coverage at the district level for the three

provinces. Coverage tends to be highest in the main population centers and lower in more

rural areas. This can be seen clearly in the map of Bangkok, where image coverage is highest in

the central area. Percentage image coverage also varied considerably over the districts within

each province. Bangkok had 100% image coverage for 21 out of 49 districts and a low of

15.45% for one district. In Nakhon Si Thammarat the coverage ranged from 19.7% to 2.4%

and in Krabi from 11.36% to 5.15%.

A total of 298,391 containers were identified in Bangkok, 84,609 in Nakhon Si Thammarat,

and 30,025 in Krabi. These counts lie in stark contrast to the number of images available for

each province, with Nakhon Si Thammarat having 21% more images than Bangkok but 72%

fewer containers. But within each province there is a fairly strong relationship between
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container count and the area covered by GSV images, as illustrated by Fig 6, which shows scat-

ter plots of container counts vs image coverage in km2 in each province at the sub-district

level. The Pearson correlations between container count and image coverage are 0.916 (p-

value 0.000) for Bangkok, 0.558 (p-value 0.000) for Krabi and 0.673 (p-value 0.000) for Nakhon

Si Thammarat.

Next we examined container density. Due to the limited availability of accurate shapefiles

for Bangkok, we were not able to gather GSV images for Phra Khanong district and for nine

sub-districts in other districts. These were left out of the calculations of density values so as not

to bias the values down. Container density varied considerably. Bangkok had the highest con-

tainer density (containers/km2 image area) over districts (Mean = 358.90, Standard variation

(SD) = 119.79), followed by Nakhon Si Thammarat (Mean = 98.71, SD = 32.56), and then

Table 2. Object recognition accuracy at 0.5 recognition confidence threshold for each category of container and grouping all container types. The average precision

is calculated from the precision/recall curve by taking the average over all recall levels.

Bin Ceramic

Bowl

Bucket Large Jar Cup Potted Plant Old Tire Vase All container types

True object counts 43 101 168 130 86 288 183 63 1062

Precision 1.00 0.78 0.83 0.94 0.76 0.89 0.92 0.79 0.90

Recall 0.23 0.89 0.94 0.82 0.91 0.94 0.93 0.86 0.92

F-score 0.37 0.83 0.88 0.88 0.83 0.91 0.92 0.82 0.91

Average Precision 0.42 0.51 0.86 0.71 0.46 0.75 0.81 0.63 -

https://doi.org/10.1371/journal.pntd.0007555.t002

Fig 5. Image coverage in each province. Choropleth map produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United Nations

Office for the Coordination of Humanitarian Affairs https://data.humdata.org/dataset/thailand-administrative-boundaries). Note: White color means no image

coverage.

https://doi.org/10.1371/journal.pntd.0007555.g005
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Krabi (Mean = 84.76, SD = 24.87). The highest container density of 729.75 was found in Din

Daeng district of Bangkok. Container density per population was markedly more uniform

across the three provinces but showed considerable variation among districts within the

provinces.

Krabi had the highest container density by population (Mean = 7.12, SD = 2.90), followed

by Bangkok (Mean = 5.30, SD = 3.19) and Nakhon Si Thammarat (Mean = 5.20, SD = 1.64).

The highest density by population was found in Khanna Yao district of Bangkok at 17.71 con-

tainers per 100 population. Fig 7 shows a bubble chart of container counts vs population for all

three provinces at the district level. Bubble size indicates population density. Mueang Nakhon

Si Thammarat district from Nakhon Si Thammarat with population = 267,984, container

counts = 19,915, population density = 52.737 is an outlier and was excluded from the plot. It

can be seen that container counts tend to increase with population. The number of containers

is well correlated with population in Nakhon Si Thammarat (Pearson correlation = 0.804,

p<0.001) and moderately in Bangkok (Pearson correlation = 0.654, p =<0.001. For Krabi

there are too few districts to compute a meaningful correlation.

Among the eight detected categories of containers, potted plants and buckets account for

the vast majority in all three provinces. In the highly urbanized area of Bangkok, buckets

Fig 6. Container counts vs area covered by GSV images (km2) in a) Bangkok, b) Krabi, and c) Nakhon Si Thammarat.

https://doi.org/10.1371/journal.pntd.0007555.g006
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account for 29.96% of all containers, and potted plants for 51.84%. In the more rural provinces,

the proportion is reversed. In Nakhon Si Thammarat, buckets and potted plants account for

45.14% and 32.08%, respectively and in Krabi they account for 52.27% and 27.56%, respec-

tively. Fig 8 shows the variation of relative proportions of container types over all sub-districts

of the three provinces. Bangkok has the least variation in prevalence of container types while

Nakhon Si Thammarat has the highest.

To validate the container counts from GSV images, we compared them with counts from

available manual surveys. Chumsri et al. [57] conducted a study in five sub-districts of Lansaka

district of Nakhon Si Thammarat in which they gathered indoor and outdoor container counts

and larval counts in the wet and dry seasons of 2015. Our GSV images were taken during the

dry season of 2016, so we compare our counts to their outdoor dry season counts. Since the

absolute container counts from the two studies are not comparable due to different sampling

techniques, we compare the relative counts over the five sub-districts in each study by normal-

izing by the highest count in each study. The result is shown in Fig 9. The relative counts over

four of the sub-districts have strong agreement except for Khao Kaeo sub-district.

Table E in S1 Text shows the analysis of our container counts from GSV images over the

five sub-districts. Khao Kaeo has the lowest coverage of GSV images at only 10.8 km2 and a

container count of 24, compared to Khun Thale: 54.69 km2 with 446 containers, Kamlon:

24.49 km2 with 318 containers, Lansaka: 24.21 km2 with 246 containers, and Thadi: 23.10 km2

with 445 containers. Khao Kaeo also has the lowest percent image coverage of these sub-dis-

tricts at 1.39%, which is the second lowest of all sub-districts in Nakhon Si Thammarat prov-

ince. The low image area combined with the low percentage coverage could account for the

large discrepancy between the container counts from GSV images and from the manual survey

in Khao Kaeo.

We additionally obtained manual container counts for sub-districts in Nakhon Si Tham-

marat from the Thai Ministry of Public Health [58]. Comparison of relative counts within this

data is complicated by the fact that there was not a single survey sampling methodology consis-

tently applied across sub-districts over time. We identified five sub-districts with outdoor

Fig 7. Container count vs population at the district level, color coded by province. Each datum is sized according to population density. (Note:

NST = Nakhon Si Thammarat, Pop Density = population density).

https://doi.org/10.1371/journal.pntd.0007555.g007
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container survey results from 2017 where the surveys inspected both villages and schools. We

again compared relative container counts from the manual surveys with counts from GSV

images, as shown in Fig 10. Analysis of correlation between the manual and GSV container

counts shows a Pearson correlation of 0.9106 (p = 0.031).

Comparison with larval survey data

Dengue vector abundance is influenced by a complex interplay of numerous factors. Climatic

factors such as temperature and rainfall are widely known to influence Aedes abundance [59–

61] and some studies have even shown that duration of daylight and wind velocity may be

influential [62,63]. Vector abundance is also influenced by numerous factors related to human

behavior and impact on the environment. These include construction practices, land cultiva-

tion, sanitation, domestic water storage, and crowded living conditions [63,64]. Arunachalam

et al. [65] carried out a study of the eco-bio-social determinants of dengue vector breeding

focused on geographic areas in six large and middle-sized Asian cities. Factors found to be sig-

nificantly correlated with dengue vector density included number of containers, population

density, and people’s knowledge and awareness of dengue and vector control activities. It was

also found that public spaces contributed less to pupal production than domestic and perido-

mestic spaces. Across all study sites, unused and unprotected outdoor containers in shaded

areas were found to be the highest contributor to pupal production. The importance of

Fig 8. Distribution of relative prevalence of five most common container types (bin, bucket, jar, potted plant, tire) over sub-districts of (a) Bangkok, (b) Krabi

and(c) Nakhon Si Thammarat provinces. Kernel density estimation was applied to smooth the values. (Note: Differences in bin widths are due to use of the

Freedman-Diaconis rule for automatic binning used in plotting the distributions).

https://doi.org/10.1371/journal.pntd.0007555.g008
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containers is underlined by the WHO Guidelines for Dengue Surveillance and Mosquito Con-

trol [66] which state that container management to reduce the sources of breeding habitats is

one of the best approaches to controlling the dengue vector.

We evaluated the relationship between container counts determined from GSV images and

dengue vector abundance by comparing container density values (containers/km2 land area)

Fig 9. The relative numbers of containers in Lansaka District of Nakhon Si Thammarat from analysis of GSV images and from manual survey [57].

Values are shown relative to the highest count over the sub-districts for each study (95% confidence interval).

https://doi.org/10.1371/journal.pntd.0007555.g009

Fig 10. The relative numbers of containers in five sub-districts of Nakhon Si Thammarat from analysis of GSV images and from manual survey data of

outdoor containers obtained from the Thai Ministry of Public Health. Values are shown relative to the highest count over the sub-districts for each study

(95% confidence interval).

https://doi.org/10.1371/journal.pntd.0007555.g010
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derived from GSV images with data from manual larval surveys at the village level. The com-

puted container density values represent containers that contain or could contain water. We

carried out the comparison for the province of Nakhon Si Thammarat, which was chosen

because, among provinces in Thailand, it has the highest number of manual surveys in recent

years and is consistently one of the provinces with the highest incidence of dengue cases. Con-

tainer density values were generated by retrieving 958,027 GSV images from Nakhon Si Tham-

marat province and running them through the convolutional neural net for object

recognition. Analysis of the metadata showed that the vast majority of images were taken in

2016. The first row of Table 3 shows the number of containers of each type over the 65 sub-dis-

tricts. Detailed statistics are provided in Table D in the S1 Text.

We obtained seven years (2011–2017) of village-level larval survey data for Nakhon Si

Thammarat from the Ministry of Public Health of Thailand. The larvae were manually identi-

fied by the village health volunteers who walked door-to-door and checked whether larvae

were present in containers within or around the houses surveyed. The data from each survey

was reported using three indices: Container Index, House Index, and Breteau Index. We use

the Breteau Index (BI) for comparison since it is conceptually closest among these to our mea-

sure of container density and is considered the most useful of the three indices in estimating

the Aedes density at a location [67]. So, the comparison we are making is between the number

of positive containers per 100 houses inspected (including indoor and outdoor containers)

and the number of outdoor containers that contain or could contain water.

To be meaningful, comparison of container density values and BI values should be done

with data collected at roughly the same time. To maximize the amount of manual survey data,

we used BI data from a 3-year time window: 2015–2017. This is justified by the assumption

that while the location or presence of individual containers may change over time, the total

number (absent major intervention efforts) is quite stable.

A complicating factor in our analysis is that the larval surveys were carried out at the village

level. Producing corresponding container density values would require reliable village shape-

files, which are not available in Thailand. Since shapefiles are available for sub-districts, we car-

ried out the comparative analysis at the sub-district level. As shown in Table 4, the BI for each

sub-district was approximated by taking the average of the BI values of all villages in that sub-

district. We excluded outliers from container density values and BI values by using three

sigma (mean ± 3 SD) cutoff. This resulted in elimination of three data points for data over the

entire year, one point for data over the dengue season, and four points for data over the non-

dengue season, all at the upper end of the distribution. In addition, we eliminated data points

for which the average BI in the sub-district had very high standard deviation. This resulted in

the elimination of an additional two points for the entire year, one for the dengue season, and

five for the non-dengue season. This left a total of 60 data points for the entire year (Table 4),

31 for the dengue season (Table 5), and 48 for the non-dengue season (Table 6).

An initial straightforward approach to evaluating the agreement between container density

and BI is to compute an overall container density by summing the numbers of containers of

the eight different types. Computing the correlation between this and BI over 60 sub-districts

for the entire year yields a Pearson correlation of 0.3775 (p = 0.0029) as shown in Fig 11A.

Table 3. Description of detected containers used in comparison with larval surveys for entire year, dengue season and non-dengue season.

N Subdistricts Bin Bowl Bucket Jar Potted Plant Tire Cup Vase Total

Entire Year 60 3,171 160 15,513 631 8,946 3,024 22 221 31,688

Dengue Season 31 1,611 91 8,787 357 4,557 1,604 11 138 17,156

Non Dengue Season 48 2,364 125 12,789 551 7,263 2,414 18 177 25,701

https://doi.org/10.1371/journal.pntd.0007555.t003
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This weak correlation is not surprising since we are measuring the relation between container

density and BI during some months when there is little or no rain; thus few larvae in the

counted containers. We would expect the correlation to naturally be low during the dry season

and higher during the rainy season. To test this we separately measured the correlation with BI

values collected during the wet dengue season, which in Nakhon Si Thammarat is June—

November [68], and the remaining months, the non-dengue season.

For the dengue season, this left 31 sub-districts with BI data and for the non-dengue season,

this left 48 sub-districts. Rows two and three in Table 3 show the numbers of containers of

each type for the dengue and non-dengue seasons, respectively. Over the dengue season, the

Pearson correlation is moderately strong 0.5207 (p = 0.0027), as shown in Fig 11B, while over

the non-dengue season the Pearson correlation is a very weak 0.1775 (p = 0.2273), as shown in

Fig 11C.

Vector abundance in a given area depends on container density as well as container pro-

ductivity, with productivity often varying greatly among container types [57,65,69]. Thus, a

Table 4. Description of Breteau Index data for the entire year used in analyses: Number of surveys per sub-district (N), mean value of BI, and SD.

District Sub-district N Mean SD District Sub-district N Mean SD District Sub-district N Mean SD

1 Mueng Tha Rai 1 68.0 21 Cha-uat Khon Hat 1 37.5 41 Thung Yai Kurae 24 17.2 3.7

2 Mueng Kamphaeng Sao 1 57.5 22 Cha-uat Ko Khan 7 17.9 6.2 42 Thung Yai Prik 14 16.6 2.9

3 Mueng Chai Montri 1 53.3 23 Cha-uat Khuan Nong

Hong

16 29.5 6.6 43 Thung Yai Krung Yan 59 13.2 2.6

4 Mueng Mamuang Song

Ton

1 57.5 24 Cha-uat Khao Phra

Thong

11 31.8 4.6 44 Sichon Thung Prang 2 35.5 13.4

5 Phrom

Khiri

Phrom Lok 1 30.0 25 Cha-uat Nang Long 1 40.0 45 Sichon Sao Phao 1 50.0

6 Phrom

Khiri

In Khiri 2 50.0 3.5 26 Tha Sala Tha Sala 2 56.2 15.9 46 Khanom Khanom 2 10.0 7.1

7 Phrom

Khiri

Thon Hong 2 33.5 2.1 27 Tha Sala Sa Kaeo 2 15.0 8.5 47 Hua Sai Laem 1 12.5

8 Lan Saka Tha Di 1 30.0 28 Tha Sala Thai Buri 1 33.3 48 Bang Khan Bang Khan 34 6.2 1.5

9 Lan Saka Kamlon 2 33.5 0.7 29 Thung

Song

Nong Hong 1 22.5 49 Bang Khan Ban Lamnao 23 6.3 1.3

10 Chawang Na Wae 11 15.7 2.8 30 Thung

Song

Khuan Krot 2 36.2 12.4 50 Bang Khan Wang Hin 3 7.5 0.0

11 Chawang Huai Prik 6 16.2 1.0 31 Thung

Song

Khao Ro 3 54.5 16.1 51 Bang Khan Ban Nikhom 13 5.6 1.1

12 Chawang Na Khliang 2 15.0 3.5 32 Thung

Song

Thi Wang 4 41.2 9.2 52 Tham Phannara Tham

Phannara

2 27 0

13 Phipun Kathun 8 19.0 2.0 33 Thung

Song

Namtok 3 25.8 2.9 53 Chulabhorn Thung Pho 10 33.1 5.3

14 Phipun Khao Phra 2 22.1 1.2 34 Thung

Song

Tham Yai 1 40.0 54 Chulabhorn Na Mo Bun 1 32.5

15 Chian Yai Thong Lamchiak 1 15.0 35 Thung

Song

Na Pho 5 43.0 9.4 55 Phra Phrom Na Phru 2 9.5 4.9

16 Chian Yai Karaket 1 32.5 36 Thung

Song

Khao Khao 7 32.1 10.4 56 Phra Phrom Na San 1 42.5

17 Cha-uat Cha-Uat 1 42.5 37 Na Bon Na Bon 1 22.5 57 Nopphitam Nopphitam 3 38.3 18.8

18 Cha-uat Tha Pracha 5 31.2 7.9 38 Na Bon Kaeo Saen 3 62.8 29.0 58 Nopphitam Krung Ching 1 10

19 Cha-uat Wang Ang 17 23.0 6.2 39 Thung Yai Tha Yang 5 13.5 1.4 59 Chang Klang Chang Klang 2 20.5 0.7

20 Cha-uat Ban Tun 10 30.2 3.6 40 Thung Yai Thung Sang 1 12.5 60 Chaloem Phra

Kiet

Thang Phun 2 10 0

Average Survey 5.88

https://doi.org/10.1371/journal.pntd.0007555.t004
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more precise relation between container counts and BI can potentially be obtained by analyz-

ing the relationship using the disaggregated counts of the various container types. We created

multivariate linear regression models with container densities for the eight types of containers

as the independent variables and BI as the dependent variable. Evaluation of the fitted linear

model shows a moderately strong Pearson correlation with the BI values of 0.5751

(p< 0.0001) with R-squared of 0.3308 for entire year, a significantly high Pearson correlation

of 0.8242 (p< 0.0001) with R-squared of 0.6793 for the dengue season, and 0.5476

(p = 0.0001) with R-squared of 0.2999 for the non-dengue season, as shown in Fig 11D, 11E

and 11F, respectively. The standardized beta coefficients for the dengue season model, shown

in Table 7, indicate that potted plants and large jars are the most important types of containers

in predicting BI values within the 31 sub-districts. Interestingly, these are not the most preva-

lent types of containers in the sub-districts. The most prevalent are buckets (47.46%), potted

plants (28.42%), and tires (10.53%). Large jars represent only 2.31% of the detected breeding

sites. This result conforms to results from previous entomological studies of the dengue vector

Table 5. Description of Breteau Index data for the dengue season used in analyses: Number of surveys per sub-district (N), mean value of BI, and SD.

District Sub-district N Mean SD District Sub-district N Mean SD District Sub-district N Mean SD

1 Mueng Tha Rai 21 Cha-uat Khon Hat 1 37.5 41 Thung Yai Kurae 24 17.2 3.7

2 Mueng Kamphaeng Sao 1 57.5 22 Cha-uat Ko Khan 7 17.9 6.2 42 Thung Yai Prik 14 16.6 2.9

3 Mueng Chai Montri 1 53.3 23 Cha-uat Khuan Nong

Hong

16 29.5 6.6 43 Thung Yai Krung Yan 59 13.2 2.6

4 Mueng Mamuang Song

Ton

1 57.5 24 Cha-uat Khao Phra

Thong

11 31.8 4.6 44 Sichon Thung Prang

5 Phrom

Khiri

Phrom Lok 25 Cha-uat Nang Long 45 Sichon Sao Phao

6 Phrom

Khiri

In Khiri 26 Tha Sala Tha Sala 46 Khanom Khanom

7 Phrom

Khiri

Thon Hong 27 Tha Sala Sa Kaeo 47 Hua Sai Laem

8 Lan Saka Tha Di 28 Tha Sala Thai Buri 48 Bang Khan Bang Khan 34 6.2 1.5

9 Lan Saka Kamlon 29 Thung

Song

Nong Hong 1 22.5 49 Bang Khan Ban Lamnao 23 6.3 1.3

10 Chawang Na Wae 11 15.7 2.8 30 Thung

Song

Khuan Krot 2 36.2 12.4 50 Bang Khan Wang Hin 3 7.5 0.0

11 Chawang Huai Prik 6 16.2 1.0 31 Thung

Song

Khao Ro 3 54.5 16.1 51 Bang Khan Ban Nikhom 13 5.6 1.1

12 Chawang Na Khliang 2 15.0 3.5 32 Thung

Song

Thi Wang 4 41.2 9.2 52 Tham Phannara Tham

Phannara

13 Phipun Kathun 8 19.0 2.0 33 Thung

Song

Namtok 53 Chulabhorn Thung Pho 10 33.1 5.3

14 Phipun Khao Phra 34 Thung

Song

Tham Yai 54 Chulabhorn Na Mo Bun 1 32.5

15 Chian Yai Thong Lamchiak 35 Thung

Song

Na Pho 5 43.0 9.4 55 Phra Phrom Na Phru

16 Chian Yai Karaket 36 Thung

Song

Khao Khao 56 Phra Phrom Na San

17 Cha-uat Cha-Uat 1 42.5 37 Na Bon Na Bon 57 Nopphitam Nopphitam

18 Cha-uat Tha Pracha 5 31.2 7.9 38 Na Bon Kaeo Saen 58 Nopphitam Krung Ching

19 Cha-uat Wang Ang 17 23.0 6.2 39 Thung Yai Tha Yang 5 13.5 1.4 59 Chang Klang Chang Klang

20 Cha-uat Ban Tun 10 30.2 3.6 40 Thung Yai Thung Sang 1 12.5 60 Chaloem Phra

Kiet

Thang Phun

Average Survey 9.68

https://doi.org/10.1371/journal.pntd.0007555.t005
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in Thailand which found that potted plants and large jars are two of the most important breed-

ing site types. The Ministry of Public Health [49,50] reports that among larval surveys carried

out throughout the country, 70.82% of Aedes aegypti larvae are found in large jars. In a study

of Aedes aegypti breeding sites in Kamphaeng Phet, Thailand, Koenradt et al. [45] found earth-

enware jars to be responsible for 33.1% of pupae production. A study of dengue vector breed-

ing sites in Nakhon Si Thammarat found that the number of positive containers was higher in

earthen containers (e.g., potted plants and large jars) than in plastic ones [70]. This analysis

demonstrates the value of our data driven approach in identifying important container types,

which is recognized as being essential in effective dengue control [71].

To understand conditions under which the linear regression models fit well and under

which they do not, we carried out an analysis of the model residuals over the sub-districts

using the symmetric mean absolute percentage error (SMAPE) which has the advantage of

being independent of magnitude of the values being estimated. This was applied to the single

value for each sub-district so that the value of n is just 1 and the formula becomes 2(|F—A|) /

Table 6. Description of Breteau Index data for the non-dengue Season used in analyses: Number of surveys per sub-district (N), mean value of BI, and SD.

District Sub-district N Mean SD District Sub-district N Mean SD District Sub-district N Mean SD

1 Mueng Tha Rai 1 68.0 21 Cha-uat Khon Hat 41 Thung Yai Kurae 24 17.2 3.7

2 Mueng Kamphaeng Sao 22 Cha-uat Ko Khan 42 Thung Yai Prik 14 16.6 2.9

3 Mueng Chai Montri 23 Cha-uat Khuan Nong

Hong

16 29.5 6.6 43 Thung Yai Krung Yan 59 13.2 2.6

4 Mueng Mamuang Song

Ton

24 Cha-uat Khao Phra

Thong

11 31.8 4.6 44 Sichon Thung Prang 2 35.5 13.4

5 Phrom

Khiri

Phrom Lok 1 30.0 25 Cha-uat Nang Long 1 40.0 45 Sichon Sao Phao 1 50.0

6 Phrom

Khiri

In Khiri 2 50.0 3.5 26 Tha Sala Tha Sala 2 56.2 15.9 46 Khanom Khanom 2 10.0 7.1

7 Phrom

Khiri

Thon Hong 2 33.5 2.1 27 Tha Sala Sa Kaeo 47 Hua Sai Laem 1 12.5

8 Lan Saka Tha Di 1 30.0 28 Tha Sala Thai Buri 1 33.3 48 Bang Khan Bang Khan 34 6.2 1.5

9 Lan Saka Kamlon 2 33.5 0.7 29 Thung

Song

Nong Hong 49 Bang Khan Ban Lamnao 23 6.3 1.3

10 Chawang Na Wae 11 15.7 2.8 30 Thung

Song

Khuan Krot 2 36.2 12.4 50 Bang Khan Wang Hin 3 7.5 0.0

11 Chawang Huai Prik 6 16.2 1.0 31 Thung

Song

Khao Ro 3 54.5 16.1 51 Bang Khan Ban Nikhom 13 5.6 1.1

12 Chawang Na Khliang 2 15.0 3.5 32 Thung

Song

Thi Wang 4 41.2 9.2 52 Tham Phannara Tham

Phannara

2 27.0 0.0

13 Phipun Kathun 8 19.0 2.0 33 Thung

Song

Namtok 3 25.8 2.9 53 Chulabhorn Thung Pho 10 33.1 5.3

14 Phipun Khao Phra 2 22.1 1.2 34 Thung

Song

Tham Yai 1 40.0 54 Chulabhorn Na Mo Bun

15 Chian Yai Thong Lamchiak 1 15.0 35 Thung

Song

Na Pho 55 Phra Phrom Na Phru 2 9.5 4.9

16 Chian Yai Karaket 1 32.5 36 Thung

Song

Khao Khao 7 32.1 10.4 56 Phra Phrom Na San 1 42.5

17 Cha-uat Cha-Uat 37 Na Bon Na Bon 1 22.5 57 Nopphitam Nopphitam 3 38.3 18.8

18 Cha-uat Tha Pracha 5 31.2 7.9 38 Na Bon Kaeo Saen 58 Nopphitam Krung Ching 1 10.0

19 Cha-uat Wang Ang 17 23.0 6.2 39 Thung Yai Tha Yang 5 13.5 1.4 59 Chang Klang Chang Klang 2 20.5 0.7

20 Cha-uat Ban Tun 10 30.2 3.6 40 Thung Yai Thung Sang 60 Chaloem Phra

Kiet

Thang Phun 2 10.0 0.0

Average Survey 6.83

https://doi.org/10.1371/journal.pntd.0007555.t006

Mapping of dengue vector breeding sites using street view images

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007555 July 29, 2019 18 / 27

https://doi.org/10.1371/journal.pntd.0007555.t006
https://doi.org/10.1371/journal.pntd.0007555


(|F| + |A|), where A is actual value and F is the predicted value; thus for clarity we use the term

symmetric absolute percentage error (SAPE). Fig 12A.1 and 12A.2 show the SAPE values for

the entire year using a gradient color scheme and thresholding, respectively. Fig 12B.1 and

12B.2 similarly show the SAPE values for only the dengue season using gradient color scheme

and thresholding. Since the results are quite similar, we will restrict our discussion to the entire

year, using the thresholded colormap which most clearly displays the areas where the models

Fig 11. Correlation between container density by land area and BI for (A) entire year, (B) dengue season, and (C) non-dengue season, and predicted vs actual

values of BI for multivariate linear regression model for (D) entire year, and (E) dengue season, and (F) non-dengue season. The solid line is a linear trendline

which is an indication of the linear (Pearson) correlation between the two variables. (Note: shading shows the 99% confidence interval).

https://doi.org/10.1371/journal.pntd.0007555.g011

Table 7. Absolute standardized coefficients and p-values from linear regression for dengue season. The largest absolute values are the most important variables in the

regression model.

Absolute Standardized Coefficients

Potted plant Large Jar Bin Cup Bucket Tire Bowl Vase

Beta 3.4828 2.0499 0.6684 0.4976 0.4501 0.3806 0.1897 0.0074

p-values 0.0000 0.0000 0.0570 0.0110 0.1400 0.1290 0.3960 0.9600

https://doi.org/10.1371/journal.pntd.0007555.t007
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are accurate or inaccurate. The map uses 25% and 75% quantile threshold values to categorize

sub-districts into three classes: good fit (dark green), average fit (yellow), and poor fit (dark

red). In the figure we can observe some amount of clustering of regions of good fit and poor

fit.

The solid circle delineates a cluster of six sub-districts where the model fit is poor. Four of

the sub-districts are in Bang Khan district and the other two are in Thung Yai district, which

are mountainous areas. A previous study by Preechaporn et al. [46] examining the effect of

topography on key breeding sites in Nakhon Si Thammarat found that in these mountainous

areas the key containers for Aedes aegypti were preserved areca jars and for Aedes albopictus
were metal boxes. These two container types are not detected by our object recognition

software.

The oval delineates another cluster of four sub-districts where model fit is poor. These sub-

districts (Tha Rai, Mueang district; Khun Thale, Lan Saka district; Na Phru and Na San, Phra

Phrom district) are urban areas with high population density. A plausible explanation is that

in such urban areas, indoor containers represent a large proportion of breeding sites which

cannot be detected in the GSV images. In urban environments, Aedes aegypti is more promi-

nent than Aedes albopictus and the former prefer indoor breeding sites [72,73]. In a study of

the effect of urbanization on the presence of Aedes aegypti and Aedes albopictus in Chiang

Mai, Thailand, Tsuda et al. [74] found a larger number of mosquito larvae indoors than out-

doors in their urban study area and the reverse in their rural study area.

The dashed circle in the figure delineates a cluster of sub-districts, mostly in Cha-Uat dis-

trict, where the model fit is good. A previous study of the ecology of Aedes mosquitos in

Kreang sub-district of Cha-Uat district [75] found plastic buckets to be the most common

breeding sites. Our analyses show plastic buckets to be the most prevalent containers in Cha-

Uat district (51.73%) as shown in Table B in S1 Text.

Fig 13A and 13B show scatter plots of the SAPE and Absolute Error (AE) of the model pre-

dictions versus the BI values of the sub-districts. The AE is defined as the absolute value of the

difference between the prediction and the actual value. The same thresholded color coding is

used as in the map in Fig 12A.2. Accuracy tends to be good toward the middle range of BI val-

ues (between about 20 and 40) and is worse at low and high ends of the BI range. Two of these

high BI value sub-districts, shown in red, correspond to two of the sub-districts with high pop-

ulation density discussed above.

Discussion

We presented a pipeline to detect and map containers using images from Google Street View.

The central component in this pipeline is the Faster R-CNN object recognition network from

which we used five existing object categories in the network and used transfer learning to train

an additional three. Evaluation on a test set of images yielded an F-score accuracy of 0.91 for

the problem of detecting any of eight types of containers. While the eight object categories in

the network cover a number of the most important container types for the dengue vector in

Thailand, there are some notable missing types. Cement tanks are known to be important

breeding sites throughout Thailand [47,48] but are not in Faster R-CNN and images to use for

transfer learning are not readily available. Future work could collect a set of training images

through crowdsourcing and/or by using the network of local healthcare volunteers of the Min-

istry of Public Health of Thailand. Based our experience with transfer learning of three object

categories, we estimate that between a few hundred and a thousand images would be sufficient.

In addition, numerous other container types are important breeding sites regionally. For

example, one study in Nakhon Si Thammarat [46] found Aedes aegypti larvae mostly in
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preserved areca jars in mangrove and mountainous areas, and Aedes albopictus larvae mostly

in preserved areca jars in mangrove areas and in metal boxes in mountainous areas. Such

Fig 12. Choropleth maps of SAPE values for the multivariate linear models for (A) entire year, and (B) dengue season, where A.1,

B.1 are gradient colormaps, and A.2, B.2 are thresholded colormaps using the 25% and 75% quantiles as threshold values. The dashed

circle and solid circle delineate the clusters where the model fit are good and poor, respectively. White color represents subdistricts

with no data. Choropleth map produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United Nations

Office for the Coordination of Humanitarian Affairs https://data.humdata.org/dataset/thailand-administrative-boundarieson)

correlation between the two variables.

https://doi.org/10.1371/journal.pntd.0007555.g012
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container types could also be added to produce a more comprehensive catalog of containers.

Very small containers such as cans and bottles are difficult to recognize in GSV images. This

could be partially addressed by using scene recognition techniques [36] to detect areas such as

garbage dumps that have high concentrations of such containers.

Despite these limitations of container coverage, a simple multi-variate linear regression

model relating densities of the eight container types with Breteau Index values for 31 sub-dis-

tricts in Nakhon Si Thammarat province of Thailand yields an R-squared value of 0.6793 dur-

ing the dengue season. In ongoing work, we are constructing risk models of dengue using

rainfall, temperature, and population demographics, as well as the container densities from

GSV images in order to understand and quantify the added value of this source of container

density data in dengue risk mapping.

While GSV data is an excellent data source for evaluating the potential usefulness of the

approach presented in this study, it has a number of limitations that make it less ideal for sup-

porting practical control efforts. These limitations concern mostly temporal and spatial data

coverage. As mentioned earlier, GSV data is updated only at infrequent intervals, with higher

refresh rates in more urban areas and along larger roads. This limitation can be partially

addressed through the use of existing crowdsourcing tools for gathering geotagged images,

such as the smartphone applications Mapillary (www.mapillary.com) and Open Street Cam

(openstreetcam.org). These applications allow anyone to easily create and share street view

type images. In terms of the spatial coverage, GSV image coverage varies greatly, with coverage

best in urban areas. Our analysis showed the image coverage of highly urbanized Bangkok to

be 77.06% and the coverage of the more rural provinces of Nakhon Si Thammarat and Krabi

to be 8.40% and 7.31%, respectively. Coverage also varied greatly among districts in the prov-

inces. In addition, GSV images cover only areas along roads and so do not cover areas such as

empty lots and back yards. For such areas, the use of drones offers a possible approach to

gather fairly high-resolution images [76]. But use of drones has a number of challenges, includ-

ing relatively high cost, specific training required to properly operate the drones, significant

amount of time required to obtain images from large areas, sensitivity to local weather

Fig 13. Scatter plots of (a) SAPE residual and (b) AE residual values of sub-district predictions versus Breteau index. The 25% and 75% quantiles are used as

thresholds for the categorization into Good, Average, Poor.

https://doi.org/10.1371/journal.pntd.0007555.g013
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conditions, and regulations on flying over populated areas [77]. Because of the need to fly at an

altitude to avoid obstacles, drones also typically provide images of lower resolution than street

view images. Of course, none of the image-based techniques discussed here provide coverage

of indoor containers. Since indoor containers can represent a significant portion of overall

containers, particularly in urban areas, this is a fundamental limitation of image-based tech-

niques. Despite these limitations, the results presented in this paper suggest that detection of

containers in geo-tagged images may be a useful tool in creation of dengue risk maps.

The source code for the trained Faster R-CNN network and the container counts used in

our study are available upon request.
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S1 Text. Table A. Area, image coverage, population, and statistics of detected containers at
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Thailand Table D. Statistics of detected containers for sub-districts where BI values were col-

lected during the dengue season. Table E. Statistics for detected containers in sub-districts of

Lansaka district of Nakhon Si Thammarat.
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