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Abstract

While it is well established that genetics can be a major contributor to population

variation of complex traits, the relative contributions of rare and common variants

to phenotypic variation remains a matter of considerable debate. Here, we simulate

genetic and phenotypic data across different case/control panel sampling strategies,

sequencing methods, and genetic architecture models based on evolutionary forces

to determine the statistical performance of rare variant association tests (RVATs)

widely in use. We find that the highest statistical power of RVATs is achieved by

sampling case/control individuals from the extremes of an underlying quantitative

trait distribution. We also demonstrate that the use of genotyping arrays, in

conjunction with imputation from a whole‐genome sequenced (WGS) reference

panel, recovers the vast majority (90%) of the power that could be achieved by

sequencing the case/control panel using current tools. Finally, we show that for

dichotomous traits, the statistical performance of RVATs decreases as rare variants

become more important in the trait architecture. Our results extend previous work

to show that RVATs are insufficiently powered to make generalizable conclusions

about the role of rare variants in dichotomous complex traits.
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1 | INTRODUCTION

Genome‐wide association studies (GWAS) have detected
many common variants associated with hundreds of
complex heritable phenotypes, but for many traits, much
of that heritability remains unexplained. One proposed
source of this so‐called “missing heritability” are rare
variants, which are hotly debated but have been
implicated as a nonnegligible source of genetic variance
in prostate cancer (Mancuso et al., 2016), gene expression
(Hernandez et al., 2019), height, and BMI (Wainschtein

et al., 2019). Unfortunately, the power to detect rare
variant associations is low in single‐marker statistical
tests at the genome‐wide scale. Researchers have
proposed many rare variant association tests (RVATs),
statistical methods to pool rare variants within a
putatively causal locus and test for association with the
phenotype. These RVATs are broadly classified into three
categories: burden tests (Liu & Leal, 2010), variance‐
component tests (Neale et al., 2011; Wu et al., 2011), and
combined tests (Lee et al., 2012; Sun, Zheng, & Hsu,
2013). Though each test is published with its own
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validation simulations, these simulations are generally
not comparable and have their own flaws. (Moutsianas
et al., 2015) systematically characterized the performance
of commonly used gene‐based RVATs under a range of
genetic architectures, sample sizes, variant effect sizes,
and significance thresholds, and found that MiST, SKAT‐
O, and KBAC have the highest mean power across
simulated data, but that these tests had overall low power
even in the cases of loci with relatively large effect sizes.

It is well‐known in the population genetics literature
that population expansions and contractions (i.e., demo-
graphy) can dramatically affect genome‐wide patterns of
genetic variation in a population (Auton et al., 2009;
Bhaskar, Wang, & Song, 2015; Gravel et al., 2011; Uricchio,
Zaitlen, Ye, Witte, & Hernandez, 2016), and that the action
of natural selection can amplify or inhibit the frequency of
functional alleles (Boyko et al., 2008; Eyre‐Walker, Woolfit,
& Phelps, 2006; Lohmueller et al., 2011). Together, these
evolutionary forces shape the genetic architecture of
complex traits (Lohmueller, 2014; Uricchio et al., 2016),
and are critical components to understand in the pursuit of
identifying the genetic basis for the bevy of human
phenotypes under study. Inferred demographic models of
non‐African human populations show a serial bottleneck
model as populations migrated in waves across the globe,
followed by explosive exponential growth since the dawn of
agriculture. Moreover, studies of selection have found that
most amino acid changes in proteins and changes in
conserved noncoding loci are weakly deleterious (Boyko
et al., 2008; Torgerson et al., 2009). Together, growth and
selection have resulted in a preponderance of ultra‐rare
mutations (MAF< 0.1%), which contribute a plurality of
heritability in gene expression (Hernandez et al., 2019),
BMI (Wainschtein et al., 2019), and possibly other traits.
Accounting for demographic and selective effects on the
frequency spectrum of causal variation is therefore crucial
in characterizing the statistical power of RVATs. However,
while previous evaluations of RVAT power have attempted
to mimic the frequency spectrum of observed variants, they
typically use phenotype models (or genetic architectures)
that do not directly account for evolutionary forces like
demography and natural selection and are often biologically
unrealistic (for example, effect sizes that are simple
functions of the minor allele frequency; Wu et al., 2011),
limited to specific relative risks (Wray & Goddard, 2010), or
lack pleiotropy (Moutsianas et al., 2015).

Another vital component of designing genetic associa-
tion studies is the method of acquiring genetic data.
Although the gold standard for capturing rare variation
remains deep whole‐genome sequencing (WGS), the
$1000 per genome cost still means performing WGS on
any sizeable group of individuals remains prohibitively
expensive for all but the largest consortia. Genotyping

arrays make acquiring genetic data for a large number of
individuals significantly less expensive, but lack coverage
of rare variation. With larger WGS reference panels like
the Haplotype Reference Consortium (HRC; McCarthy
et al., 2016), large numbers of genotyped samples can be
imputed to gain some insight into rare variation. With
such large reference panels, imputation accuracy of
genetic variation down to MAF≅ 0.1% is near perfect in
European individuals (Quick et al., 2019). As more
diverse reference panels become available (for example,
TOPMed; Taliun et al., 2019), imputation in non‐
European and admixed populations will also improve,
particularly for rare variants. Capturing these rare
variants using genotyping arrays and imputation is more
cost‐effective and can lead to many more individuals in a
study. However, imputation is limited by the variants that
are carried by the individuals in the reference panel, and
by the accuracy of the algorithm being used. Imputation
accuracy falls off at lower minor allele frequencies
(MAF), but the use of large WGS reference panels
reduces the threshold of acceptable imputation quality
(r2 > 0.3) to ~0.004–0.006% (Taliun et al., 2019) in
European and African populations. Despite these limita-
tions, imputation has been used to identify rare variant
associations in acute macular degeneration (Helgason
et al., 2013), lipid levels in type 2 diabetes patients
(Marvel et al., 2017), systemic lupus erythematosus
(Martínez‐Bueno & Alarcón‐Riquelme, 2019), among
others. It is possible that additional rare variant associa-
tion signals can be found in imputed data as imputation
quality improves, but it is unclear what the statistical
properties of RVATs in this setting are.

Here, we evaluate the statistical power of rare variant
association tests in a simulation study under different
genetic architectures, methods of acquiring genetic data,
and methods of selecting individuals to be a part of the case‐
control cohort. We demonstrate how statistical power of
RVATs is dependent on genetic architecture as well as a
sampling strategy for the case/control cohort. In particular,
we find that sampling the extremes of a quantitative
phenotype has the highest RVAT power, but power erodes
quickly for all sampling strategies as the amount of genetic
variance explained by rare variants increases.

2 | MATERIALS AND METHODS

2.1 | Simulating genomic sequence data

We simulate neutral genetic sequence data under a
coalescent model using msprime (Kelleher, Etheridge,
& McVean, 2016) with a European and African
demographic history (Tennessen et al., 2012). Under
this demographic model, the European population
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experienced a series of bottlenecks as they moved out of
Africa and into Europe. These bottlenecks were followed
by super‐exponential growth in the European population
and recent exponential growth in the African population,
along with bidirectional migration. Using this neutral
demographic model, we generate a 5Mb region with a
mutation rate of 1e−8 and with genetic map arbitrarily
chosen to mimic chr22:17000000‐22000000 in hg19.

2.2 | Simulating genotype data

Some analyses are based on genotype array data. To
simulate a genotyping array, we downsample the simulated
neutral sequence data above to match the allele frequency
spectrum and the average distance between variants of the
Illumina OmniExpress2.5 genotyping chip, used in the
GoT2D study (Fuchsberger et al., 2016).

2.3 | Simulating quantitative
phenotypes

We transform our simulated neutral genetic data into
quantitative phenotypes using a three‐step procedure,
following Uricchio et al (Uricchio et al., 2016). First, we
simulate functional variants using the forward simulator
SFS_CODE (Hernandez, 2008; Uricchio et al., 2015)
under the same demographic model as above, but with
purifying selection. Specifically, we generate 2000 in-
dependent loci of length 100kbp (for a total of 200Mb)
with 100,000 individuals, where new mutations receive a
fitness effect drawn from a gamma distribution (as
inferred for nonsynonymous sites; Boyko et al., 2008).
This procedure generates a large table of functional
variants, with corresponding derived allele counts and
fitness effects.

The second step is to project the allele frequencies of
our list of functional variants down to the desired sample
size (using a binomial model), and transform fitness effects
to phenotypic effect sizes using the Uricchio et al. (2016)
model. This model parameterized the correlation between
fitness effects and phenotypic effect sizes (through ⍴) and
the functional relationship between fitness effects and
phenotypic effect sizes (through τ and δ). In particular, a

causal variant with fitness effect s will have effect size zs as
follows:

z
δs ρ

δs
=

with probability

otherwise
s

τ

r
τ

⎧⎨⎩

Under this model, with probability ρ, the effect size
zs of a site is a direct function of the site’s fitness effect
(s), otherwise, the effect size zs is a function of a
randomly sampled fitness effect (sr) drawn from the
entire list of functional variants generated by the first
step above. In this model, δ is +1 or −1 with equal
probability to enable trait‐increasing and trait‐decreas-
ing effects.

The third step for generating quantitative phenotypes
is to identify the desired number of causal loci in our
5mb simulated sequence. For each variant within the
causal loci, we sample a random variant from our list of
functional variants generated in step two with the exact
same allele frequency and assign derived alleles at this
causal site the effect size of the sampled functional
variant. The quantitative phenotype of each individual
(Yi , for the ith individual) is then generated under an
additive model by summing the effect sizes of all causal
alleles that they carry

∑Y X z= + ϵi

j

ij j

Where zj is the effect size of causal variant j, Xij is the
number of causal alleles carried by individual i at site j,
and ϵ is a Normal random variable with mean 0 and
variance σenvironment

2 (which ensures the desired level of
heritability of the trait). See Table 1 for the specific values
of ⍴, τ, and heritability that are evaluated in this study. In
contrast to previous work with this phenotypic model
(Uricchio et al., 2016), we will focus on dichotomous
traits, and describe our sampling strategy for such traits
below. (Tables 2 and 3)

TABLE 1 Genetic architectures examined in this study

Parameter Values

Number of causal loci 10, 100

Heritability 0.2, 0.8

ρ 0.5, 0.8, 0.9, 1.0

τ 0.5, 1.0

Prevalence 25%

TABLE 2 Genetic architecture parameters under the Uricchio
model and the genetic variance explained by variants under
MAF= 1%

τ ρ V0.01

0.5 0.5 0.23191008598492735
0.8 0.35820017698651052
0.9 0.40029687398703817
1.0 0.44239357098756588

1.0 0.5 0.50718348211637121
0.8 0.79549982205815639
0.9 0.89160526870541801
1.0 0.98771071535267974
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2.4 | Selecting sampling strategies
for association tests

The quantitative phenotypes can be dichotomized to
simulate three different sampling strategies: random, 50/
50, and extremes. In the extreme sampling strategy, we
sample the desired number of individuals from the top
and bottom of the quantitative phenotype distribution.
For the random and 50/50 sampling strategy, we first
define the individuals with quantitative phenotypes in
the top P% to be our population of cases (where P
represents the prevalence of our trait of interest), and the
remaining individuals to be our population of controls.
We then sample cases and controls from their respective
populations. For the random sampling strategy, we
sample cases in proportion to the prevalence of the trait,
while for the 50/50 sampling strategy we sample equal
numbers of cases and controls. The random sampling
strategy is used as a worst‐case scenario to establish the
worst possible power under that sampling strategy.

2.5 | Imputing genotyped data

In some analyses, we evaluate the effectiveness of genotype
imputation. Such analyses require two data sets: the
phenotype sample (e.g., case/control or continuous pheno-
type), and an imputation reference panel. The dichotomized
phenotype individuals are generated as above, with their
genetic data down‐sampled to mimic a genotype array
platform. We then sample an additional set of individuals
from the total population to form the imputation panel. The
down‐sampled genotype data is then prephased using
SHAPEIT2 (Delaneau, Marchini, & Zagury, 2012) and
imputed using IMPUTE4 (Bycroft et al., 2018).

2.6 | Running tests of association on
simulated data

We ran rare variant association tests (RVATs) using the
rvtests software (Zhan, Hu, Li, Abecasis, & Liu, 2016). We
focus on SKAT (Wu et al., 2011), SKAT‐O (Lee et al.,
2012), and KBAC (Liu & Leal, 2010), which were found
to be most powerful in detecting disease‐associated

variation in a previous study (Moutsianas et al., 2015).
We applied each RVAT to nonoverlapping analysis
blocks of 10kbp across the simulated region, and
computing power and false‐positive rates for each test
as the proportion of simulations with p‐values below 2.5e
−6. We ran logistic regression on each variant above
MAF= 1% to determine associations with the phenotype
using PLINK. The detection threshold was set at 5e−8. To
compare GWAS to RVAT power, we evaluate if there is a
variant under the GWAS p‐value threshold within the
10 kb analysis block. If there is such a variant, we deem
the GWAS to have found that analysis block to be causal
for comparisons with RVAT.

2.7 | Calculating the cumulative genetic
variance

We follow (Uricchio et al., 2016) in calculating Vx, the
genetic variance due to variants at or below allele
frequency x , which is given by:

∫V E z y f y y y dy= 0.5 ( | ) ( )(1 − )( )x
y

x

=0

2

Where f y( ) is the site frequency spectra (SFS), that is the
proportion of sampled alleles at frequency y, and E z |y( )2

is the mean‐squared effect size of variants at frequency y.
We pool 20 simulations of 300kbp in 50k African
individuals using msprime to obtain an accurate measure
of the SFS and the expected effect size of variants at
frequency x . To normalize across genetic architectures, we
divide by V1, which is the total additive genetic variance.
The V V/0.01 1 values (denoted as just V0.01 below) are used to
denote the degree to which rare variants (variants with
MAF≤ 1%) matter under a particular pair of parameters
under the Uricchio genetic architectures.

2.8 | Data set and software availability

All scripts and datasets generated in this study, along
with the results of single variant and gene‐based
association tests, are available on the website github.-
com/dmctong/rv_imp.

3 | RESULTS

3.1 | Rare variants explain a majority of
heritability only under restrictive
scenarios

To determine whether there is genetic variance explained
by rare variants, we calculated the expected genetic
variance analytically under different (⍴, τ) combinations

TABLE 3 Study design parameters in this study

Parameter Value

Sampling strategy Random, 50/50,
extremes

Number of case/control individuals 5000, 10000

Number of reference panel
individuals for imputing

10000, 20000
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of the Uricchio model being studied here (see Methods
and Table 1). In Figure 1, we show that the proportion of
genetic variance explained as a function of MAF. We
focus on the genetic variance explained by variants with
MAF< 1% (V0.01), which varies dramatically between
99% when ⍴= 1, τ= 1, to less than 1% when ⍴= 0,
τ= 0.5. We note that when τ= 1 and ⍴≠ 0, rare variants
constitute a substantial fraction of the genetic variance
(V0.01 > 40%), and the majority of the rare variant
contribution is explained by singletons in this simulated
sample of 50,000 individuals. In contrast, when τ= 0.5
and ⍴≠ 0, V0.01 ranges from ~20%–60% but singletons are
expected to make a more subtle contribution to the
genetic architecture of the trait.

3.2 | Statistical power varies
dramatically across different study
designs, genetic architectures, and
polygenicity, but not across RVATs

Figure 1 shows that rare variants can contribute substantial
heritability to a trait under certain genetic architectures. Now

we ask if we can detect the loci that harbor the causal rare
variants using existing RVATs. To quantify the effects of
genetic architecture and study design on the statistical power
of RVATs, we focus on KBAC, SKAT, and SKAT‐O, which
represent each of the three major categories of RVATs and
have been shown to be among the most powerful
(Moutsianas et al., 2015). For the 5Mb region we simulated
(see Methods), we raster over parameters in genetic
architecture (heritability, number of causal loci, and the
relationship between selection and phenotypic effect sizes;
Table 1) and in study design (sequencing vs genotype
imputation and selection of individuals in the case/control vs
extreme phenotype panels). In Figure 2, we show the global
overview of statistical power across all simulations. We find
that the statistical power of all three RVATs is similar
regardless of simulated parameters but tend to be highest
with SKAT and SKAT‐O (pMWU[SKAT, SKAT‐O]=0.795;
pMWU[KBAC, SKAT‐O]=0.002304). As expected, power is
higher when the causal signal is more concentrated (e.g.,
when heritability is high or the effect sizes are large due to
few causal loci). Given the correspondence among tests, we
will focus on SKAT‐O in further analyses.

3.3 | As rare variants explain more
genetic variance of the trait, SKAT‐O
power decreases

We then ask how SKAT‐O power changes as a function of
genetic architecture. In Figure 3, we show that as V0.01

increases (i.e., as rare variants explain increasing amounts
of the genetic variance of the trait), the power of SKAT‐O
decreases. This pattern holds across all sampling strategies
and for different levels of polygenicity (Figure S3). These
results show patterns that will repeat in future sections: the
extremes study design demonstrates the best overall power,
followed by 50/50 and then random. Further, a more
concentrated signal (higher heritability and/or lower
number of causal loci, see Supporting Information Figures)
improves power. We found that as the functional form
relating effect size to selection coefficient changes
from τ =0.5 to τ =1, power increases slightly again,
suggesting that V0.01 may be an overly simplistic character-
ization of the genetic architecture. Finally, applying SKAT‐
O to imputed data (bottom facet) reproduces all of the
patterns we see when RVATs are applied to sequencing
data (top facet), albeit with slightly worse power.

3.4 | Using extreme cases and controls
as a sampling strategy improves the
statistical power of SKAT‐O
The number of individuals sequenced as part of a study is a
key design parameter of that study. To understand how

FIGURE 1 The cumulative proportion of the genetic variance
explained by variants under minor allele frequency x (Vx/V1) for a
sample of 5000 individuals drawn from an African population
demographic model under different values of ⍴ and τ in the
Uricchio model. Top: τ = 0.5; bottom: τ = 1. Dotted lines indicate
the proportion of genetic variance explained by alleles under 1%
MAF (referred to as V0.01)
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increasing the number of individuals improves the statis-
tical power of SKAT‐O, we simulate across genetic
architectures and study designs to find the increase in
power per individual using SKAT‐O from 2,500 to 20,000
individuals (Figure 4). In the extremes study design, where
half of the individuals in the panel are selected from the
extreme cases and half of the individuals are selected from
the extreme controls (from a total population of 50,000
individuals), we find that mean power gain is zero.
Increasing the number of individuals in this design means
more individuals are drawn from closer to the mean of the
distribution, so power is already maximized with a smaller
sample of 2,500 individuals (and may actually decrease
under some scenarios). In the random and 50/50 study
designs, increasing the size of the case/control panel
increases the number of relevant individuals, and so mean
power gain is approximately 2e−5 per individual added.
This increase is highly dependent on the genetic architec-
ture underlying the trait of interest.

3.5 | RVATs perform nearly as well on
imputed data as they do on sequence data

Most genetic association studies have started with genotyp-
ing arrays to collect genomic data, followed by imputation

against WGS reference panels to maximize discovery
potential with single variant analyses. As WGS cost falls,
more studies will conduct large‐scale WGS, but here we ask
if there is a potential opportunity to discover rare variant
associations with imputed data. In Figure 5, we compare
the mean power of SKAT‐O when applied to genotyped‐
then‐imputed samples to the mean power of SKAT‐O
applied to sequencing data from the same samples. We find
that the decrease in power is minimal. Indeed, we find a
robust linear relationship between RVAT power with
sequencing versus imputed data, suggesting that for all
scenarios evaluated here, imputation loses 10% power, on
average, compared to sequencing data.

3.6 | RVATs under a GWAS peak

The general process of discovering genetic associations
typically begins with genotyping and imputing a sample of
individuals, followed by GWAS. The (typically unknown)
genetic architecture of the trait determines the likelihood
that a common variant will be detected with GWAS, and
whether a rare variant association signal should be expected.
Rastering over parameters of our phenotype model, a
genome‐wide significant single marker association (GWAS)
was identified at 44.4% of causal loci. Figure 6 shows the
power of SKAT‐O using sequencing or imputed data
conditional on seeing (circles) or not seeing (x’s) a statistically
significant GWAS hit at a causal locus. We find that under all
phenotype model parameters and sampling strategies
evaluated, when a GWAS hit is identified, SKAT‐O has at
least 70% power to detect a rare variant signal with sequence
data (and slightly less power with imputed data). If no
GWAS peak is identified, there is considerably less power to
identify a rare variant signal (and power further erodes as the
genetic variance explained by rare variants increases).

We then mimic the process of first doing locus
discovery on a sample of imputed individuals followed
by sequencing for different sampling strategies. In
Figure 7, we show that sequencing data has at least
75% power to replicate causal loci identified with
imputed data (regardless of the genetic architecture and
case‐control sampling strategy). However, when no
association is found with imputed data, the power to
identify causal loci with sequencing data is highly
dependent on the case‐control sampling strategy, and
the overall heritability and genetic architecture of the
trait (with power generally decreasing as V0.01 increases).

3.7 | Window of discovery around
causal loci

In Figure 8, we plot the probability of SKAT‐O detecting
an association signal as a function of the distance from a

FIGURE 2 A global overview of the statistical power of a
burden test (KBAC), a variance‐component test (SKAT), and a
combined test (SKAT‐O) for all parameters shown in Table 1 using
50,000 African individuals simulated under an Out‐of‐Africa
demographic model. Each point represents a genetic architecture
tested with 10 independent simulations under the RVAT indicated;
lines connect the same simulated parameters across RVATs to
show that, generally speaking, the rank of statistical power is
preserved across RVATs
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causal locus. To benchmark the width of this discovery
window, we use the full‐width half‐maximum statistic,
which is the distance at which the probability of a
significant association crosses below 50% of its maximum
value (i.e., falls below 50% of the power estimated at the
causal locus). Consistent with previous results, the full‐
width half‐maximum is largest when there is a large
amount of heritability concentrated in few causal loci and
under the extremes study design. The larger points in
Figure 8 represent this window of discovery, which is, on
average, 34.3 kb (sd 18.4 kb) in the random study design,
42.8 kb (sd 19.3 kb) in the 50/50 design, and 64.3 kb
(sd 34.2 kb) in the extremes design.

4 | DISCUSSION

GWAS so far have produced thousands of SNP associa-
tions for hundreds of traits (Witte, 2010). However, in
these GWAS, the associated SNPs do not recapitulate the
estimated heritability of the trait, leading to the problem
of “missing heritability”. Though there are many
proposed sources of this missing heritability, one popular
hypothesis is that this missing heritability resides in rare
variants. This has led to the development of RVATs and
massive investment in large whole‐genome sequencing
studies. With these tests and this data becoming more
and more prevalent, we look at how to optimize the

FIGURE 3 The statistical power of SKAT‐O across different sampling strategies (columns) and across different sequencing methods
(rows), as a function of the proportion of genetic variance explained by that genetic architecture at MAF= 1%. Each point represents 20
independent simulations of 100 causal loci of 10 kb each across a 5Mb simulated region for a given genetic architecture for a 50,000
individual African population
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design of a rare variant association study to maximize
power.

It is clear that RVATs can be very powerful for
detecting associations under simple genetic architectures
(like when the effect size is proportional to log10(MAF) as
proposed by Wu et al., 2011). Such phenotype models do
not take into account evolutionary forces like natural
selection and demography, and it is well appreciated that
genetic architectures are sensitive to these nonequili-
brium evolutionary forces (Gazave, Chang, Clark, &
Keinan, 2013; Simons, Turchin, Pritchard, & Sella, 2014).
Uricchio et al. (2016) presented a phenotype model that
accounts for selection and pleiotropy and showed that
existing RVATs struggle at realistic variance explained in
genes across different human demographic histories. The
Uricchio model captures modularity through the para-
meter ρ and the relationship between selection and
effect size through τ , which enables a thorough explora-
tion of different genetic architectures a trait could have
(Figure 1).

We showed analytically that there is a significant
amount of genetic variance explained in rare variants
across different τ(ρ, ) parameterizations under the
Uricchio model (Figure 1), particularly when τ is equal
to 1. These results are not surprising, as it has been
shown that a substantial amount of heritability derives
from rare variants in real traits like gene expression
(Hernandez et al., 2019), height and BMI (Wainschtein

et al., 2019). Taken together, the significant amount of
heritability explained by rare variants under different
parameterizations of the Uricchio model shows that
RVATs have the potential to associate much of the causal
variation underlying a complex trait. However, this
model has only been studied in the context of continuous
traits. We extend this model to study dichotomous traits
(with case/control and extreme phenotype sampling
strategies).

Many existing RVATs were thoroughly characterized
by (Moutsianas et al., 2015). We chose the most powerful
representatives of the three classes of RVATs to use in
our study: A variance‐component test (SKAT), a burden
method (KBAC), and a combined method (SKAT‐O).
Across all genetic architectures and study designs, we
found that SKAT‐O is the best performer, so we used
SKAT‐O in all further analyses on RVAT power in a case/
control association study.

To run a case/control association study, the first step
is to determine which individuals to select for your study,
and how to acquire their genetic data. We simulated
three different sampling strategies: randomly sampling
cases and controls proportional to the trait prevalence;
sampling half of your study size from cases and half from
your controls; and sampling individuals from the extreme
tails of a quantitative distribution. Our results show that

FIGURE 4 Increase in SKAT‐O power as a function of sample
size. SKAT‐O power increases when increasing the sample size in
non‐extreme sampling strategies. Each point represents the slope
from increasing the number of individuals in the case/control panel
under a simulated genetic architecture

FIGURE 5 The mean power of SKAT‐O across different
genetic architectures using imputed data compared to using
sequence data. Each point represents a different simulated genetic
architecture where we vary the number of causal bins (10 or 100),
heritability (0.2 or 0.8), sampling strategy, (⍴, τ) for the underlying
phenotype distribution, and the number of simulated case/control
individuals in the study
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choosing from the tails of an underlying quantitative
distribution produces the best power (such as sequencing
individuals with the highest/lowest high‐density lipopro-
tein cholesterol; Cohen, 2004, or bronchodilator re-
sponse; Spear et al., 2018). This means for any case/
control association study, spending some time to find the
extreme tails of an underlying quantitative distribution
for a trait will likely produce the best possible RVAT
power (as previously argued using more constrained
simulations; Barnett, Lee, & Lin, 2013).

We considered two ways of acquiring genetic data:
using a genotyping array followed by imputation against
a large reference panel, and direct sequencing of your
study sample. Although a $1,000 whole genome is now

possible, over the sample sizes required for an effective
rare variant association study, the cost is prohibitive
except for the largest consortia. Using genotyping arrays
then imputing is still much less expensive than WGS
(Quick et al., 2019), which could enable more than 5×
more genotyped samples than WGS samples.

Applying SKAT‐O to imputed data is expected to have
lower power for several reasons. First, imputation
accuracy decreases as MAF decreases (Howie, Marchini,
Stephens, & Chakravarti, 2011; Quick et al., 2019),
meaning fewer rare variants will be accurately imputed
and correctly identified in the study sample. Second,
imputation accuracy is highest when the study sample
population and the reference panel population match,

FIGURE 6 The statistical power of GWAS given the results of SKAT‐O, across different sequencing methods (rows) and across different
sampling strategies (columns), as a function of the cumulative genetic variance explained by variants under 1% minor allele frequency. The
shape shows the prediction of SKAT‐O; the colors show the underlying number of causal loci and heritability of the trait. GWAS,
genome‐wide association studies
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and this is not guaranteed to be the case, particularly
when the study sample is from a minority population or
an admixed population. Third, a majority of rare variants
carried by the imputed samples are unlikely to be carried
by the reference panel.

Comparing SKAT‐O power across genetic architec-
tures and study designs, we show that genotyping then
imputing is about 90% as powerful as WGS using the
same number of individuals. This implies that using
genotyping then imputing with a larger sample size could
produce as much if not more power than a smaller WGS
sample. For most current rare variant association studies,
our results suggest that using genotyping then imputing
is the best way to start. We also looked at the increase in
SKAT‐O power using WGS after running a genotyping

and imputation study; there is a boost in SKAT‐O power
when using WGS data following imputed data, but the
trade‐off between cost and power is something to be
considered on an individual study basis.

The next step in characterizing RVAT power is to
consider the genetic architecture of the trait of interest.
Though complex trait architectures are not thoroughly
understood, we used the Uricchio model to simulate
different architectures and label these architectures using
the amount of cumulative genetic variance explained by
all variants under 1% minor allele frequency (V0.01). We
show that SKAT‐O power decreases as V0.01 increases,
meaning SKAT‐O performance is worst when rare alleles
make the largest contributions to trait variance. Although
counterintuitive, as one would expect RVATs are best

FIGURE 7 SKAT‐O power using sequencing data, given the results of SKAT‐O applied to imputed data. The shape indicates whether
SKAT‐O applied to imputed data correctly identified the causal locus (circles) or missed it (x). The colors show the underlying causal
number of loci and heritability of the trait
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tuned for the scenarios where rare variants matter most
in the genetic architecture, our result mirrors the findings
of Uricchio et al. (2016). One explanation is that as V0.01

goes up, the proportion of V0.01 due to singletons and
other ultra‐rare alleles increases as well, and statistically
associating these ultra‐rare alleles is difficult in the RVAT
frameworks we evaluated here. We also note that the
explosive exponential growth of the Tennessen demo-
graphic model used to simulate genetic data leads to an
excess of ultra‐rare alleles compared to the neutral
expectation, such that both cases and controls harbor
many ultra‐rare variants (thereby confounding RVAT
power).

With the decrease in power as rare variants
mattered more, we wondered whether nearby regions

in rare variant‐dominated architectures would provide
additional information. We looked at how the probability
of SKAT‐O detecting a causal region decreases as a
function of distance from a causal region. The results
suggest that in an unbiased window‐based approach to
scanning the genome with SKAT‐O, positive hits that are
not in causal regions may be useful in helping identify
true causal regions, although again only in genetic
architectures where rare variants do not contribute the
majority of genetic variance. Interestingly, the power
ranking of study designs is inverse of the ranking of
precision, meaning that with a higher power comes a
larger window of discovery.

We also looked at the statistical properties of a
common analytical path from GWAS to RVATs, and

FIGURE 8 The window of discovery around causal loci, shown as the fraction of simulations that result in a statistically significant
RVAT p‐value as a function of distance from the nearest causal locus. Different sampling strategies are shown in columns, and V0.01

thresholds are shown in rows. Error bars are binomial standard errors of the mean. Bigger points represent full‐width half‐maximum points
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from imputed data to sequence data. We found that
GWAS and SKAT‐O are generally concordant, with
causal regions identified by GWAS being identified by
SKAT‐O, whereas a smaller proportion (~15%) of causal
regions are identified by SKAT‐O and not by GWAS. We
see little downside in testing for causal regions using
SKAT‐O following GWAS, with the ability to pick up
additional causal regions on the same data. We caution
that this effect declines significantly as rare variants
explain more of the genetic variance.

Finally, the number of loci contributing to a trait (or
its polygenicity) may be another important component of
the trait’s architecture. It is not surprising that we found
that for a fixed heritability of a trait, RVAT discovery
power is higher when there are fewer true causal loci (as
effect sizes are concentrated into fewer variants). How-
ever, it is possible that the polygenicity of a trait could be
constraining the possible range of genetic architectures.

This study has a few limitations. It is based on simulated
data that matches inferred human evolutionary history
(including selection and demographic history) but these
models and simulations are incomplete representations of
nature. We do not explore the effects of gene size, mutation
rate, haplotype length, or degree of linkage disequilibrium
between causal regions. We do not consider the differences
between coding and noncoding regions, which have
different selection coefficient distributions and potentially
different contributions to the genetic architectures for a
trait. Future work should consider a phenotype model
where the function of a region is taken into account, as
ENCODE (The ENCODE Project Consortium, 2012) and
other consortia are rapidly adding more dimensions to
genomic data. One major shortcoming is that we analyze
only African and European populations in this study. With
significant growth in admixed populations already happen-
ing—the US Census in 2014‐15 predicts that the US will be
a “majority‐minority” country by 2050 (Projections of the
Size & Composition of the U.S. Population: to, 2014, 2014,
2060, 2014), meaning significant growth in African Amer-
ican and Latino populations—it will be important to study
association testing power in admixed populations. We also
believe that incorporating functional annotations, evolu-
tionary forces, and admixture into rare variant association
tests would significantly improve statistical power.
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