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Estrogen-related receptors (ERRs) are founding memb ers of the orphan nuclear receptor (ONR) subgroup o f 
the nuclear receptor superfamily. Twenty-seven year s of study have yet to identify cognate ligands for  the 
ERRs, though they have firmly placed ERR α (ESRRA) and ERRγ (ESRRG) at the intersection of cellular 
metabolism and oncogenesis. The pace of discovery f or novel functions of ERR β (ESRRB), however, has 
until recently been somewhat slower than that of it s family members. ERR β has also been largely ignored in 
summaries and perspectives of the ONR literature. H ere, we provide an overview of established and 
emerging knowledge of ERR β in mouse, man, and other species, highlighting uni que aspects of ERR β 
biology that set it apart from the other two estrog en-related receptors, with a focus on the impact of  
alternative splicing on the structure and function of this receptor. 
 
Introduction 
 
Gene discovery and orphan designation 
 
A gene encoding estrogen receptor β (ERRβ), initially 
named hERR2 and subsequently designated NR3B2 
or ESRRB, was first reported in 1988 [Giguère et al., 
1988]. Giguère et al. screened a λgt10 human testis 
cDNA library with the DNA-binding domain of 
estrogen receptor α (ERα), isolated a sequence with 

only partial similarity, then screened that against a 
human adult heart cDNA library to isolate hERR2 
(GenBank ID X51417.1). ERRα (initially designated 
hERR1) was isolated in parallel from a human fetal 
kidney cDNA library. The identified hERR2 open 
reading frame is 433 amino acids in length and 
contains broad sequence similarity to the DNA-
binding domain (DBD) and ligand-binding domain 
(LBD) of ERα. Northern blot analysis showed that 
despite widespread expression of hERR1, hERR2 is 
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restricted to a single 4.8 kb transcript in rat heart, 
kidney, prostate, testis, and tissues of the central 
nervous system (including the hypothalamus), with 
human placenta and prostate testing negative for 
expression [Giguère et al., 1988]. Preliminary steroid 
binding studies suggested that hERR2 cannot bind 
androgens or estrogens, making it a founding 
member of the orphan nuclear receptor (ONR) 
subgroup. 
 
Constitutive transcriptional activity of hERR2 was 
subsequently reported by two groups, who showed 
that replacement of either the progesterone receptor 
(PR) or glucocorticoid receptor (GR) LBD with amino 
acids 173-433 [Lydon et al., 1992] or 168-433 [Xie et 
al., 1999] of hERR2, respectively, drives ligand-
independent activation of these chimeric receptors. 
Xie et al. also showed that intact hERR2 binds to the 
estrogen response element (ERE) and a palindromic 
thyroid hormone response element (TREpal), but not 
the glucocorticoid response element (GRE), and that 
constitutive activation of hERR2 is enhanced by co-
transfection of p160 family coactivator proteins. Like 
ERα and other nuclear receptors, hERR2 can also 
indirectly modulate target gene transcription by 
coopting specificity protein 1 (Sp1) sites, including 
those in thyroid hormone receptor α (TRα) and cyclin-
dependent kinase inhibitor 1A (CDKN1A, p21) [Castet 
et al., 2006], and appears to be a more potent 
activator of Sp1-driven transcription than either ERRα 
or ERRγ. By contrast, hERR2 represses GR-
mediated transcriptional activity at GREs without 
altering the ability of the GR to bind DNA [Trapp and 
Holsboer, 1996] and is itself transcriptionally 
repressed by another ONR, DAX1 [Suzuki et al., 
2003]. 
 
The mouse ortholog, mERR-2 (GenBank ID 
S82458.1), was cloned from undifferentiated 
embryonal carcinoma (EC) and embryonic stem (ES) 
cells [Pettersson et al., 1996]. A single 4.3 kb 
transcript (predicted open reading frame = 433 amino 
acids) is readily detected by Northern blot in 
undifferentiated murine F9 EC and ES cells, though 
only weakly expressed in adult mouse kidney and 
heart tissues, and retinoic acid-induced differentiation 
of F9s strongly suppresses mERR-2 expression. 
Functional studies with the mERR-2 cDNA in gel-shift 
assays show that, like hERR2, this receptor binds to 
EREs, but not direct repeats bound by retinoid X 
receptor heterodimers, and that hERR2 
homodimerizes in solution and on EREs in a manner 
requiring functional heat shock protein 90 (hsp90) 
[Pettersson et al., 1996  ]. The murine and human 
genes were subsequently mapped to chromosomes 
12 and 14q24.3, respectively [Sladek et al., 1997]. 

Table 1 summarizes the GenBank identifiers for 
human, mouse, and rat ESRRB. 
 
A model for understanding ONR/DNA interactions 
 
A distinctive feature of ONRs is the ability of many to 
bind as monomers to DNA sequences resembling half 
of the canonical steroid receptor inverted repeats, but 
with a 5’ extension (termed extended half-sites, e.g. 
[Ikeda et al., 1993; Ueda et al., 1992]. In the related 
Drosophila melanogaster fushi tarazu factor (FTZ-F1) 
receptor, this capability had been attributed to a 
carboxyl-terminal extension (CTE) of the DBD [Ueda 
et al., 1992]. Wright and colleagues solved nuclear 
magnetic resonance (NMR) solution structures of the 
DBD of hERR2 (amino acids 96-194) in complex with 
DNA to formally prove that the CTE (amino acids 169-
194) is required for hERR2 binding to what is now 
known as the estrogen-related response element 
(ERRE, sequence TCAAGGTCA), and that this is 
accomplished through insertion of the T- and A-
boxes, also called an AT hook, into the minor groove 
of DNA (Protein Data Bank ID # 1LO1) [Gearhart et 
al., 2003; Sem et al., 1997]. CTE/DNA minor groove 
interactions involving the TCA sequence are essential 
for recognition by the hERR2 CTE, since synthetic 
polyamides (pyrrole-imidazole oligomers) that occlude 
it prevent DNA binding by hERR2 [Gearhart et al., 
2005]. These detailed studies established hERR2 as 
a prototypical model for monomeric ONR/DNA 
interactions. It should be noted, however, that for 
other ERR family members, DNA binding more 
commonly occurs in a homodimeric fashion [Takacs 
et al., 2013; Vanacker et al., 1999], with deviance at 
the cytosine within the AT hook driving a preference 
for monomeric vs. dimeric binding of ERRα [Barry et 
al., 2006]. 
 
Controversy and complexity – identifying the real 
ERRβ and its splice variants 
 
In 1999, Chen et al. published a study that called into 
question the true species of origin for hERR2, which 
was by now widely accepted as human ERRβ [Chen 
et al., 1999]. Using an informatics-centric approach, 
the authors relied on rapidly expanding expressed 
sequence tag (EST) databases to identify novel 
nuclear receptor-like sequences, then adapted 
inverse PCR-based cloning to identify two ERRs, 
hERRβ2 (GenBank ID AF094517.1, see Table 1) and 
hERRγ2 from human testis and fetal brain cDNA 
libraries, respectively. Their hERRβ2 sequence has 
several key differences with the original hERR2, 
despite being cloned from the same tissue and having 
90% nucleotide and 95% protein sequence identity 
between most of their open reading frames. hERRβ2 
codes for an additional 67 amino acids at the carboxyl 
terminus, there is no homology between its 5’ and 3’ 
untranslated regions (UTRs) and those of hERR2, 
and Northern blot analysis with probes designed from
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its 3’ UTR identified low but detectable expression of 
multiple transcripts ranging from 1.0 to 5.5 kb in 
length in a range of human tissues, including heart, 
kidney, and liver. The lack of homology between 
UTRs, coupled with the inability of primers designed 
against hERR2 to amplify any product from human 
genomic DNA, demonstrated that hERRβ2 and 
hERR2 are distinct genes and suggested that the 
latter might not, in fact, be of human origin. Chen et 
al. went on to show that hERR2 is actually the rat 
ERRβ gene, the full sequence of which (GenBank 
AY383731.1) would not be deposited for another four 
years, while hERRβ2 is the true human ERRβ [Chen 
et al., 1999]. 
 
Primate-specific alternative splicing  
 
Pre-messenger RNA (pre-mRNA) splicing is a 
process that is carried out by the spliceosome, a 
massive multi-protein complex that removes introns 
and joins together exons into a mature mRNA 
transcript [Yan et al., 2015]. Alternative splicing (AS) 
allows a single gene to combine its exons into 
multiple configurations, and has become the accepted 
theory as to how eukaryotic cells are able to translate 
90,000 proteins from only 25,000 genes [Roy et al., 
2013]. The multiple hERRβ2 transcripts identified in 
[Chen et al., 1999] imply the existence of AS and/or 
multiple transcriptional start/stop sites for human 
ERRβ. Consistent with this, their PCR-based 
validation studies with primers designed towards the 
amino terminus of hERRβ2 could only detect 
expression in testis (the tissue from which it was 
cloned), while hERRβ2 carboxyl terminal primers 
amplified product in human heart, kidney, and liver, 
where Northern blot studies show expression. 
 
The existence of ERRβ AS was formally 
demonstrated in 2006, when Zhou et al. showed that 
there are at least three distinct human ERRβ variants: 
the previously identified hERRβ2 and two new forms, 
ERRβ∆10 (∆10) and ‘short form’ ERRβ (ERRβsf, 
Figure 1A) [Zhou et al., 2006]. At the mRNA level, 
ERRβ2 includes 12 exons, ∆10 is comprised of exons 
3-9; 11 and part of 12, and ERRβsf contains only 
exons 3-9, terminating at an intronic stop codon within 
intron 9. At the protein level (Figure 1B), as reported 

previously, the ERRβ2 protein contains 500 amino 
acids. The ∆10 protein contains 508 amino acids; a 
single base frame shift that occurs upon exon 10 
exclusion leads to a carboxy-terminal extension of the 
LBD with less than 5% homology and notable 
secondary structure differences between it and that of 
β2 (Figure 1C). The ERRβsf protein is 433 amino 
acids in length, which is identical to the corresponding 
domains of ERRβ2 and ∆10 and highly homologous 
to the mouse and rat ERRβ proteins. In other nuclear 
receptors, carboxyl terminal extensions known as F 
domains modulate receptor function and expression 
[Patel and Skafar, 2015; Skafar and Zhao, 2008]. 
cDNA exogenous expression studies with ERRβ2, 
ERRβsf, and ∆10 suggest that these have differing 
degrees of transcriptional activity on ERE-containing 
promoter-reporter constructs, and that ERRβ2 shows 
a greater propensity to localize to the cytoplasm when 
transfected into COS-1 cells [Zhou et al., 2006]. By 
contrast, ERRβsf and ∆10 are almost exclusively 
nuclear-localized. All three ERRβ variants contain a 
nuclear localization sequence (NLS) in their hinge 
region or D domain (amino acids 173-190), and Zhou 
et al. speculate that the F domain of ERRβ2, but not 
∆10, counteracts the function of the NLS. It is also 
interesting to note that while isolating ERRβ from a 
human kidney cDNA library for the creation of tagged 
LBD constructs used to characterize synthetic ERR 
ligands, [Coward et al., 2001] specifically state that 
the F domain was excluded from the final GST-ERRβ 
to improve recombinant protein expression. Sequence 
analysis of the reverse primer used to isolate that 
cDNA suggests that it is ERRβ2. 
 
Through the use of variant-specific primers, Zhou et 
al. showed that ERRβsf is expressed in a broad range 
of human fetal and adult tissues, while ERRβ2 and 
∆10 are restricted to testis and kidney. However, their 
analysis of genomic data for other species, including 
rodents, zebrafish [Bardet et al., 2004], dogs, and 
chickens, finds no evidence of sequences 
corresponding to carboxyl terminal exons 10-12 in 
these lower organisms. These data strongly suggest 
that 3’ AS of ERRβ is a primate-specific event. This 
assertion has held up over time as other genomes
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Figure 1. ERR β splice variants. A, ERRβ mRNA. The ESRRB gene produces three distinct splice variants through inclusion or 
exclusion of carboxyl terminal exons. UCSC Genome Browser identifiers for each transcript are shown. B, ERRβ proteins. ERRβsf, 
ERRβ2, and ERRβ-∆10 variants and corresponding amino acid (aa) differences are shown to scale along with Online Mendelian 
Inheritance in Man (OMIM) identifiers. C, Functional domains. Common amino acids 1-432 contain well-established DNA- and 
ligand-binding domains (DBD, LBD). Amino acid sequences and Phyre structural predictions [Kelley and Sternberg, 2009] of the 
divergent carboxyl terminal F domains of β2 and ∆10 are enlarged.  
 
have been sequenced, e.g. those of killifish and pig 
[Tarrant et al., 2006; Yang et al., 2015], which show 
or predict protein products equivalent to ERRβsf. 
 
Annotation errors and the challenge of assessing 
human ESRRB expression in public gene 
expression data 
 
The proliferation of large-scale transcriptomic studies, 
and the publicly-available data they generate, have 
potential to broaden our knowledge of ERRβ function 
in contexts where it has not yet been directly studied. 
However, erroneous use of the 3’ UTR from hERR2 
(GenBank ID X51417.1) – known to be rat ERRβ 
[Chen et al., 1999] – for probeset design on human 
versions of the most popular gene expression profiling 
platforms is a significant source of confusion. Table 2 
shows nucleotide Basic Local Alignment Search Tool 
(BLASTn) coverage of ERRβ transcript identifiers for 
selected probeset IDs present on widely-reported 
Affymetrix and Agilent platforms; target sequences 
are shown in Supplementary Material. In addition to 
poor query coverage of known ERRβ sequences, four 
of these probesets (207726_at and 160036_at for 
Affymetrix, A_23_P22183 and A_23_P22190 for 
Agilent) yield zero ESRRB-relevant hits when 
searched against the Human Genomic + Transcript 
Collection. This is in direct contrast to probesets 
223858_at (Affymetrix), A_23_P391857 (Agilent) and 
others (not shown), which identify multiple ESRRB-
relevant hits and have better query coverage. 
Probeset 207726_at alone is responsible for >37% of 
human ESRRB gene expression data in the Gene 
Expression Omnibus (GEO, 979 records out of 2597). 
This presents a big problem for data repurposing. 

End-users may unwittingly draw spurious conclusions 
from data derived from the wrong probeset, or find no 
correlation with phenotype or disease state where one 
might actually exist. This is particularly true for 
ERRβsf, which with respect to cDNA exogenous 
expression studies is arguably the best characterized, 
but only probesets 787_at and 54212_at (Affymetrix 
U95 series) or A_23_P65597 (Agilent Human 1A 
Oligo Microarray v2) have any coverage of this splice 
variant and these platforms are no longer actively 
produced. 
 
The less biased nature of RNA sequencing (RNAseq) 
should help to alleviate these issues in the future, but 
only as this data type is more widely reported and raw 
data deposited. Table 3 shows transcript identifiers 
from two sources, Ensembl and the UCSC Genome 
Browser, for ∆10, ERRβ2, and ERRβsf. Ensembl 
(release 82) shows eight possible ESRRB transcripts, 
although three of these mRNAs are not predicted to 
make a protein. The transcript IDs that show a protein 
of 433 and 500 amino acids correspond to βsf and β2, 
respectively, even though the 500 aa ID is annotated 
as undergoing nonsense-mediated decay. The 
remaining transcript IDs all show a predicted protein 
of 508 amino acids, which corresponds to the length 
of ∆10. While the first two IDs have different 
annotations of their exons and overall transcript 
length, their predicted protein contains the same 508 
amino acids as the transcribed protein sequence. The 
last transcript ID also predicts 508 amino acids, but 
an alternative start site shifts the coding region 
upstream to include 5 additional amino acids at the 
beginning of the transcript.  
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Table 2. Human ESRRB probeset errors on popular gen e 
expression profiling platforms 

 

 
 
Tool building – ERR β synthetic ligands 
 
X-ray crystallographic structures of the LBDs of 
ONRs, coupled with the discovery and synthesis of 
small molecules that fit within their ligand-binding 
pocket(s), have accelerated our understanding of the 
function of these proteins (recently reviewed in 
[Gallastegui et al., 2015]). However, the direct study 
of ERRβ in these contexts has been minimal. The 
LBD of the related ERRγ, crystallized first by Greschik 
and colleagues [Greschik et al., 2004; Greschik et al., 
2002] and refined by several other groups [Abad et 
al., 2008; Chao et al., 2006; Wang et al., 2006], is at 
the amino acid level ~80% identical to that of ERRβ 
(reviewed in [Ariazi and Jordan, 2006]). More recent 
studies [Collin et al., 2008; Di Micco et al., 2014] have 
used these ERRγ crystal structures to build homology 
models of the ERRβ LBD, which to our knowledge 
has not yet been crystallized. Sequence alignment 
shows that within the ligand-binding pocket itself, only 
two of 19 residues differ between ERRβ and ERRγ: in 
Helix 7, Asparagine 346 of ERRγ corresponds to 
Tyrosine 321 of ERRβ; and in Helix 5, Valine 313 of 
ERRγ corresponds to Isoleucine 288 of ERRβ. Given 
the ~90% identity of amino acid residues within the 
ligand-binding pockets of ERRγ vs. ERRβ, it is not 
surprising that these receptors share several synthetic 
antagonists and agonists (summarized in Table 4). 

Table 3.  Human ESRRB splice variant identifiers from 
UCSC Genome Browser and Ensembl. 

 

 
Antagonists 
 
The synthetic estrogen diethylstilbestrol (DES) was 
the first ERRβ antagonist to be identified [Tremblay et 
al., 2001b]. For thirty years DES was used in 
pregnant women to prevent miscarriage, with the 
unintended side effects of increasing the risk of breast 
and vaginal cancers not only in women who received 
the drug, but also their female offspring [Harris and 
Waring, 2012; Hilakivi-Clarke, 2014]. Tremblay et al. 
hypothesized a connection between DES and ERRβ 
based on the striking similarity between the placental 
phenotype of ERRβ-null mice [Luo et al., 1997] (but 
not ERRα-null or double ERα/ERβ-null animals) and 
pregnant wild type mice exposed to DES [Scott and 
Adejokun, 1980] – in both cases, trophoblast 
differentiation is accelerated, leading to the 
accumulation of trophoblast giant cells (see below). 
Using a coactivator displacement assay, in which the 
biotinylated receptor interacting domain (RID) of 
steroid receptor coactivator-2 (SRC2, GRIP1) is 
bound to GST-tagged receptor LBDs and compounds 
are screened for their ability to enhance or reduce this 
interaction, they showed that DES is a micromolar 
(IC50 = 1 µM) antagonist for all three ERR family 
members. DES antagonist activity was confirmed in 
cell-based luciferase promoter-reporter assays. 
Interestingly, this study also identified resveratrol as 
an ERR antagonist, though a weaker one by at least 
an order of magnitude [Tremblay et al., 2001b]. The 
resolution of the crystal structure of the ERRγ LBD 
bound to DES by Greschik et al. established that the 
mechanism of antagonism involves displacement of 
Phenylalanine 435 (common to ERRβ) in the ligand 
binding pocket, which causes Helix 12 to be dislodged 
from the LBD [Greschik et al., 2004; Greschik et al., 
2002]. 
 
4-hydroxytamoxifen (4HT) was initially identified as 
another ERRβ antagonist. Coward et al. [Coward et 
al., 2001] and Tremblay et al. [Tremblay et al., 2001a] 
again used coactivator displacement assays (GST-
tagged receptor LBDs and either biotinylated SRC1.2 
or receptor interacting protein 140 (RIP140), 
respectively) to show that 4HT could disrupt 
receptor/coactivator interaction. However, both 
groups observed that 4HT is 3-5 times more potent on 
the LBD of ERRγ than ERRβ, and Coward et al. 
report that despite the ability of 4HT to disrupt ERRβ 
LBD interactions with the SRC1.2 peptide in vitro, it 
can not do so in a mammalian two-hybrid assay in 
intact cells [Coward et al., 2001]; these data suggest 
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                                                        Table 4. Selected ERR synthetic ligands.

 
that 4HT is not a true ERRβ antagonist. The 
resolution of the crystal structure of the ERRγ LBD 
bound to 4HT by Greschik et al. shows that, like DES, 
it alters the conformation of Helix 12, though it does 
so by steric hindrance owing to the long side chain of 
4HT rather than displacement of a conserved 
phenylalanine [Greschik et al., 2004; Greschik et al., 
2002]. The selective antagonist activity of 4HT for 
ERRγ has now been specifically linked to one of the 
two amino acids that differ between it and ERRβ 
within the ligand-binding pocket; mutation of 
Asparagine 346 in ERRγ to Tyrosine (the 
corresponding amino acid in ERRβ) reduces 4HT 
binding affinity by 4-fold [Liu et al., 2014], identical to 
the difference in potency observed in [Coward et al., 
2001; Tremblay et al., 2001a]. This substitution also 
significantly impairs binding of the endocrine disruptor 
bisphenol A (BPA), which is an ERRγ (but not ERRβ) 
agonist [Takayanagi et al., 2006], further implicating 
Tyrosine 321 as a key structural determinant of 
synthetic ligand specificity for ERRβ vs. ERRγ. 
 
Di Micco et al. recently combined homology models of 
the ERRβ LBD with GAL4-luciferase assays to 
identify a group of 4-methylenesterols, natural 
products isolated from the marine sponge Theonella 
swinhoei, as antagonists for all three ERRs [Di Micco 
et al., 2014]. These compounds also modulate the 
activity of other ONRs, including pregnane-X-receptor 
and farnesoid-X-receptor. Additional compounds may 
ultimately prove to be ERRβ antagonists, as well. For 
example, troglitazone and kaempferol inhibit the 
transcriptional activity of ERRα and ERRγ, and in vitro 

coactivator binding to the isolated LBDs of these 
receptors, but ERRβ was not specifically tested 
[Wang et al., 2009; Wang et al., 2010b]. 
 
Agonists 
 
The soy isoflavones genistein, daidzein, and 
biochanin a increase coactivator recruitment to the 
LBD of all three ERRs, similar to their effects on 
classical estrogen receptors [Suetsugi et al., 2003]. 
Two highly similar synthetic small molecules are 
known to function more specifically as agonists of 
ERRβ: GSK4716 and DY131 (also known as 
GSK9089) [Yu and Forman, 2005; Zuercher et al., 
2005]. These acyl hydrazones differ by a single 
functional group - a terminal isopropyl group in 
GSK4716 and a terminal diethylamino group in 
DY131. GAL4-luciferase and ERE-luciferase assays 
using isolated LBDs or full-length receptors, 
respectively, show that both compounds increase the 
transcriptional activity of ERRβ and ERRγ, with no 
effect on either ERRα or classical estrogen receptors; 
Zuercher et al. also show that both molecules can 
compete with radiolabeled 4HT for binding to ERRγ 
[Zuercher et al., 2005]. Subsequent resolution of the 
crystal structure of ERRγ bound to GSK4716 and the 
RIP140 coactivator peptide identified an unexpected 
molecular mechanism of activation [Wang et al., 
2006]. Like many ONRs, the ERRs are constitutively 
active, with Helix 12 pre-positioned in an active 
conformation that, together with Helices 3 and 5, 
forms a groove permissive for coactivator binding 
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([Darimont et al., 1998; Heery et al., 1997], reviewed 
in [Gallastegui et al., 2015]). GSK4716 does not alter 
this conformation directly, but instead shifts the 
position of amino acids in Helices 1 and 3, enlarging 
the ligand-binding pocket significantly while also 
increasing the stability of the LBD [Wang et al., 2006]; 
these amino acids are conserved in ERRβ, 
suggesting that the mechanism of activation of this 
receptor by these ligands is likely similar. 
 
Much as ERRβ antagonists have receptor-
independent activities, so too do the agonists DY131 
and GSK4716. Wang et al. [Wang et al., 2010a] 
reported that GSK4716 induces expression of GR and 
several of its target genes in differentiated mouse 
skeletal muscle cells, and enhances GR-dependent 
transcriptional activation of a GRE-containing 
luciferase reporter. This seemingly contradicts the 
finding by Trapp and Holsboer that exogenous 
hERR2 (now known to be rat ERRβ, analogous to 
human ERRβsf) inhibits GR transcriptional activity 
[Trapp and Holsboer, 1996]. However, ERRγ-directed 
RNAi inhibits expression of GR and a subset of target 
genes in the skeletal muscle cell model, suggesting 
that ERRγ is the more relevant target for GSK4716 in 
this setting. More recently, both agonists have been 
shown to function as inhibitors of Hedgehog signal 
transduction through direct binding to Smoothened 
(Smo), which prevents its Sonic hedgehog (Shh)-
induced redistribution to the primary cilium and blocks 
downstream GLI transcriptional activation [Wang et 
al., 2012]. Ligand competition assays suggest that 
DY131 antagonizes wild type Smo through the same 
or a similar mechanism as more established inhibitors 
like cyclopamine and GDC-0449 (vismodegib), but is 
unable to suppress the oncogenic SmoM2 mutant. 
This initially raised the question as to whether our 
observation of DY131-mediated mitotic arrest in the 
T98G cellular model of glioblastoma (GBM; see 
below) is the result of Smo inhibition, but neither 
cyclopamine nor GDC-0449 cause this phenotype. 
That, coupled with reversal (and rescue) of the mitotic 
arrest phenotype by shRNA-mediated depletion of the 
ERRβ2 splice variant (and re-expression of an 
shRNA-resistant cDNA in silenced cells) argues 
against this ‘off target’ effect [Heckler and Riggins, 
2015]. 
 
Functions of ERR β in development  
 
ERRβ plays a critical role in the development and 
normal physiologic function of several tissues and 
organ systems in the mouse, and a specific form of 
nonsyndromic hearing impairment in humans. Given 
that most of these studies have been carried out in 
mice, it is important to recall that there is only one 
murine ERRβ, which is homologous to the human 
ERRβsf splice variant. 
 

Placental development 
 
[Pettersson et al., 1996] first reported the expression 
of ERRβ in mouse conceptuses at 6.5 days post 
coitum (dpc) in the ectodermally derived subregion of 
the amniotic fold. By day 7.5 they detected ERRβ in 
chorion with highest signal at the boundary between 
chorion and the extraembryonic ectoderm, suggesting 
a role in chorion formation in the placenta. At day 8.5 
no expression of ERRβ is detected in the basal part of 
the chorionic plate or any other part of the embryo. 
This expression pattern of ERRβ disclosed a very 
specific spatiotemporal role of this receptor in the 
development of the chorion and the placenta. 
 
Subsequent studies by [Luo et al., 1997] also suggest 
a very specific expression of ERRβ in extra embryonic 
tissues during development in mice. They detect 
ERRβ in the ectodermally derived region of amniotic 
fluid at 6.5 dpc with no expression of ERRβ by day 
9.5, again suggesting that ERRβ plays an important 
role in the formation of the chorion. ERRβ-/- mice 
have severe placental abnormalities and die at 10.5 
dpc, asserting that ERRβ knockout is embryonically 
lethal and important for placental formation. These 
mice show abnormal chorion development and 
deficiency of diploid trophoblast, which could be 
rescued by tetraploid wild type embryos, suggesting 
extra embryonic expression of ERRβ. ERRβ (i.e., 
ERRβsf) therefore seems to be important in mediating 
critical function of chorion and terminal differentiation 
of the diploid trophoblast during placental 
development in mice. [Tremblay et al., 2001b] show 
that mice treated with DES from days 4.5-8.5 dpc 
have a similar phenotype to ERRβ null mice, with 
placental abnormalities in trophoblast differentiation. 
DES acts as an antagonist of ERRβ and the authors 
suggest that DES effects could be through the ERRβ 
receptor. More recently, [Nagao et al., 2013] treated 
mice with DES and found that ERRβ expression is 
observed and does not change with DES treatment. 
These mice did have placental abnormalities and an 
increase in trophoblast giant cells, as observed 
previously by [Tremblay et al., 2001b]. 
 
ERRβ also seems to be important in differentiation of 
primordial germ cells (PGC) in mice. ERRβ is 
expressed in embryonic tissue at day 13.5, and was 
detected in both male and female gonads and the 
brain [Mitsunaga et al., 2004]. However, they did not 
detect any ERRβ in the placenta or any other tissues 
at day 13.5. This was the first report of ERRβ 
expressed in embryonic tissues and not just extra 
embryonic tissues as reported by [Pettersson et al., 
1996] and [Luo et al., 1997]. ERRβ expression in 
PGCs is diminished by day 15.5, again suggesting a 
very transient expression and role of ERRβ in germ 
cell differentiation. ERRβ-/- mice, when rescued by 
triploid wild type embryos, were normal and fertile but 
the proliferation of PGCs was affected as determined 
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by staining for Ki67 and Mitotic Protein Monoclonal #2 
(MPM2), which detects mitotic phosphorylation of 
multiple proteins. ERRβ therefore plays an important 
role PGCs proliferation during development. 
Interestingly, these mice have behavioral defects 
(particularly the females), implying that ERRβ could 
play a role in the brain. 
 
Recently, [Kumar and Mendelson, 2011] reported that 
the family member ERRγ is induced during 
syncytiotrophoblast differentiation and requires 
oxygen. ERRγ in turn induces the expression of the 
hCYP19I.1 gene by binding to its promoter. They did 
not, however, find any expression of any of the 
isoform of ERRβ in human trophoblast or 
differentiated placental cells. ERRβ also did not 
induce the expression of hCYP19I.1 in transient 
transfection experiments, suggesting a more specific 
role for ERRγ in human placental development, 
although the isoform of ERRβ used in these 
experiments is not clear. This also agrees with [Xie et 
al., 2009] that ERRβ is undetectable in human 
embryonic stem cells (see below). ERRβ may 
therefore have a species-specific role in embryonic 
differentiation and placental development, as it is 
abundantly expressed in mouse embryonic cells but 
not in human embryonic cells. Also, the limited 
duration of ERRβ expression in both the placenta and 
the embryonic PGCs suggests that ERRβ effects are 
restricted to a very brief window during development 
and attention needs to be given to this while studying 
the role ERRβ in this setting. 
 
Inner ear development 
 
[Chen and Nathans, 2007] first showed that ERRβ 
(analogous to human ERRβsf) is expressed in strial 
marginal cells of the cochlea and the vestibular dark 
cells of the mouse inner ear. They generated 
conditional ERRβ-/- mice that exhibit head bobbing 
and spinning and running in circles, suggesting a 
defect in vestibular function. These mice have hearing 
impairment and show characteristics of diminished 
endolymph production, suggesting the role of ERRβ in 
development of inner ear. These mice also exhibit a 
reduction in the expression of ion channels and 
transporters in inner ear, emphasizing the role of 
ERRβ in inner ear homeostasis, consistent with the 
head bobbing and loss of balance phenotype. 
 
In humans, mutations in the ESRRB gene lead to the 
autosomal recessive nonsyndromic hearing 
impairment DFNB35. [Collin et al., 2008] have 
reported recessive nonsyndromic hearing impairment 
in a large consanguineous family of Turkish origin 
mapping to chromosome 14q24.3-q34.12 that 
overlaps with the DFNB35 locus previously reported 
in a consanguineous family from Pakistan. Linkage 
and mutation analyses of this region identified 
alterations in ESRRB exons 5-12, which were also 

found in the human feta cochlear cDNA library 
reported by [Luijendijk et al., 2003]. Sequence 
analysis identified a 7bp duplication in exon 8, which 
leads to a frameshift and early termination of the 
protein. Further mutation analysis identified missense 
mutations in the DNA binding (Alanine110Valine) and 
ligand binding domains (Leucine320Proline, 
Leucine347Proline, Proline342Leucine) of ERRβ. 
More recently, an additional missense mutation 
(Proline305Histidine) in the ligand-binding domain 
was identified in another Tunisian family with hearing 
impairment [Ben Saïd et al., 2011]. The mutants in the 
ESRRB found in DFNB35 deafness may also 
contribute to dental decay through the 
demineralization of the enamel surface, as reported 
by [Weber et al., 2014]. These mutations are 
predicted to result in structural changes in DNA 
binding domain and the ligand binding domain, 
thereby impairing the overall structural integrity of the 
protein or affecting the stability of the ERRβ protein 
leading to functional loss. In human, these missense 
mutations could affect all three ERRβ splice variants. 
Two new ERRβ missense mutations - 
Arginine6Glycine and Arginine382Cystine – have 
recently been identified by [Wu et al., 2015] in 
children with good outcomes following cochlear 
implant installation, and these mutations too should 
affect all three splice variants. 
 
Collin et al. [2008] analyzed the distribution of ERRβ 
splice variants at the mRNA level in human tissues by 
variant-specific PCR, and found that ERRβsf and 
ERRβ-∆10 are ubiquitously expressed in all the 
tissues including the cochlea, while the ERRβ2 is 
found abundantly only in the testis and the cochlea, 
with lower expression in retina. The authors suggest 
that the autosomal recessive hearing impairment 
might be due to ERRβ2, as it is abundantly expressed 
in cochlea, although they do not rule out that the other 
two isoforms could also contribute to the hearing 
impairment. Overall, ERRβ plays an important role in 
development of the inner ear and hearing. The 
mechanism through which ERRβ affects the hearing 
or function in the inner ear is not known, though it 
could be through cooperation with TR or GR, as both 
of these receptors are abundantly expressed in inner 
ear, and in cell culture studies hERR2 (rat ERRβsf) is 
known to drive transcription from TREpal [Xie et al., 
1999] and suppress GR-mediated transcriptional 
activity [Trapp and Holsboer, 1996]. 
 
Retinal development 
 
[Blackshaw et al., 2001; Blackshaw et al., 2004] 
reported the expression of ERRβ (functionally, 
ERRβsf) in photoreceptors of the developing mouse 
retina by using serial analysis of gene expression 
(SAGE) and in situ hybridization techniques. They 
detected expression of ERRβ in rod cells and in 
immature photoreceptors during the first postnatal 
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week, but the expression diminishes by postnatal day 
10 (P10). Interestingly, during retinal development, 
ERRβ was expressed at markedly lower levels at 
prenatal stages, which is very different from its role in 
embryogenesis, placental development and inner ear 
development, where it is expressed early in embryo 
development. The isoform of ERRβ detected is by 
definition ERRβsf, as this is the only form found in 
rodents. 
 
Onishi et al. [2010] later reported a more detailed 
analysis of ERRβ expression in developing and 
mature mouse retina. They showed that ERRβ is 
expressed in horizontal cells throughout the first week 
postnatally and the expression decreases by day P7, 
similar to what was observed previously. By day P7 
they see expression of ERRβ in the outer nuclear 
layer in the rod photoreceptor cells, but not in cone 
photoreceptors, as ERRβ colocalized with the rod-
specific marker rhodopsin. They also found that ERRβ 
activated rhodopsin expression and induced 
expression of rod cell-specific genes such as 
guanylate cyclase activator proteins and 
sodium/potassium/calcium rod inner segment cation 
exchanger Slc24a1 and other genes involved in 
glycolysis. It is interesting that just like its function in 
inner ear where ERRβ regulated ion channel 
homeostasis, it could play a similar role in rod 
photoreceptor cells by regulating an ion exchanger. 
 
Conditional ERRβ-/- mice have defects in the inner 
ear but apparently normal retinal development, which 
agrees with [Blackshaw et al., 2001; Blackshaw et al., 
2004], where they see a very low expression of ERRβ 
during prenatal stages. [Onishi et al., 2010] suggest 
that ERRβ might play a role in regulation of rod 
photoreceptor cells at later ages. They found that 
ERRβ-/- mice show a decrease in the number of rod 
photoreceptors as they age, and this could be 
rescued by electroporation of ERRβ. This suggests 
that ERRβ might have a role in maintaining the rod 
photoreceptor cells and their function in adults. The 
authors also suggest that certain individuals lacking 
ERRβ might suffer from late onset rod photoreceptor 
degeneration. 
 
Sharon et al., [2002] have reported the expression of 
ERRβ mRNA in human retinal tissues. However, it is 
not clear which isoform of ERRβ they detected, 
though [Collin et al., 2008] have shown expression of 
the ERRβ2 splice variant to be higher in retinal vs. 
most other human tissues. Overall, ERRβ seems to 
play an important role in the maintenance of rod 
photoreceptors and expression of rod-specific genes 
in mice, while the role of ERRβ in the human retina 
remains to be fully elucidated. 
 

Functions of ERR β in the central nervous system 
and hypothalamic-pituitary axis 
 
In their genome-wide atlas expression study of adult 
mouse brain, [Lein et al., 2007] report that ERRβ (i.e., 
ERRβsf) is expressed in the hindbrain. [Real et al., 
2008] performed a subsequent, more detailed study 
of ERRβ in postnatal and adult mouse brain. Using 
four different antibodies for ERRβ immunostaining, 
they show that ERRβ is expressed in hypothalamic 
suprachiasmatic nucleus, ventral and dorsal 
geniculate nuclei, pretectal nuclei, superior colliculus, 
and thalamic posterior nucleus. Most of these regions 
are targets of retinal projections. This study also 
shows ERRβ expression in mouse retinal ganglion 
cells and along the course of retinal axons in the 
retinorecipient nuclei. Here, ERRβ is detected in both 
the cytoplasm and nucleus by one of four antibodies 
used, but the other three antibodies detected only 
nuclear staining and hence cannot visualize axon 
fibers. The cytoplasmic expression of ERRβ in axon 
fibers should be studied further. ERRβ expression in 
the hypothalamic suprachiasmatic nucleus may 
suggest that ERRβ plays a role in control of circadian 
rhythm. 
 
The expression of ERRβ along the efferent retinal 
projections also agrees with the fact that ERRβ plays 
an important role in maintenance and function of rod 
photoreceptors, as discussed above in [Onishi et al., 
2010]. The expression of ERRβ in horizontal cells of 
retina, which are targets of retinal ganglion cells that 
also express ERRβ, suggests a comprehensive role 
for ERRβ in mouse retinal development, though 
connections between these need to be explored 
further. 
[Byerly et al., 2013a] recently showed that ERRβ 
conditional knockout mice have lower body weights, 
decreased fat mass, increased metabolic activity and 
increased energy expenditure, and these differences 
were observed even at resting metabolic states, 
suggesting deletion of ERRβ affects energy 
homeostasis in addition to the vestibular defects 
observed by [Chen and Nathans, 2007]. These mice 
also had altered food intake with decreased inter-
meal interval, decreased inter-meal satiety ratio and 
an overall increase in meal number and size. They 
created a selective knockout of ERRβ (Nestin-Cre: 
ERRβlox/lox in the hindbrain of the mice, where 
ERRβ is predominantly expressed in the brain [Lein et 
al., 2007]. These mice have selectively lower 
expression of ERRβ in the hindbrain and display 
similar phenotypes to whole-body ERRβ knockout 
mice with respect to inter-meal satiety ratio and 
interval, body weight and metabolic activity. They also 
have decreased expression of neuropeptide Y (NPY), 
which is involved in the control of appetite and body 
weight gain, and had increased insulin sensitivity and 
lower blood glucose levels. Interestingly, they found 
that ERRγ played a compensatory role in food intake 
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and homeostasis when ERRβ is knocked out. The 
expression of ERRγ is enhanced in ERRβ-/- mice and 
in Nestin-Cre:ERRβlox/lox mice. When the wild type 
and ERRβ-/- mice were treated with DY131, a 
selective agonist of ERRβ and ERRγ, the wt mice 
displayed similar phenotypes as ERRβ-/- and the 
ERRβ-/- had further decreases in intra-meal satiety 
and intra-meal intervals and the expression of NPY. 
These data suggest that ERRγ can regulate some 
aspects of food intake in the absence of ERRβ. 
Together, they both may play an important role in 
regulating the expression of each other and whole 
body energy balance and food intake. 
 
In a second paper, [Byerly et al., 2013b] report the 
effect of ERRβ on response to restrain stress and the 
hypothalamic-pituitary axis (HPA) with the same 
animal model system, with the addition of 
heterozygous-null (Sox2-Cre:ERRβ+/- mice. The 
heterozygous mice have increased fat mass 
compared to wt, but homozygous knockout have 
decreased fat mass and lean mass compared to wt. 
Surprisingly, the heterozygous mice and homozygous 
mice do not have any differences in inter-meal satiety 
ratio, but homozygous mice have lower inter-meal 
intervals. NPY expression is increased in the 
heterozygous mice compared to wt, but the highest 
expression is in the homozygous mice, again 
suggesting that ERRβ might play an important role in 
expression of NPY. Considering that heterozygous vs. 
homozygous deletion of ERRβ have opposing effects 
on fat mass, this expression pattern of NPY is 
interesting. The authors speculate that increased fat 
mass in heterozygous mice is due to increased 
expression NPY, while in homozygous mice the 
increased expression of NPY is a secondary effect in 
response to decreased fat mass. 
 
Acoustic startle tests also show clear differences 
between heterozygous and homozygous ERRβ 
knockout animals. Wild type mice had increased 
cortisone levels in response to stress that returned to 
baseline after 1 h of recovery. The heterozygous mice 
have strong response to stress and show elevated 
cortisone levels compared to wild type animals, and 
the recovery time was similar between them. The 
homozygous mice, however, have elevated baseline 
levels and show no increase in cortisone levels in 
response to stress; in fact, the cortisone levels 
decrease in response to stress. The elevated 
cortisone baseline levels correlated with elevated in 
situ hybridization staining for Crh (corticotrophin 
releasing hormone) in the homozygous mice, 
suggesting ERRβ plays a role in expression of Crh. 
When the homozygous animals were treated with 
DY131 there was a small increase in Crh levels in 
these mice, suggesting that ERRγ can contribute to 
Crh expression depending on the levels of ERRβ. The 
expression levels of ERRγ in heterozygous mice is 
unknown. When the Nestin-Cre:ERRβ mice were 

subjected to acoustic startle response, these mice 
showed increased response in this test with a 
decreased expression of Crh. Therefore, ERRβ might 
play an important role in the excitatory pathway 
associated with acoustic startle response. They also 
showed decrease in corticotrophin releasing hormone 
2 (Crhr2), further suggesting that ERRβ plays a role in 
modulating the hypothalamic axis and the response to 
stress together with ERRγ. 
 
The glucocorticoid receptor is a potential contributor 
to the effects of ERRβ (and possibly ERRγ) in the 
HPA. As discussed above, ERRβ (hERR2, rat ERRβ) 
inhibits the transcriptional activity of glucocorticoid 
receptor (GR). The mechanism for transcriptional 
inhibition of GR by ERRβ is unknown, though ERRβ 
does not bind to GRE elements or inhibit the binding 
of GR to DNA, suggesting that it might function as a 
trans suppressor of GR activity [Trapp and Holsboer, 
1996]. On the other hand, ERRγ induces the 
expression of GR and also promotes the activity of 
GR [Wang et al., 2010a]. It is interesting that ERRβ 
and ERRγ, similar in so many ways, have opposing 
effects on GR activity. Together, ERRβ or ERRγ may 
contribute to HPA control through their regulation of 
glucocorticoid receptor and other genes involved in 
Crh release. In addition, [Ren et al., 2011] show that 
ERRβ along with ERRα and ERRγ can induce 
monoamine oxidase, an enzyme that is involved in 
oxidative de-amination of dopamine. They further find 
that Parkin, an E3 ubiquitin ligase, binds to all three 
ERRs and promotes their degradation via the 
ubiquitin-proteasome pathway. Aberrant ERRβ 
expression and function may therefore contribute to 
Parkinson’s disease, though to our knowledge this 
has yet to be specifically studied. 
 
Functions of ERR β in stem cell biology  
 
Since the cloning and earliest functional studies of 
murine ERRβ, data have pointed to a role for this 
receptor in regulating the balance between 
pluripotency and differentiation (e.g., [Luo et al., 1997; 
Pettersson et al., 1996; Tremblay et al., 2001b]), and 
this is one area in which the contributions of ERRβ 
have been comprehensively summarized by [Papp 
and Plath, 2012], whose efforts we do not seek to 
duplicate here. As in the section above, it is important 
to recall that the mouse has one form of ERRβ, 
homologous to human ERRβsf. 
 
Seminal papers by [Ivanova et al., 2006], [Loh et al., 
2006], and [Zhou et al., 2007a] (GSE4679) identified 
ERRβ as an essential pluripotency factor in mouse 
embryonic stem cells (ESCs), a transcriptional target 
of Oct4 and Nanog whose RNAi-mediated depletion 
leads to differentiation, and a key regulatory partner 
for Oct4, Nanog, and Sox2. It is now known that 
Dax1, another ONR, is an ERRβ target gene in 
mouse ESCs and establishes a negative feedback 
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loop through direct repression of ERRβ transcriptional 
activity [Uranishi et al., 2013]. Chromatin 
immunoprecipitation and sequencing (ChIP-seq) by 
[Chen et al., 2008] has identified genome-wide 
binding sites for ERRβ in mouse ESCs. This ERRβ 
ChIP-seq dataset (GSE11431) has been 
subsequently used to develop novel methods for 
predicting gene expression in this cell type [Ouyang et 
al., 2009], and as validation for histone modification-
directed ChIP-mass spectrometry that show 
widespread enhancer binding by ERRβ in mouse 
embryonic stem cells [Engelen et al., 2015]. By 
contrast, [Xie et al., 2009] demonstrate that while 
ERRβ mRNA is highly expressed in mouse ESCs, it is 
undetectable in human ESCs. However, even in the 
mouse, not all stem cells are created equal, and in 
trophoblast stem cells (TSCs) ERRβ is a target of 
FGF signaling, causing its recruitment to a distinct 
repertoire of target genes and association with distinct 
coregulatory proteins vs. ESCs [Latos et al., 2015]. 
Specifically, ERRβ is enriched at the promoters of 
Eomes and Elf5 in TSCs, and mass spectrometry 
analysis of ERRβ binding partners in ESCs vs. TSCs 
shows specific interaction with the histone-modifying 
(demethylase) enzyme Lsd1 and the Integrator 
complex in TSCs vs. SWI/SNF and the Mediator 
complex in ESCs. This suggests that ERRβ makes 
previously unappreciated contributions to epigenetic 
regulation through histone demethylation in 
conjunction with its direct transcriptional activity. 
 
Feng et al. [2009] elegantly showed that ERRβ can 
substitute for c-Myc and Klf4 in the reversion of 
mouse fibroblasts to induced pluripotent stem cells 
(iPSCs) (GSE13190). They further show that ERRγ, 
but not ERRα, can replace murine ERRβ in iPSC 
reprogramming. Interestingly, exogenous expression 
of Gli family zinc finger 1 (GLIS1) can enhance 
reprogramming in mouse and human iPSCs, but only 
in mouse iPSCs is this accompanied by an induction 
of ERRβ [Maekawa et al., 2011]. Coupled with the 
absence of ERRβ expression in human ESCs [Xie et 
al., 2009] and the fact that ERRβ appears to be 
relevant to porcine iPSC reprogramming [Kues et al., 
2013], these data suggest that ERRβ is a non-primate 
regulator of pluripotency. A trio of papers later shed 
light on the molecular mechanism(s) of ERRβ function 
in mouse cell pluripotency. ERRβ is a direct target of 
the Wnt signaling pathway during reprogramming, can 
substitute for Nanog in this process, and requires a 
specific coactivator (nuclear receptor coactivator 3 
(NCOA3), or amplified in breast cancer 1, AIB1) to 
exert these effects [Festuccia et al., 2012; Martello et 
al., 2012; Percharde et al., 2012], and this latter point 
was supported by a subsequent study [Wu et al., 
2012]. Either ERRβ or Nanog can promote 
pluripotency in ES cells depleted of nucleostemin 
[Katano et al., 2015] (GSE56797). 
 
A unique feature of stem or pluripotent cells is altered 
regulation of cell cycle checkpoints, an area in which 
we now know ERRβ plays an important role (at least 
in the mouse). In differentiated cells, a robust G1/S 

checkpoint is required to prevent cell cycle transit in 
the presence of DNA damage [Ciccia and Elledge, 
2010]. However, in mouse ESCs, G1 phase is very 
short and undergoes differentiation-mediated 
lengthening. [van der Laan et al., 2013] elegantly 
showed that expression of the phosphatase Cdc25A 
remains elevated in mouse ESCs that have 
experienced DNA damage, tracing this back to 
maintenance of the deubiquitinating enzyme Dub3 
that is a direct transcriptional target of ERRβ. ERRβ 
knockdown in and DY131 stimulation of mouse ESCs 
reduces or enhances Dub3 and Cdc25A, respectively, 
and RNAi-mediated inhibition of Dub3 or Cdc25A led 
these cells to differentiate. [van der Laan et al., 2014] 
went on to show that Dub3 expression fluctuates with 
the cell cycle and is upregulated during S phase in 
mouse ESCs, but that this is not due to concomitant 
changes in the expression of ERRβ. Instead, 
increased expression of the p160 family of nuclear 
receptor coactivators, and in particular NCOA1, 
precedes that of Dub3 and is a key regulatory partner 
for ERRβ in this context. NCOA1 is itself subject to 
alternative splicing, and the authors demonstrate that 
both splice variants of this coactivator are able to 
stimulate ERRβ transcriptional activity and Dub3 
expression. 
 
Using RNAseq, [Lu et al., 2015a] have recently 
analyzed gene expression in NIH3T3 mouse embryo 
fibroblasts stably expressing exogenous ERRβsf in 
the absence or presence of Hedgehog ligand-
containing conditioned medium (GSE71209). The 
rationale for this study was to clarify the functional 
relationship between ESRRB and Hedgehog signaling 
by identifying ERRβ targets within Hedgehog signal 
transduction pathways. One hundred nine (109) 
Hedgehog-regulated mRNAs are modulated by ERRβ 
overexpression – some genes (Stmn1, Top2a, 
Hoxd8) are increased in an additive fashion, while for 
others (Igf1, Smoc2) the relationship between ERRβ 
and Hedgehog ligand is antagonistic. 
 
Functions of ERR β in human cancer 
 
A growing number of studies suggest a tumor 
suppressive role for ERRβ in human cancers, which 
seemingly contradicts its ability to promote 
pluripotency and stemness in the mouse. Initially 
studied in hormone-dependent tumor types, ERRβ 
splice variants and fusion genes are emerging as 
contributors to non-epithelial malignancies, though 
further studies will be required to fully characterize the 
mechanism(s) by which this occurs. 
 
Prostate cancer 
 
Cheung et al. [2005] first reported that unlike other 
ERR family members, ERRβ is restricted to normal 
prostate epithelial cells and some immortalized 
prostate lines, though it is not clear from the antibody 
used which ERRβ splice variant(s) is/are being 
detected. Shortly after alternative splicing of ERRβ 
became known, [Yu et al., 2008] reported the 
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expression of ERRβ splice variants in normal 
immortalized and prostate cancer cell lines by PCR, 
and performed functional studies using ERRβsf 
cDNAs. The short form splice variant of ERRβ 
(ERRβsf) was expressed in all cell lines, while the 
other two isoforms, ERRβ2 and ERRβ-∆10, were not 
expressed in any. Confirming prior studies, 
expression of the ERRβsf was found to be higher in 
normal immortalized prostate cell lines than the 
prostate cancer cell lines. By immunohistochemistry 
[Yu et al., 2008] further demonstrate that ERRβ is 
expressed in the nucleus of the epithelial cells and the 
stromal cells in fetal and pubertal prostate cells, and 
that expression is decreased with age in adult and 
aged prostates. ERRβ expression is also 
downregulated in prostate cancer cells and in 
premalignant and malignant lesions in clinical 
prostatic tissues. Ectopic expression of ERRβsf 
inhibits the growth of LnCAP and DU145 prostate 
cancer cell lines through the induction of S phase cell 
cycle arrest, but not apoptosis, and this can be 
enhanced by the addition of DY131. Further, they 
report that ERRβsf activates the p21 promoter, as 
previously shown by [Castet et al., 2006], and that 
deletion of the first zinc finger of the DNA binding 
domain blunts this transcriptional activation. [Fujimura 
et al., 2010] have shown that expression of ERRβ and 
ERRγ are significantly higher in benign foci vs. 
cancerous lesions in prostate tissues. However, they 
find no correlation of ERRβ with the clinical outcome 
of prostate cancer. Similar to [Cheung et al., 2005], 
the antibody used to detect ERRβ by 
immunohistochemistry recognizes an epitope 
common to all the three splice variants, so it is not 
clear which variant is being detected in prostate 
tissues. 
 
Lu et al. [2015b] subsequently used the DU145 
prostate cancer model to identify new ERRβ target 
genes (GSE71208). Cells stably expressing 
exogenous ERRβsf or the empty vector control were 
treated with DY131 or vehicle control, and RNAseq 
was used to identify differentially-expressed targets. 
Interestingly, DY131 alone had no effect on gene 
expression in the absence of ERRβ exogenous 
expression, while ERRβ alone or in combination with 
DY131 could either upregulate or downregulate 
putative targets. 
 
Uterine cancer 
 
Using splice variant-specific PCR primers, [Bombail et 
al., 2008] have shown that ERRβsf and ERRβ2  
(referred to as ‘long form’ or ERRβL in this 
publication) are expressed in normal human 
endometrium, with ERRβ-∆10 not detected. ERRβ  
mRNA levels were specifically quantified at different 
stages of the menstrual cycle: menstrual, proliferative, 
early secretory, mid-secretory and late secretory. 
There were no statistically significant differences 

between samples observed, though there is a trend 
towards higher levels in the proliferative and early 
secretory stages. This study also reported the 
detection of ERRβ protein  in early stage endometrial 
cancers by immunohistochemistry. Though the 
antibody used clearly recognizes the ERRβsf 
exogenously expressed control and exhibits nuclear 
staining in human tissues, it is not possible to 
specifically state which endogenous splice variant(s) 
are being detected. 
 
Bombail et al. [2010] went on to functionally 
characterize exogenous ERRβsf and ERRβ2 (again 
referred to as ‘long form,’ or ERRβL) in the ERα-
positive Ishikawa endometrial cancer cell line. A key 
finding of this study is the first demonstration that 
ERRβ splice variants have differential effects on the 
transcriptional activity of classical estrogen receptors, 
in this case ERα. Exogenous ERRβ2 enhances 
estrogen-induced ERα activity at an ERE-luciferase 
reporter, while ERRβsf attenuates ERα activity. Using 
yellow fluorescent protein (YFP)-tagged ERRβ 
expression constructs and fluorescent recovery after 
photobleaching (FRAP), they show that ERRβ2 and 
ERRβsf, have different intranuclear mobility, with 
ERRβ2 fluorescence recovery being significantly 
slower. Fluorescence resonance energy transfer 
(FRET) further implies a physical association between 
exogenous ERRβ2 and endogenous ERα in response 
to estrogen. In this study, YFP-ERRβ2 is reported to 
have predominantly nuclear localization, which the 
authors point out is different from the initial report by 
[Zhou et al., 2006] where ERRβ2 is largely 
cytoplasmic. It is not clear whether cell type-specific 
factors or the YFP epitope tag contributes to this 
differential localization. 
 
ERRβsf, which abrogates ERα-driven transcriptional 
activity in Ishikawa cells [Bombail et al., 2010], also 
physically interacts with and leads to the 
downregulation of NF-E2 Related Factor 2 (Nrf2), a 
key player in the oxidative stress response in this 
model system [Zhou et al., 2007b]. More recently, 
[Yamamoto et al., 2012] show that DY131 inhibits the 
growth of ERα-positive Ishikawa cells, but stimulates 
that of ERα-negative HEC1A endometrial cancer 
cells. The authors do not directly address the potential 
role of ERRβ, though they present evidence that 
ERRγ exogenous expression phenocopies the effects 
of DY131 and conclude that ERRγ is therefore the 
relevant receptor in this context. Further studies are 
warranted to better define the role of endogenous 
ERRβ splice variants in endometrial cancer. 
Breast cancer` 
 
All three ERRs, when exogenously expressed, are 
capable of inducing transcription of the estrogen-
inducible gene pS2 via the ERE and ERRE in the 
promoter region [Lu et al., 2001]. This occurs not only 
in HeLa cells, but also ERα positive and negative 
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breast cancer cells, with ERRβsf (rat ERRβ) being the 
most potent inducer. [Ariazi et al., 2002] subsequently 
utilized quantitative PCR to determine the mRNA 
levels of the ERRs in human breast tissues and 
normal mammary epithelium controls; analysis of their 
ERRβ reverse primer suggests that this primer pair 
detects all three ERRβ splice variants. ERRβ 
expression was found to be very low, though in this 
set of samples it is positively associated with 
expression of ERβ and inversely associated with the 
fraction of cells in S phase. Using RNAseq data from 
The Cancer Genome Atlas (TCGA), [Garattini et al., 
2016] show that ESRRB expression (referred to in the 
manuscript as NR3B2) is significantly reduced in 
breast tumors vs. normal breast tissue, with lowest 
expression in the Luminal B and Basal-Like molecular 
subtypes. These analyses do not appear to 
distinguish amongst the different ERRβ splice 
variants. 
 
Sengupta et al. [2014] and [Tanida et al., 2015] 
recently published two interesting studies with more 
mechanistic data on the role of exogenously 
expressed ERRβ splice variants in breast cancer. 
Sengupta et al. used the YFP-ERRβ2 obtained from 
[Bombail et al., 2010] (and therefore it is referred to in 
the manuscript as ‘long form,’ or ERRβL), while 
Tanida et al. used a rat ERRβ cDNA ( ERRβsf). 
Both groups find that each isoform of ERRβ can form 
a complex with ERα, with [Sengupta et al., 2014] 
further demonstrating that ERRβ2 can interact with 
ERβ, as well. [Tanida et al., 2015] map the ERα 
interaction region of ERRβsf to the amino terminus 
(amino acids 1-92), show that ERRβsf attenuates 
ERα-mediated transcriptional activity and estrogen-
stimulated (but importantly, not basal) MCF7 cell 
proliferation, and postulate that this is due to 
restriction of intranuclear mobility of ERα and/or 
competition for coregulatory proteins, i.e., ERRβ is a 
direct corepressor of ERα. [Sengupta et al., 2014] 
performed coimmunoprecipitation experiments with 
wild type ERRβ2 and ERα in MCF7 cells, in which 
they find that complex formation is inhibited by 
estradiol, and with ERRβ2 and ERβ in MDA-MB-231 
cells, which is also attenuated by estradiol. In silico 
3D molecular modeling approaches suggest that the 
LBD of ERRβ (selected amino acids from 400 to 429) 
participates in interactions with ERβ, but that 
ERRβ/ERα complex formation involves the hinge 
region or D domain of ERRβ (selected amino acids 
from 179 to 234). The predictions of these models 
have not yet been validated by site-directed 
mutagenesis, which will be required to confirm how 
these receptors interact in vivo and to resolve 
differences between these computational models and 
direct demonstration by Tanida and colleagues that 
the amino terminus of ERRβ is required for ERα 
binding. Finally, it is interesting to note that 
exogenous expression of ERRβsf can apparently 

suppress the proliferation of a triple negative breast 
cancer cell line MRK-nu-1 (data not shown, [Tanida et 
al., 2015]) while having no effect on MCF7 cell growth 
in the absence of estrogen or on estrogen-
independent, Tamoxifen-resistant (yet still ERα-
positive) breast cancer cells. 
 
Though its relevance to breast cancer is still 
emerging, ERRβ has recently been identified as a 
highly expressed gene in epithelial cells present in 
human breast milk [Twigger et al., 2015], particularly 
early in lactation. Interestingly, principal component 
analysis of differentially-expressed genes identified in 
this study show that ERRβ variance is opposite to that 
of KLF4, which it can replace in mouse iPSC 
reprogramming [Feng et al., 2009]. The contribution of 
ERRβ to lactation requires further study, particularly 
given that lactating mammary tissue requires an 
intricate balance between epithelial cell self-renewal 
and differentiation. 
 
Glioblastoma 
 
GBM is the most common tumor of the brain, 
incurable and highly resistant to systemic 
chemotherapies. Surgery, radiation and adjuvant 
treatment with the alkylating agent temozolomide are 
the current standard of care, and result in a median 
survival of only ~14 months (reviewed in [Prados et 
al., 2015]). ESRRB is located at 14q24.3, a region 
frequently deleted in GBMs and lower grade 
astrocytic tumors [Dichamp et al., 2004; Felsberg et 
al., 2006; Hu et al., 2002], with Hu et al. showing 
47.1% of GBMs in their study to have loss of 
heterozygosity (LOH) at 14q23-31. Using copy 
number data from REpository for Molecular BRAin 
Neoplasia DaTa (REMBRANDT) [Madhavan et al., 
2009], now housed within the Georgetown Database 
of Cancer (GDOC) [Madhavan et al., 2011], we find 
that patients with ESRRB deletion have significantly 
worst survival (Figure 2), supporting further 
mechanistic evaluation of ERRβ in GBM. 
 
We have recently published that ERRβsf and ERRβ2 
differentially regulate cell cycle progression in GBM 
cell lines upon stimulation with DY131, and that this 
ligand has growth-inhibitory effects in GBM, but not 
nontransformed, cells [Heckler and Riggins, 2015; 
Vanacker and Maiorano, 2015]. Growth inhibition is 
the result of cell cycle arrest and, in cells lacking a 
functional p53, apoptosis. Intriguingly, the stage at 
which cell cycle arrest occurs in response to DY131 
differs between cell line, and this is the direct result of 
which splice variant – ERRβsf or ERRβ2 – is 
dominant. ERRβsf, as shown previously in prostate 
cancer models by [Yu et al., 2008], drives G1 arrest 
and the induction of p21, though we also observe 
senescence, which has not been previously reported. 
By contrast, ERRβ2 is required for a G2/M arrest that
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Figure 2. ESRRB copy number and GBM survival . Kaplan-Meier estimation was performed on ‘all glioma’ Specimens in 
REMBRANDT using default parameters. Amplified (red) vs. deleted (green) p=0.007; amplified (red) vs . all (yellow) p=0.05; deleted 
(green) vs. all (yellow) p=0.02. 
 
we hypothesize is due to defective metaphase, given 
the persistence of Serine 10 phosphorylation on 
Histone H3. We also demonstrate that ERRβ2 is a 
dominant-negative inhibitor of ERRβsf-dependent 
transcriptional activation of the p21 promoter. Our 
study was the first to identify a function for 
endogenous ERRβ2 and define its dominant-inhibitory 
role. Key to this work was our discovery that two 
distinct monoclonal antibodies (H6707 and H6705, 
R&D Systems) preferentially recognize endogenous 
ERRβ2 and ERRβsf, respectively. It is not currently 
clear why these antibodies should prefer one splice 
variant to another, though ongoing studies have 
begun to elucidate the specific epitope(s) recognized. 
Rational development of ERRβ2 and ERRβ-∆10 
splice variant-specific antibodies based on their 
divergent F domains should significantly improve the 
ability our group (and others) to study the expression 
and function of these splice variants at the protein 
level. 
 
Pediatric B-cell precursor acute lymphoblastic 
leukemia (BCP ALL) 
 
Hematologic malignancies are often characterized by 
genomic rearrangements, with some alteration of the 

transcription factor paired box 5  (PAX5) affecting 
~40% of BCP ALL cases. It was recently reported that 
an unbalanced t(9;14) rearrangement is a recurrent 
event in this disease, leading to the production of a 
PAX5-ESRRB fusion gene [Marincevic-Zuniga et al., 
2016; Nordlund et al., 2015]. The protein product of 
this fusion gene, which joins the amino terminal 
portion of PAX5 with the carboxy terminal portion of 
ERRβ, is predicted to retain PAX5 DNA binding and 
protein/protein interaction activities and contain the 
full LBD of ERRβ. The breakpoint occurs in intron 4 of 
ESRRB, which results in the loss of the first zinc 
finger of the DBD, demonstrated by [Yu et al., 2008] 
to abrogate receptor DNA binding. It is plausible that 
PAX5-ESRRB fusions may have alternatively spliced 
F domains analogous to ERRβ2 and/or ERRβ-∆10, 
but the reverse primer used to verify expression of the 
fusion transcript recognizes a sequence within exon 
7, which is conserved in all splice variants. ESRRB 
expression is absent in ALLs lacking the fusion, 
implying that the PAX5 promoter is responsible for 
expression. In addition, ALLs positive for PAX5-
ESRRB have a distinct DNA hypomethylation 
phenotype that is separable from those containing 
most other PAX5 fusions, and pathway analysis 
shows enrichment for genes in the Wnt/β-catenin
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Figure 3. ERR β and its contributions to diverse biological proces ses. Key functions of ERRβ splice variants in rodents and 
primates are summarized.  
 
pathway. This is intriguing, given that in mouse 
pluripotent cells ERRβ is a target for Wnt pathway-
mediated reprogramming [Martello et al., 2012]. 
Future functional studies will be required to 
specifically determine the contribution of the ERRβ 
portion of the PAX5-ESRRB fusion to these events. 
 
Conclusions and future goals  
 
The term ‘renaissance’ can imply 1) renewed interest 
or growth in an area previously dormant, and 2) an 
individual possessing many talents. We think it fair to 
say that both apply to ERRβ (Figure 3). Key areas of 
future study and growth in this corner of the ONR field 

should include: deeper analysis of ERRβ splice 
variant function and etiology, the latter being 
completely unexplored; development of ERRβ-
selective synthetic ligands that exploit Tyrosine 321 
within the ligand-binding pocket; and a clearer 
understanding of the species-specific functions of this 
receptor, i.e., how ERRβ behaves as a 
reprogramming factor in mice vs. a putative tumor 
suppressor in humans. Alternative splicing is a key 
source of functional diversity at the proteomic level, 
and it is likely that we have only just begun to scratch 
the surface of how this process impinges on the 
biologic function of ERRβ, and likely other nuclear 
receptors. It is tempting to speculate that primate-
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restricted ERRβ splice variants are responsible for 
tumor suppressor-like activity in humans, but the fact 
that we [Heckler and Riggins, 2015] and others 
[Tanida et al., 2015; Yu et al., 2008] find that ERRβsf 
is also growth limiting would suggest that the true 
explanation is not that simple. We have much to learn 
from the next 27 years of ERRβ-focused research. 
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