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Conventional kinesin (designated Kinesin-1 in the standard no-

menclature for the kinesin superfamily; Lawrence et al., 2004) 

is a motor protein that is responsible for movement of a wide 

range of cargoes along MTs. Kinesin from animals is a hetero-

tetramer that contains two HCs and two LCs, as indicated in 

Fig. 1 for Drosophila melanogaster Kinesin-1. A large number 

of proteins has been shown by proteomic methods to interact 

with kinesin (Adio et al., 2006; Gindhart, 2006), and many of 

these are likely to be cargo molecules or regulators. The tetra-

trico peptide repeat (TPR) domains of the LCs are a major site 

for the binding of cargo/scaffold proteins such as JIP1, which 

links kinesin to vesicles (Verhey et al., 2001). Other cargo mole-

cules have been shown to bind directly to the HCs, and the 

binding sites for several have been mapped to Coil-4a,b, which 

also plays a critical role in fungal kinesins (Seiler et al., 2000). 

Under physiological conditions, the soluble kinesin hetero-

tetramer is in a compact, inhibited conformation that is produced 

by the interaction of a region in the tail with the head/neck 

 region. The region in the tail that is required for folding has 

been localized to Coil-4c (aa residues 910–930) and the ad-

joining positively charged region 928–937, but the downstream 

conserved IAK region is also required for full inhibition of MT-

stimulated ADP release (Hackney and Stock, 2000). Although 

LCs are not required for folding, the LCs would be in close 

proximity to the motor domains in the folded conformation, 

where they could play a role in modulating the properties of the 

complex. The addition of LCs both shifts the salt dependence 

of unfolding (Hackney et al., 1992) and reduces the MT affi nity 

of the HCs to such a great extent that tight binding to MTs is 

not observed even in the presence of AMPPNP at pH 7.2–7.4 

(Verhey et al., 1998).

An attractive model for how the inhibited folded con-

formation could be activated was for cargo binding to shift the 

equilibrium toward the active unfolded conformation. However, 

any cargo-induced changes would have to be indirect, as the 

cargo-binding regions on both the LCs and HCs are physically 

separate from the region in the tail of the HC that binds to 

the head/neck to produce the folded conformation (Fig. 1). 

 Blasius et al. (2007) have now shown that even such an indirect 

effect is not likely to be a major factor because cargo binding 

alone is insuffi cient for activation, at least for the major LC 

cargo JIP1.

What activates the folded species, if not cargo binding? 

Posttranslational modifi cation such as phosphorylation does 

play a role in the detachment of cargo (Morfi ni et al., 2004), but 

its role in the activation of kinesin is not as well established. The 

study by Blasius et al. (2007) provides a mechanism for activa-

tion through the simultaneous binding of JIP1 to the LCs and 

FEZ1 to the HCs. Drosophila UNC-76 is the homologue of 

FEZ1, and it had previously been shown to bind to the tail re-

gion of the HC (Gindhart et al., 2003). Blasius et al. (2007) have 

now further shown that FEZ1 is unlike most other potential car-

goes or regulators that interact with the tail of kinesin in that the 

binding site for FEZ1 likely includes part of the region that 

binds to the head/neck region. Specifi cally, they have shown 

that mutation of the positively charged cluster (aa 929–938 for 

Drosophila HC in Fig. 1 and aa 908–917 in the rat HC (KIF5C) 

used by Blasius et al. [2007]) between Coil-4c and the IAK re-

gion prevents interaction with the head/neck region in a yeast 

two-hybrid assay. Because inclusion of the positively charged 

cluster in the tail is required for folding (Stock et al., 1999), the 

binding of FEZ1 could potentially produce unfolding by direct 

competition with the head/neck region. However, FEZ1 alone is 

also not suffi cient for activation. It will be of interest to see 

whether this requirement for the dual activation by cargo and a 

potential direct disruptor of folding will become the general 

pattern for both HC and LC cargoes.
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When it is not actively transporting cargo, conventional 

Kinesin-1 is present in the cytoplasm in a folded confor-

mation that cannot interact effectively with microtubules 

(MTs). Two important and largely unexplored aspects of 

kinesin regulation are how it is converted to an active spe-

cies when bound to cargo and the related issue of how 

 kinesin discriminates among its many potential cargo 

molecules. Blasius et al. (see p. 11 of this issue) report 

that either binding of the cargo linker c-Jun N-terminal 

 kinase–interacting protein 1 (JIP1) to the light chains (LCs) 

or binding of fasciculation and elongation protein ζ1 

(FEZ1) to the heavy chains (HCs) is insuffi cient for activa-

tion but that activation occurs when both are present 

 simultaneously. A related paper by Cai et al. (see p. 51 of 

this issue) provides structural insight into the conforma-

tion of the folded state in the cell obtained by fl uorescence 

resonance energy transfer analysis.
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One possible explanation for the requirement of both JIP1 

and FEZ1 is that the binding of each separately destabilizes the 

folded conformation, but their combined action is needed to 

produce suffi cient activation to register in assays using lysates 

from cells that express tagged proteins. The lysate method has 

the advantage that normal cellular processes are involved, but 

it needs to be complemented with reconstitution studies using 

purifi ed components to allow better quantifi cation and to distin-

guish direct from indirect effects. For example, either the addi-

tion of LCs or an increase in pH favors unfolding, as indicated 

by a decrease in the salt concentration required to produce 50% 

unfolding (Hackney et al., 1992). A simple model in which un-

folding alone is responsible for activation would predict that the 

addition of LCs or higher pH should increase activation, yet the 

opposite result is observed (Verhey et al., 1998). The observa-

tion by Cai et al. (2007) of two different conformational transi-

tions in the folded species may provide a mechanism to account 

for these complexities. An additional consideration is that HC 

dimers are active in the assay used by Blasius et al. (2007), as 

defi ned by their ability to bind to MTs at pH 7.2 in the presence 

of AMPPNP, but they are inactive in vitro as defi ned by their 

negligible MT-stimulated ATPase and affi nity for MTs in the 

presence of ATP (Hackney and Stock, 2000).

The kinesin HC has both a nucleotide-dependent MT-

binding site in the motor domain and a nucleotide-independent 

auxiliary binding site (ABS) in the tail region (Navone et al., 

1992). The tail ABS has been localized to the same aa 910–937 

region that interacts with the head/neck region to produce the 

folded conformation (Hackney and Stock, 2000; Yonekura et al., 

2006). Full-length folded kinesin has negligible affi nity for MTs 

in the presence of ATP and, thus, cannot bind tightly to the MT 

through either the motor domains or the tail ABS. Dimers of 

HCs that are truncated at position 937 are more weakly folded 

than longer constructs and bind to MTs even more strongly than 

short, unfolded dimers (Hackney and Stock, 2000). This high 

affi nity for MTs likely results from the combined affi nity of the 

heads and the ABS that can occur when the ABS is unmasked in 

this weakly folded construct. Further truncation to position 927 

removes the key positively charged region of the ABS with con-

sequent loss of tight MT binding and superactivation. This role 

of the ABS in the superactivation of kinesin suggests another 

possible layer of complexity in the effects of FEZ1. The binding 

of FEZ1 to the aa 910–937 region may not only perturb the inter-

action of this region with the head/neck region but may also 

modulate the interaction of the ABS with MTs. A complete under-

standing of regulation will require determination of the  complex 

balance between a number of interacting components.
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Figure 1. Coiled-coil prediction for the HC of Drosophila Kinesin-1 and 
corresponding schematic representation of the domain organization. The 
two motor domains are connected to the neck coil by the neck linker and 
are followed by the long coiled-coil stalk composed of coil-1 and coil-2 (de 
Cuevas et al., 1992). The coiled-coil region near the N terminus of the LCs 
binds to coil-3 of the HCs (Diefenbach et al., 1998) to anchor the cargo-
binding TPR domains of the LCs to the HCs. Coil-4a,b is a site for the bind-
ing of at least some cargoes to the HC, as fi rst indicated by its importance 
for cargo transport in Neurospora crassa (Seiler et al., 2000) and later by 
the direct mapping of cargo-binding sites for animal kinesins. The whole 
region between aa 850–930 (aa 828–908 in rat and human kinesin) is 
highly conserved in animal kinesins and is predicted to be in a coiled-coil 
conformation when calculated with a window size of 28 residues, but with 
the aa 910–930 region (Coil-4c) more weakly predicted and in a different 
heptad frame. At the more stringent window size of 21 residues shown 
here, Coil-4c is not well predicted. Coil-4c is followed by a region with 
an excess of positive charge that is critical for both MT and head/neck 
 interaction and by the highly conserved IAK (Stock et al., 1999) region 
that is required for the inhibition of ATPase in the folded conformation. The 
C-terminal region beyond the IAK domain is not well conserved and is 
likely to be unstructured.
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