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ABSTRACT

With more and more data being collected, modern
network representations exploit the complementary
nature of different data sources as well as similar-
ities across patients. We here introduce the Varia-
tion of information fused Layers of Networks algo-
rithm (ViLoN), a novel network-based approach for
the integration of multiple molecular profiles. As a
key innovation, it directly incorporates prior func-
tional knowledge (KEGG, GO). In the constructed
network of patients, patients are represented by net-
works of pathways, comprising genes that are linked
by common functions and joint regulation in the dis-
ease. Patient stratification remains a key challenge
both in the clinic and for research on disease mech-
anisms and treatments. We thus validated ViLoN for
patient stratification on multiple data type combina-
tions (gene expression, methylation, copy number),
showing substantial improvements and consistently
competitive performance for all. Notably, the incorpo-
ration of prior functional knowledge was critical for
good results in the smaller cohorts (rectum adeno-
carcinoma: 90, esophageal carcinoma: 180), where
alternative methods failed.

INTRODUCTION

With the general increase in human life expectancy, ever
larger parts of the population need to be treated for com-
plex diseases. A typical example is the treatment of can-
cers, where selecting an effective therapy for individual pa-
tients can be particularly challenging because of the hetero-
geneity of the disease. Disease progression and treatment
response can vary widely across patients. In order to deter-
mine if a patient should receive a specific treatment, clin-
icians delineate subgroups of patients likely to react simi-

larly (‘patient stratification’). Typical criteria include clin-
ical records, such as the age at diagnosis, sex and comor-
bidities. It is by now widely recognized that the underlying
mechanisms can vary widely across patients. Even for pa-
tients with the same specific clinical diagnosis, for instance,
we find many subtypes of breast cancer (1) or adult acute
myeloid leukaemia (AML) (2). Combining clinical records
and histologic tests alone often cannot reliably identify the
biological processes underlying a particular tumour type
(3). Increasingly, therefore, molecular markers are now in-
corporated to improve the prediction of therapy response
and prognosis (3–7). Common molecular markers include
changes in gene activity, such as identifying characteristic
gene sets or signatures (8,9), and genomic sequence vari-
ants, such as copy number changes from deletions and am-
plifications of certain genomic regions, like the amplifica-
tion of the MYCN gene in Neuroblastoma patients (10), as
well as smaller changes, such as single nucleotide polymor-
phisms (11).

Drawing clinically relevant insight has soon become
the bottleneck that still remains rate-limiting for exploita-
tion of the massive molecular profiles now collected from
biomedical assays. A lot of hope is being placed in analy-
sis approaches which combine measurements from differ-
ent sources, be that horizontally, across patients (12,13) or
vertically, across assay types (13–16). Vertical integration
combines different assay types that may capture comple-
mentary aspects of information and, investigated together,
could help shed new light on complex relationships of
interest, such as the relationship between genotype and
eventual consequences for tumour progression. Specifically,
one would expect the impacts of gains and losses of gene
copies to affect the expressions of cis and trans genes of
relevance to cancer in a non-trivial way, and complemen-
tary measurements may facilitate accurate survival time
prediction.

Employing both gene expression and copy number in-
formation was reported to improve clustering for subtype
analysis using a probabilistic model of joint latent vari-
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ables (17,18). Introducing dimensionality reduction by low-
rank approximation, LRAcluster was reported to further
improve the stratification of cancer patients (19), estab-
lishing a probabilistic model of different data types condi-
tional on shared latent factors. Alternative approaches in-
clude network-based algorithms, which have seen a variety
of successful applications, such as the identification of dys-
regulated pathways (20,21) or an optimization of biotech-
nological processes (22). In the Similarity Network Fusion
(SNF) algorithm, network representations exploit not just
the complementary nature of data sources but also sim-
ilarities across patients (23), i.e. combining both vertical
and horizontal data integration. First, patients are grouped
into a network, with every node representing a patient. Dis-
tances in the network reflect the similarities of the patients
with respect to a particular data type. These networks for
the different data types are then merged through cross-
diffusion by message passing across the networks. This
effectively combines evidence across complementary data
types and patients, with the hope of identifying relevant pat-
terns of the underlying biology of the disease.

We here introduce ViLoN (Variation of Information
fused Layers Of Networks), a novel network-based ap-
proach for the integration of multiple molecular data types.
By design, our algorithm extracts information at multi-
ple levels, starting with differential effect analysis of the
molecular data. Going beyond earlier work, our approach
then directly incorporates functional knowledge from ex-
pert curated sources, including the GeneOntology (GO)
(24,25), which lists genes involved in known biological pro-
cesses, as well as pathway annotations from the KEGG (26)
database. Earlier work has demonstrated the value of in-
corporating functional knowledge directly into other algo-
rithms (27,28). Finally, similarities across patients are ex-
ploited to build a multiple-layer network (29) that captures
all the structured information discovered. This consolidated
resource can then be exploited at various levels, be that the
exploration of functional modules identified across patients,
or the identification of clinically relevant groupings of pa-
tients in the network structure.

In the context of predicting patient survival, commonly
a group of similar patients is identified that can be asso-
ciated with an average risk change. Thus a grouping of pa-
tients (‘patient stratification’) is clinically relevant if one can
find a sufficiently reduced or increased risk for a reason-
able number of patients with significance. Notably, signif-
icance alone is insufficient for clinical relevance (30). Al-
though there is no universally agreed threshold for the clin-
ical relevance of hazard ratios, for death by cancer a risk
change of 14% is typically considered to be small, changes
of 47–90% can be considered moderate size effects, while
risk changes of 90% or more are considered large (31). Large
effects can often be identified more easily for more spe-
cific, smaller subsets of patients. For a meaningful com-
parison of different predictions we therefore need to con-
sider the number of patients as well as the size of the risk
change. To this end we introduce an effective number of
affected patients and demonstrate its use as a balanced
metric.

We explore the value of our approach on a range of can-
cers and data types using several complementary assays.

MATERIALS AND METHODS

Data

Neuroblastoma. Raw microarray gene expression and
CGH data as well as RNA-Seq expression profiles were pro-
vided by the CAMDA organizers together with a sample de-
scription file for mapping patient samples between the dif-
ferent data types. Data were downloaded from the ‘Chal-
lenges’ section of the CAMDA website (www.camda.info)
directly. The dataset used in this work consists of the 145
profiles matched between all three data types, i.e. all three
data types are available for the same 145 patients (32–36).
The clinical information provided includes survival times of
the patients, the majority being right-censored (107 out of
145), i.e. a patient either dropped out of the study before it
ended or at the end of the study was still alive. Additionally,
a clinical classification into high/low risk patients is pro-
vided.

The microarray data are normalized with the quantile
method (37). Copy number data are scale-normalized pre-
analysis. For RNA-Seq data, in line with recommendations,
we apply TMM normalization (38) and Voom transforma-
tion (39) on read counts.

We then employ standard linear models to compute em-
pirical Bayes regularized t-statistics for each data type.
Specifically, we employed the R package limma (40,41) and
used the lmFit(), contrasts.fit() and eBayes() functions for
data processing. From the obtained log-odds ratios (B val-
ues) for a differential signal between specific tumour and
control samples (the remaining cohort of tumour samples)
we then calculate the posterior probability of a differen-
tial effect occurring for a gene. These are further used as
inputs to develop the patient-specific pathway networks.
Here, normal samples could have been used as controls. It
is, however, non-trivial to obtain matched normals in rep-
resentative numbers for specific cancer datasets, with spe-
cific molecular profiles having no corresponding normals.
Usually, only a few patients will have matched normal data.
Thus, pooled normals would need to be used for the whole
cohort. As we are interested in direct differences between
the patients’ diseases we instead here focus on the cancer
data only, comparing each patient to all the others. In our
experiments this approach has proven to work well.

TCGA cancers. Data for the TCGA cancers were acquired
from the corresponding projects using the TCGA2STAT R
package (42). We always used the largest matched sample
size available for a pair of molecular profiles for which the
corresponding clinical information was also available.

Specifically, for the cervical cancer dataset (CESC-
TCGA) we used 279 matched tumour samples with RNA-
Seq (RNAseq2 pipeline data) and CNV-SNP (Affymetrix
Genome-Wide Human SNP Array 6.0) assays available. For
colon and rectal cancer (COADREAD-TCGA) we used
the same molecular profile types, with 369 matched tumour
samples.

Thyroid carcinoma (THCA-TCGA), esophageal car-
cinoma (ESCA-TCGA) and rectum adenocarcinoma
(READ-TCGA) were analysed using RNA-Seq (RNAseq2
pipeline data) and methylation (Illumina Infinium Hu-
manMethylation450 BeadChip) assays, with 496, 183 and
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90 sample available, respectively. Sex chromosomes were
removed from the methylation data, medians of the beta
values per gene were calculated and finally beta values were
converted to M-values.

All molecular data were mapped to genes and processed
similarly to neuroblastoma data, with methylation (unavail-
able in the neuroblastoma dataset) being scale-normalized.

Gene set data. For constructing the patient-specific path-
way networks we use the GO biological process collection
and the open-source version of KEGG pathways provided
in the Molecular Signatures Database (43), MSigDB v6.0.

Algorithm implementation and validation

Introducing posterior probabilities of a differential effect.
In the original publication by Pham et al. (20) the authors
use t-scores to assess the differential effect for a gene. We
here introduce the use of posterior probabilities of a dif-
ferential effect occurring for a gene. The posterior proba-
bility is a natural choice for the edge weight because edge
weights of the bipartite graph are multiplied when sum-
marising information over the GO layer. These products
of edge weights can then be interpreted as joint probabil-
ities. The posterior probabilities provide the patient-specific
input to our analysis pipeline, complemented by the func-
tional knowledge represented by KEGG and GO. For the
weighted stochastic block model, we use logit-transformed
sums of posterior probabilities as weights, which are Gaus-
sian for each cluster in the block model (data not shown).

Variation of Information calculations. In order to compare
the clusterings of pathways between patients and construct
the patient similarity graph we use the compare() function,
available in the igraph R package (44) to calculate the varia-
tional information (VI). This is a distance reflecting the sim-
ilarity between two nodes in the network, i.e. how closely re-
lated two patients are to each other. The smaller the VI and
shorter the distance, the stronger the similarity between two
nodes.

In order to construct a distance-based integrated patient
similarity graph we combine patient similarity graphs from
multiple molecular profile types, by averaging the VI values.
After the VI distances are integrated, we normalize them as
suggested by Meila (45). Specifically, we multiply each VI
value by 1/log(N), where N is the number of data points in
the specific cancer dataset, i.e. the cohort size or number of
patients. This bounds the range of values between 0 and 1.
In order to obtain a weight corresponding to this distance
we further subtract the normalized VI from 1. This results
in a weight-based integrated patient similarity graph, where
the higher the weight between two nodes the stronger the
similarity between the two patients.

Constructing patient-specific pathway networks. We built a
custom version of the LPIA algorithm (20) that outputs the
bi-partite KEGG pathway networks per patient, using as
input the KEGG and GO databases, together with differ-
ential effect data: the posterior probabilities for differential
expression per gene.

Clustering of pathway networks by weighted stochastic
block model. We apply a weighted stochastic block model
(SBM) to network clustering (46,47), which gave better re-
sults than spectral clustering (48,49) in this context (data
not shown). The established implementation in the block-
models R package was used (version 1.1.1).

When clustering the patient-specific pathway networks
the Integrated Classification Likelihood (50) was used for
selecting the optimal number of clusters for each patient
and data type.

Clustering of patient networks by weighted stochastic block
model. For stratification from the patient graph we em-
ploy a weighted stochastic block model, where a variation
of information metric averaged across data types is used to
compute node weights as detailed above.

Considering only clinically relevant strata per model, we
focus on 2–9 clusters for patient similarity graphs. While
the Integrated Classification Likelihood (50) would support
even more, smaller patient groups, a larger number of clus-
ters would reduce generalization performance considering
the available cohort sizes in the low hundreds. We show the
number of clusters for which the best pairwise Neff score was
obtained. Notably, this was always for considerably fewer
than 9 clusters.

Robustness of patient clustering. We test the robustness of
the patient similarity graph on the neuroblastoma dataset
with a leave-one-out approach. First we use the whole co-
hort of patients, i.e. all the matched patient samples, and
run our method. Specifically, we construct the full network,
and group patients into three subgroups using SBM. Next,
for all patients, one patient at a time is removed from the
data used for creating the network. Networks (without one
patient each) are then generated and patients are grouped
into three subgroups. Each of these new groupings of pa-
tients is compared to the grouping from the full cohort of
patients. We calculate the accuracy and normalized mutual
information (NMI) of the compared groupings.

Normalized mutual information (NMI) (51) is calculated
with the function calNMI() from the SNFtool R package.

Survival analysis. All the survival analyses are performed
with the coxphf() function from the coxphf R package, ver-
sion 1.12. This package facilitates performing Cox regres-
sion with Firth correction for right-censored data, which is
reliable in contrast to normal Cox regression when many
data points are censored (52).

If a grouping of more than two groups is considered, i.e.
a survival analysis with N > 2, the analysis naturally yields
results for multiple groups, e.g. multiple pairwise hazard ra-
tios (HR). For a 2-group analysis, as the survival model is
always calculated relative to a reference group, there is only
1 result. For example, in an N = 4 analysis yields three HRs
relative to a reference group. Notably, not all groups need
to yield statistically significant results. HRs calculated and
presented in this work (i.e. not HRs referenced from the lit-
erature), when a result of multiple cluster analysis, are al-
ways shown for the best statistically significant group for
the specific model as assessed by the product metric. For
example, if we show results for a survival analysis of four
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clusters (N = 4) the HRs presented are from the result with
the maximum product metric amongst all the resulting sig-
nificant pairwise results for this model.

Moreover, hazard ratios are always obtained for a specific
subset of patients compared to a distinct reference group
of patients providing a baseline. It then is the size of the
smaller of the two groups that determines how meaningful
an observed high hazard ratio actually is. For a fair compar-
ison of different methods and their results, for each patient
clustering we make the conservative choice of selecting the
largest group as the reference baseline, avoiding an artificial
inflation of hazard ratios.

Kaplan–Meier curves are created using the survfit and
ggsurvplot functions available in the survminer R package.
The automatically generated p-values are based on a log-
rank test, and approximated for display in the plots.

Comparison to other tools. We employ the SNFtool R
package and perform the analysis exactly as described in
the documentation. Final output of the analysis is a patient
classification per each data type as well as for the integrative
approach. We use this classification into groups directly in
the survival analysis.

We apply LRAcluster (19) version 1.0, downloaded
directly from the authors’ webpage (http://bioinfo.au.
tsinghua.edu.cn/member/jgu/lracluster/), following the in-
structions and the publication to guide the analyses. The
tool yields a grouping based on the integrated molecular
data, which we use for survival analysis.

In order to compare our performance with results ob-
tained by state-of-the-art methods dedicated to analysis of
this particular neuroblastoma dataset we also look at the
survival data provided by other CAMDA 2017/2018 au-
thors (available both in publications and presentations).

RESULTS

A novel algorithm for the construction of patient similarity
graphs

We here introduce ViLoN, a new algorithm relating patients
based on matched molecular profiles, such as gene expres-
sion, copy number information, or others. Rather than con-
sidering patient similarity based on the molecular profiles
alone (23), we combine these with knowledge of biologi-
cal processes from the GeneOntology, GO, (24,25) and dif-
ferent classes of KEGG pathways (26) into a multi-level
patient/pathway network (Figure 1). Together, this allows
for the first time a systematic exploitation of patient rela-
tionship graphs incorporating both functional knowledge
and multiple molecular profiles.

First, pathway networks are built for each patient and
type of molecular profile separately (Figure 1A), directly
incorporating functional knowledge from GO and KEGG
(20). In comparison to methods based only on molecu-
lar profiles, the newly introduced functional focus reduces
dimensionality to extract higher-level actionable patterns,
and attenuates noise. Specifically, at this point, each patient
is represented by a network of KEGG pathways that are
connected by weighted edges. Weights are computed from
the probabilities of the pathway-associated genes (KEGG)
showing profiling differences between the tested patient

and controls (i.e. differential effect), while considering co-
occurrence of genes in the same molecular processes (GO).
An integrated view of KEGG pathways can be obtained
by summation over GO processes. A weighted stochastic
block model (wSBM) (47,53) is then used to find robust
(54) pathway clusters in that network. This set of pathway
clusters can be used to characterize the disease of a spe-
cific patient as reflected in a particular molecular profile
type and already incorporating functional knowledge. The
shared information distance between the clusterings (55) for
different patients is then a natural metric of patient similar-
ities. The shared information distance of clusterings is also
known as the Variation of Information (VI) metric, and has
favourable robustness and locality properties (45). This cor-
responds to the similarity between two nodes in the top-
level network, i.e. how closely related two patients are with
each other.

The metric furthermore allows a meaningful direct com-
parison and, thus, combination of distances. We exploit the
robustness property to construct a stable patient similarity
graph (Figure 1B) for each molecular profile type (gene ex-
pression, copy number, etc.). In summary, we obtain vector-
valued edge weights between patients with each vector coor-
dinate corresponding to a particular molecular profile type.
We then take advantage of the metric’s locality to combine
information across different molecular profile types, and av-
erage the VI values, yielding a single integrated patient sim-
ilarity graph (Figure 1C). After the VI distances are inte-
grated, we normalize them as suggested by Meila (45).

This integrated patient similarity graph now captures all
the structured information discovered both from individual
patients and across patient cohorts, as guided by the func-
tional focus of incorporating knowledge about pathways
and biological processes. The structure resulting from this
Variation of information fused Layers of Networks (ViLoN)
can then be exploited at various levels, be that in an explo-
ration of functional modules identified across patients, the
establishment of more powerful prognoses, or information
rich patient stratification for precision medicine, seeking an
effective assignment of patient specific treatments. We here
demonstrate the effectiveness of clustering patients in the
integrated patient similarity graph using a Stochastic Block
Model (SBM) to successfully identify similar patients with
shared risk profiles. Survival analysis confirms that we can
find patient groups of high clinical relevance, where many
patients are affected by high hazard ratios.

A metric for clinically relevant patient stratification

Patient stratification seeks to identify a group of similar pa-
tients that can be associated with an average risk change.
Such a grouping of patients is clinically relevant if the re-
duced or increased risk is sufficiently large, affects a rea-
sonable number of patients, and passes statistical signifi-
cance tests. While significance alone is insufficient for clin-
ical relevance (30), there is no universally agreed threshold
for the clinical relevance of hazard ratios for death by can-
cer (31). Large effects can often be identified more easily for
more specific, smaller subsets of patients (cf. Figure 2, right
panel). For small groups, we could even observe hazard ra-
tios above 1010 (data not shown). Conversely, small hazard
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Figure 1. Overview of the multi-layer network structures exploited by the novel algorithm. (A) Building a patient-specific pathway network from a single
molecular profile type that integrates functional knowledge. A patient-specific disease profile (‘Cancer Patient 1’) is compared to controls (‘Control Pa-
tients’). The resulting differential effect (e.g. differential expression) is then assessed for genes of known biological processes (GO, orange) in a range of
KEGG pathways (lavender). We next construct a bi-layer network with one layer of nodes representing KEGG pathways (lavender) and one layer of nodes
representing biological processes (GO, orange). The overlap of genes between an orange and a lavender node (Jaccard Index) and the median posterior
probability of a differential effect of these genes determine the edge weight (see Methods). This links pathways through their common functions in the
cell in the context of the patient’s disease. After integrating the bi-layer network by summation, each patient is thus represented by a network of KEGG
pathways connected by weighted edges that reflect the similarities between pathways in the context of the patient’s disease. The robust pathway clusters
identified by a stochastic block model (shown in three colours for Patient P1) can be used as a characteristic fingerprint. Weights are illustrated by black
lines with thickness representing weight strength (see Supplementary Figure S8 for details). (B) Building a patient similarity graph from a single molecular
profile type using pathway clusters. The set of pathway clusters for a patient can be used to characterize the disease of that patient as reflected in a particular
molecular profile type and already incorporating functional knowledge (A). The variation of information distance between the clusterings for different
patients then forms a natural measure of patient differences, yielding a Variation of Information metric. Constructing a network of patients based on this
metric thus allows an exploration of similarities between patients in the context of the disease. Nodes in the patient similarity graph represent patients and
edge weights reflect pairwise similarities. The thicker a connecting edge, the stronger the similarity. (The figure omits some connections for visual clarity.)
(C) Integrating multiple molecular profile types. A patient similarity graph is first constructed for each molecular profile type (cf. B). Nodes in the graph
represent patients, and edge weights reflect the patient similarities for each molecular profile type. The graphs for different molecular profile types can be
superimposed to give one graph with vector-valued weights for edges between patient nodes. An integrated patient similarity graph is then obtained by
combining the information across molecular profile types for edges reflecting an average patient similarity (see Materials and Methods).
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Figure 2. Effective numbers of affected patients. Model fit and other statistics are often not available for published patient splits. We can always, however,
obtain the hazard ratio that characterizes the risk difference between patient groups as well as the number of patients affected. This can be used to construct
an effective number of affected patients as a balanced measure Neff. The clinically most relevant grouping will have a high hazard ratio and a large number
of affected patients, as reflected in a large Neff score. In this figure, the Neff score is represented as symbol size. The x-axis indicates the actual number of
patients affected, and the y-axis shows the relative risk change according to the hazard ratio. For N-group stratification (B, C), each symbol represents a
distinct pairwise patient grouping, showing affected patient numbers (x-axis) and relative risk change vs the largest group as baseline reference (y-axis).
Only groups with a significant risk change are shown. Results cover models for N groups of patients, for all N between 2 and 9. Colours highlight the
best scores achieved by each method. (A) Two-group neuroblastoma stratification. We here show results for a widely studied large Neuroblastoma cohort
for two-group stratification. ViLoN single profile results (coloured triangles point down) favourably compare with the best results reported earlier (square
and diamond symbols). Assay type is shown by colour (microarrays: magenta, aCGH: cyan). The black symbols compare different approaches to vertical
integration of assay types. The ViLoN model (black downwards triangle) clearly outperforms any single profile results. It also yielded much better results
than alternative state-of-the-art integrative algorithms LRAcluster (black circle) and SNF (black triangle point up), as well as the best model identified in
a recent CAMDA data analysis competition (black cross). (B) Integrative neuroblastoma analysis for N groups. We here show results for a widely studied
large Neuroblastoma cohort for N-group stratification. We compare ViLoN (triangles point down) with alternative state-of-the-art integrative algorithms
LRAcluster (circles) and SNF (triangles point up) for multi-group stratification. The clinically most relevant group was identified by ViLoN (large magenta
triangle point down). (C) Integrative THCA analysis for N groups. We here show results for the TCGA thyroid carcinoma cohort (THCA-TCGA). We
compare ViLoN (triangles point down) with alternative state-of-the-art integrative algorithms SNF (triangles point up) and LRAcluster (no significant
models found) for multi-group stratification. The clinically most relevant group was identified by ViLoN (large magenta triangle point down).
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ratios may be statistically significant but clinically not ac-
tionable. For a meaningful comparison of different splits of
a patient cohort into groups we therefore need to consider
the number of patients as well as the size of the risk change.
To this end we introduce an effective number of affected pa-
tients as a balanced measure. Specifically, the product of the
risk change and the number of affected patients gives a score
reflecting an effective number of affected patients. To also
allow a comparison of studies restricted to a subset of the
full cohort (or other cohorts of different sizes), we standard-
ize the score to a cohort of 1000 patients,

Neff = 1000
Ng

(
2abs(log2HR) − 1

)

N
, (1)

for a hazard ratio HR and the affected group size Ng in a
cohort size N.

Performance in the CAMDA cancer data integration chal-
lenge

The annual CAMDA data analysis challenge (www.camda.
info) provides a well recognized forum for open-ended com-
parative exploration of novel algorithms (56–59). We here
consider the neuroblastoma dataset (32–34,36). Neuroblas-
toma is the most common cancer in children (60) (www.
cancer.gov/types/neuroblastoma/), causing 15% of cancer-
related deaths at a young age (61). Despite modern therapies
<40% of high-risk patients survive (www.cancer.gov/tcga).
While some patients show spontaneous recovery it remains
hard to predict who is at risk and assign appropriate ther-
apy. A more precise prognosis and more effective treatment
assignment is now expected to require an integration of
molecular patient profiles (3–6).

In this cohort, three matched molecular profile types are
available for 145 patients: RNA-Seq, microarray gene ex-
pression, and copy number data. Clinical records of both 97
low and 48 high risk patients include the survival times of
the patients, with the majority of observations being right-
censored, i.e. at the end of the study the patient was still alive
or dropped off the study before it ended.

Groups of patients found by ViLoN were stable under
removal of patients, i.e. the network was robust to sample
changes. When we remove a patient from the dataset, the
remaining patients mostly fall into the same clusters as ob-
tained from the complete patient cohort. Leave-one-out ro-
bustness tests, removing each patient in turn, yielded an av-
erage accuracy of 98% (SE 11%) and an average normalized
mutual information (51) of 97% (SE 6%). Values of 100%
designate perfect agreement with the assignment from the
original cluster.

ViLoN results for individual molecular profile types com-
pare favourably with the most effective patient stratifica-
tions reported in the literature for gene expression pro-
files and copy number data (32–36). Several complementary
statistics and metrics of model performance are displayed
in Table 1A for gene expression profiles from microarrays
(‘marray’) and copy number data from array comparative
genomic hybridization (‘acgh’). A small p value indicates
statistical significance and the lower the Akaike Informa-
tion Criterion, the better the model fit. The latter value is
notably not often available for published patient splits. In

all cases, however, we can consider the hazard ratio (HR)
that characterizes the risk difference between the patient
groups, and the number of patients affected, which can be
used to construct an effective number of affected patients
as a balanced measure Neff (see formula 1). The clinically
most relevant grouping will have a high hazard ratio and a
large number of affected patients, as reflected in a large Neff
score.

This Neff score is represented as symbol size in Figure 2A,
with the actual number of patients affected shown on the x-
axis, and the relative risk change according to the two-group
hazard ratio displayed on the y-axis. The ViLoN algorithm
clearly improved on the best results reported in earlier work
(Table 1, Figure 2A). ViLoN achieved an Neff = 1721 ver-
sus 1247 for gene expression microarrays (‘marray’, ma-
genta) and an Neff = 2660 versus 1874 for array compar-
ative genomic hybridization (‘acgh’, cyan). Vertically inte-
grating patient networks across different molecular profile
types considerably improved stratification performance fur-
ther, achieving an Neff of 4727.

We then compared the performance of ViLoN in two-
group stratification with alternative state-of-the-art integra-
tive algorithms: SNF (23) as an established network-based
method, LRAcluster (19) implementing a modern proba-
bilistic dimensionality reduction algorithm, and the best
other model identified on this dataset in a recent CAMDA
data analysis competition (62). In addition, we considered a
method aiming to identify cancer driver genes in this com-
petition (63). These driver genes may point to new therapy
approaches but yielded lower stratification scores (data not
shown), suggesting that drivers may not necessarily be the
most prominent markers for patient stratification. ViLoN
notably excelled already in two-group stratification (Table
1B, Figure 2A).

The grouping by ViLoN, interestingly, already covered
most of the patients identified by SNF (96%) while expand-
ing the group of high risk patients considerably (by 25, that
is +58%) (Supplementary Figure S1). At the same time, the
risk increase associated with group membership was not
diluted and the group-associated risk was even consider-
ably sharpened from 6.2 to 11.1 (Table 1B). Indeed, the
ViLon 2-cluster model (Table 1B) is already better than the
‘high risk’ label by clinical experts (Table 1D, Supplemen-
tary Table S2). In a direct comparison, the high-risk la-
belled patients were strongly enriched in the group identi-
fied by ViLoN (Chi-square test p-value <10−14, Supplemen-
tary Figure S5). While the ViLoN group had a similar rel-
ative risk change (11.1 versus 11.7), the number of affected
patients was considerably larger (+42%, 68 versus 48), al-
lowing a clinically meaningful diagnosis for many more pa-
tients (Table 1B and D).

The standard benchmark Cox hazard model estimates
the hazard ratio between two groups, allowing a direct com-
parison of a range of stratification methods, also relative to
clinical reports in the literature. Several modern methods,
however, can stratify into multiple groups, which can inde-
pendently be assessed relative to a baseline, using the largest
group as the reference. Indeed, considering stratification re-
sults from 2 to 9 clusters, the best pairwise performances for
the compared integrative methods were found for a group
of patients identified in stratifications by SNF, LRAcluster

http://www.camda.info
http://www.cancer.gov/types/neuroblastoma/
http://www.cancer.gov/tcga
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Table 1. Comparisons of stratification performance: (A) state-of-the-art neuroblastoma stratifications by molecular profile data type, (B) comparison
of integrative algorithms in two-group neuroblastoma stratifications, (C) the best pairwise splits in integrative multi-group neuroblastoma stratifications,
(D) the clinical neuroblastoma ‘high risk’ grouping, (E) THCA thyroid carcinoma stratifications, including state-of-the-art patient stratifications from the
literature and the best results from established integrative algorithms. The table shows: Method, the name of the method for which results are listed in
the corresponding table row; data type, the type of data used in the analysis (‘marray’, microarrays; ‘acgh’, copy number data; ‘int’, integrative model;
‘high risk’, clinical label); #g, the number of strata that the model stratified patients into (between 2 and 9); p, the p-value indicating statistical significance
of a non-zero log hazard ratio; adj.p.model (for #g > 2), the p-value of the whole model adjusted for multiple testing, actually yielding a q-value (75)
indicating an upper bound for the false discovery rate (FDR); adj.p (for #g > 2), the p-value of the individual pairwise model with the largest Neff for
the whole stratification model adjusted for multiple testing, yielding a q-value (75), indicating an upper bound for the FDR; AIC, assessing the goodness
of fit for the Cox regression by the Akaike Information Criterion, where lower values of the AIC are better; grSize, the size of the patient group with the
largest hazard ratio in the model compared to the reference (largest) group; refSize, the size of the largest, i.e. reference, patient group in the model; fullSize,
the size of the whole patient cohort analysed; absHR, the absolute hazard ratio; log2HR, the corresponding log2 of the hazard ratio – symmetrical for
increased/decreased hazard ratio; Neff, the effective number of affected patients score, indicating the clinical relevance of the model, incorporating both
the hazard ratio via absHR, and the affected group size grSize, for a cohort of size fullSize. Note that the model with the largest Neff and thus the largest
clinical relevance is not necessarily the model with the best AIC (see text for Discussion). LRAcluster yielded no significant models for THCA thyroid
carcinoma (adj.p for the corresponding largest yielded Neff shaded in grey)

A Method data type #g p adj.p AIC grSize refSize fullSize absHR log2HR Neff
ViLoN int 2 <10−9 - 317 68 77 145 11.1 3.5 4727
ViLoN acgh 2 <10−7 - 329 69 76 145 6.6 2.7 2660
Theissen acgh 2 - - - 93 109 202 5.1 2.3 1874
ViLoN marray 2 <10−6 - 329 54 91 145 5.6 2.5 1721
Kocak marray 2 <10−3 - - 208 366 574 4.4 2.2 1247

B Method Data type #g p adj.p AIC grSize refSize fullSize absHR log2HR Neff
ViLoN int 2 <10−9 - 317 68 77 145 11.1 3.5 4727
Kazan int 2 <10−9 - NA 172 326 498 6.4 2.7 1863
SNF int 2 <10−6 - 325 45 100 145 6.2 2.6 1598
LRAcluster int 2 <10−4 - 336 48 97 145 4.2 2.1 1049

C Method Data type #g adj.p.model adj.p AIC grSize refSize fullSize absHR log2HR Neff
ViLoN int 5 <10−5 <10−7 308 30 34 145 51.3 5.7 10401
LRAcluster int 3 <10−6 <10−7 314 42 66 145 24.3 4.6 6734
SNF int 8 <10−4 <10−4 311 17 22 145 46.2 − 5.5 5300

D Method Data type #g adj.p.model adj.p AIC grSize refSize fullSize absHR log2HR Neff
clinical high risk 2 <10−11 <10−11 305.7 48 97 145 11.72 3.6 3549

E Method Data type #g adj.p.model adj.p AIC grSize refSize fullSize absHR log2HR Neff
ViLoN int 4 0.002 0.005 150 137 206 496 23.1 4.5 6104
ViLoN int 5 0.002 0.005 147 83 171 496 29.5 4.9 4761
ViLoN int 6 0.002 0.008 148 78 152 496 25.6 4.7 3873
ViLoN int 7 0.002 0.006 144 54 117 496 31.6 5.0 3327
Agrawal et al. clinical 4 <10−4 <10−4 - 27 316 444 50.9 5.7 3034
ViLoN int 8 0.002 0.008 144 53 91 496 24.6 4.6 2521
ViLoN int 9 0.002 0.006 140 46 94 496 26.0 4.7 2318
ViLoN int 3 0.002 0.006 155 148 248 496 7.2 2.9 1853
SNF int 3 0.017 0.025 155 132 267 497 5.7 2.5 1259
LRAcluster int 9 0.043 0.668 157 52 85 497 6.2 2.6 539
ViLoN int 2 0.043 0.043 163 153 343 496 2.7 1.4 527
Agrawal et al. clinical 3 0.006 0.006 - 24 259 454 7.9 3.0 363

and ViLoN into 8, 3 and 5 clusters, respectively (Table 1C,
Figure 2B).

The 5-cluster ViLoN stratification (Figure 3, right-hand
side) yielded clearly distinct patient groups, with no deaths
at all for the 34 patients of Group #1, and increasingly ad-
verse outcomes for the other groups (Supplementary Fig-
ure S6). While the top group for SNF also had no deaths,
it was only half the size (17 patients). The other groups for
both SNF and LRAcluster were less consistently distinct
and thus less easy to interpret.

In summary, already for two clusters our integrative
ViLoN algorithm could stratify patients into clinically more
relevant groups than the alternative integrative approaches
(Table 1B), while our integrated model for five clusters iden-
tified an even more effective patient split, with the highest
pairwise clinical relevance overall (Table 1C). The ViLoN
clusters emerged directly from the molecular data alone, re-
flecting the underlying pathway networks in the context of

the patients’ disease. A preliminary investigation of differ-
ences in the pathway networks in our high-risk patient clus-
ter highlighted the role of steroid sex hormone biosynthesis,
identifying both genes with known roles in neuroblastoma
as well as newly implicated genes (cf. Supplementary Fig-
ure S14 and accompanying discussion), corroborating the
relevance of the emerged clusters.

Validation on other datasets

In order to further investigate the clinical relevance of our
approach we now focus on a well established collection of
cancer data: The Cancer Genome Atlas (TCGA), a collabo-
ration between the National Cancer Institute (NCI) and the
National Human Genome Research Institute (NHGRI),
collects data for over 30 types of cancer. It is the largest
collection of molecular datasets of its kind, profiling pa-
tients with a range of assays, like RNA-Seq, methylation,
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Figure 3. Kaplan–Meier curves showing the distinct survival profiles of groups found by the integrative algorithms for Neuroblastoma. Survival profiles
of the patient groups found by (A) ViLoN, (B) LRAcluster, (C) SNF. For each algorithm, we show groups found by each algorithm in the two-group
stratification (left-hand side) and the best reported patient stratification (right-hand side). The p-values are based on a log-rank test, and automatically
approximated and plotted by the employed R function (from the survminer R package).
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or copy number information (64). The TCGA datasets are
publicly available and most of them were published in high-
impact articles, where each cancer is examined by state-of-
the-art methodology. This ensures a well-established base-
line for any follow-up research for improving the preven-
tion, diagnosis, and treatment of cancer. To emphasize the
potential clinical impact of our novel method we focus on
a few cancers where stratification for treatment is known to
be difficult. Each of the cancer datasets contains matched
profiles of two molecular profile types, specifically: RNA-
Seq and either copy number or methylation data, together
with corresponding clinical information. This allows us to
build ViLoN networks for exploring integrated analysis. For
each resulting integrated network, we stratify patients into
subgroups for survival analysis. We then compare ViLoN
stratification with models returned by two alternative state-
of-the-art integrative methods––SNF and LRAcluster––as
well as the original cancer-specific models developed
for the seminal papers reporting the specific cancer
datasets.

In order to highlight that the performance of ViLoN does
not depend on the specific molecular profile types used in
the neuroblastoma dataset, we next present a dataset that
combines gene expression with DNA methylation data. In
addition, we examined four different cancers profiled for
gene expression as well as methylation or copy number.
Analysis results are included in the Supplement, all of which
corroborate the trends reported here.

Gene expression and DNA methylation profiles of TCGA thy-
roid carcinoma. The THCA-TCGA cohort comprises 500
thyroid carcinoma patients, all characterized by RNA-Seq
and matched methylation profiles, making the repository
one of the largest such multi-track resources. Thyroid carci-
noma is the most common endocrine malignancy, yet iden-
tifying high-risk patients for adequate treatment and mon-
itoring remains a major challenge (65). The clinical risk as-
sessment for thyroid carcinoma in the seminal paper report-
ing the THCA-TCGA cohort (66) provides a state-of-the-
art baseline reference. For a clinically meaningful compar-
ison with modern computational stratification approaches
we examined the effective numbers of affected patients given
by the products of the pairwise hazard ratios and stratifica-
tion group sizes (Table 1D, Figure 2C). Besides our ViLoN
algorithm, we examined results by the leading established
tools SNF (23) and LRAcluster (19) in the comparison.

LRAcluster yielding no significant models at all, how-
ever, reflects the difficulty of the stratification task. While
the best stratification published to date (66) identified a
group with an extremely high hazard ratio, the group diag-
nosis affected only 27 patients. Interestingly, ViLoN iden-
tified two much larger groups of high-risk patients that al-
ready recovered 20 of these 27 high-risk patients. The two
groups of high-risk patients newly identified by ViLoN also
featured very high hazard-ratios (23x and 31x), providing a
clinically valuable diagnosis for 137 + 92 patients. In con-
trast, for the best SNF model, the highest risk group, while
comprising 132 patients, achieved a lower group hazard ra-
tio (<6×). While SNF recovered 5 of the 27 patients iden-
tified as highest risk in the literature (66) and shared 33 pa-
tients with the highest risk group identified by ViLoN, the

group diagnosis from SNF stratification was therefore clin-
ically less actionable. This is also reflected in the Kaplan-
Meier curves of the stratifications (Figure 3, Supplementary
Figure S7).

The ViLoN clusters emerged directly from the molecu-
lar data alone, reflecting the underlying pathway networks
in the context of the patients’ disease. A preliminary investi-
gation of differences in the pathway networks in our patient
clusters highlighted the role of Notch signalling, suggest-
ing a beneficial activation of Notch signalling in the lowest
risk group of patients identified by ViLoN (cf. Supplemen-
tary Figure S15, Tables S8–S10, and accompanying discus-
sion). This is interesting because of the complex and varying
role of Notch signalling in different thyroid cancer subtypes
(67). Notably, we also observed a significant enrichment of
the follicular variant of papillary thyroid cancer in this pa-
tient group.

DISCUSSION

The success of the promise of integrated molecular profiling
/ patient profiling is highly dataset-specific

Recognizing differences in therapy response across individ-
ual patients, patient stratification is used to assign effective
therapies by dividing patients into subgroups of individu-
als likely to react similarly to a treatment (1,2). A partic-
ular focus has been on cancer, a very heterogeneous dis-
ease, where patient stratification can remain challenging (3).
For a detection of the wide variety of underlying mecha-
nisms across patients, clinicians increasingly employ molec-
ular markers in order to improve predictions of therapy re-
sponse and prognosis (3–6). These include changes in gene
activity (8,9), larger genomic sequence variants (10), as well
as smaller changes, such as SNPs (11).

In fact, with the large amounts of molecular data now
routinely collected in biomedical assays, the inference of
clinically relevant insight remains the rate-limiting bottle-
neck. The very high dimensionality of genome scale pro-
files contributes to this challenge, (68,69) and much hope
has been placed in an effective integration of heterogeneous
data both across patients (12,13) and across assay types (13–
15). For instance, combining data from gene expression and
copy number information in a probabilistic framework was
reported to improve clustering for subtype analysis (17,18)
and the stratification of cancer patients (19). Network-
based algorithms have successfully been applied to exploit
not just the complementary nature of data sources but also
similarities across patients, (23) both in basic research, such
as identifying dysregulated pathways (20,21), and in applied
research, such as the optimization of biotechnological pro-
cesses (22). Surprisingly, despite these successes, integrated
data analyses remain the exception rather than the rule and
are, in fact, even falling in proportion of published studies
(cf. Supplementary Figure S13). While this may partly be
due to the higher complexity of such analyses, modern al-
gorithms can be highly sensitive to dataset characteristics.
Even well established methods may fail on new diseases or
cohorts sufficiently different to those on which they were
originally validated (cf. LRAcluster and SNF in Figure 2,
and Supplementary Figures S9–S12), emphasising the need
for comprehensive systematic benchmarks.
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A novel clinically relevant metric allows a meaningful com-
parison of modern algorithms and classical literature

While joint benchmarks that rally the scientific community
around common challenges and datasets have emerged as
one successful approach to comparing the latest state of the
art methods (cf. CAMDA, www.camda.info) (70–72), com-
parisons of patient stratification results have traditionally
only considered statistical significance and hazard ratios. A
meaningful comparison across different cohorts, however,
needs to also consider the number of patients affected. The
effective number of affected patients introduced here pro-
vides such a suitable, balanced measure. Importantly, it not
only supports the comparison of the clinical relevance of
patient groupings from different algorithms but also allows
meaningful comparisons to the best patient stratifications
from the clinical literature (also see Supplementary Table
S7).

A combined network approach successfully exploits cohort
structure, individual variations, and functional knowledge

In rigorous comparisons to established state-of-the-art al-
gorithms and the clinical literature, we have developed and
validated a novel framework for integrative data analysis,
with a first application to cancer patient stratification into
treatment groups. In ViLoN (Variation of information fused
Layers of Networks), cancer patients are represented in a
multi-layer network view, combining differential effect anal-
ysis of matched molecular profiles. In addition, we also in-
corporate external knowledge about biochemical pathways
(KEGG) and molecular processes (GO terms). This builds
on the LPIA approach to integrating functional informa-
tion (20). Inspired by the patient networks of SNF (23),
we use a multi-network approach to integrate both comple-
mentary molecular profile types and information across dif-
ferent patients. ViLoN goes beyond the SNF algorithm by
both including information from differential effect analysis
and taking advantage of a pathway level view. Together, we
can compile a fully integrated characterization of the dis-
ease of a specific patient in relation to the rest of the co-
hort that summarizes complementary molecular data and
exploits existing functional knowledge.

Good performance across different data types and cohort
sizes

Indeed, the best performing models in the CAMDA cancer
data integration benchmark challenge combined comple-
mentary information, integrating multiple molecular data
types per patient with external domain knowledge about
structure in the data. The performance improvement of
our integrated analysis relative to models based on a sin-
gle molecular data type was substantial, easily exceeding the
state of the art in the literature, yielding both a higher pair-
wise hazard ratio as well as affecting a larger fraction of pa-
tients (cf. Table 1A).

We have successfully validated our novel algorithm in a
comparison with state-of-the-art tools applied to a diverse
set of cancer cohorts. ViLoN consistently outperformed
both literature and alternative approaches substantially. In
an integrated analysis of gene expression profiles and copy

number data of neuroblastoma patients we obtained the
clinically most relevant pairwise split, with a 51.3× hazard
ratio for 30 patients. While the next best competing split was
for a larger number of patients, it achieved a much lower
hazard ratio (24.3×, 42 patients), for a lower effective num-
ber of affected patients (cf. Table 1C).

Remarkably, despite improving patient stratification (Ta-
ble 1D) our method builds solely on molecular informa-
tion and external domain knowledge, without consider-
ing clinical data for its predictions. Still, patients clinically
judged to be at high risk were significantly enriched in the
identified high-risk patient groups. Our algorithm extended
these to similar high risk patients that had not been identi-
fied by clinical parameters or established molecular mark-
ers alone (Supplementary Figures S2–S4, Table S1), while
yielding more easily interpretable patient groups than other
approaches (Figure 3).

Superior results were seen across different data types:
We have established new state-of-the-art performance for
the integrated analysis of gene expression profiles and copy
number data in cohorts of neuroblastoma patients, cervi-
cal cancer patients (Supplementary Table S3, Figure S9),
as well as colon and rectal cancer patients (Supplemen-
tary Table S4, Figure S10). Demonstrating that our ap-
proach generalizes to other data types, we have demon-
strated similarly good results for integrated analysis of ex-
pression and methylation profiles: ViLoN substantially out-
performed both alternative molecular approaches and the
clinical reference stratification for thyroid cancer. We ob-
tained the clinically most relevant pairwise split, achieving
a 23.1× hazard ratio for 137 patients. The next best com-
peting split was actually from the clinical stratification (66).
While it achieved a higher hazard ratio it was relevant for
a much smaller number of patients (50.9×, 27 patients),
giving a much lower effective number of affected patients
(cf. Table 1). Strikingly, all the other algorithms seriously
struggled with this dataset. Similarly good performance of
ViLoN integrating gene expression with methylation data
could be observed for esophageal carcinoma (Supplemen-
tary Table S5, Figure S11) and rectal adenocarcinoma (Sup-
plementary Table S6, Figure S12). Overall, we successfully
benchmarked ViLoN on three data types and independent
cohorts from six diseases.

Notably, and in contrast to other algorithms, our ap-
proach also performed robustly across different cohort
sizes, ranging from only 90 patients for rectal adenocarci-
noma to several hundred, e.g. for thyroid cancer (∼500).

A powerfully generic extensible framework

In summary, we have introduced a novel powerfully generic
framework for the integration of existing functional knowl-
edge, complementary molecular profiles per patient, and
similarities across patients for an integrated stratification
of patient cohorts. We have comprehensively evaluated our
approach discussing both established methods and through
an innovative integrated metric for clinically relevant pair-
wise patient splits. The generated splits indeed capture clini-
cally known risks while extending actionable patient groups
considerably. ViLoN was successfully validated on three
data types and independent cohorts from six diseases. Im-

http://www.camda.info
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proved results were particularly striking for the more diffi-
cult cohorts, where most or all other tested methods failed
to yield significant splits: esophageal carcinoma and rec-
tal adenocarcinoma. With the latter comprising just 90 pa-
tients, this improvement specifically for smaller cohorts may
be promising for the relatively large number of rare diseases
(73) considering that classical algorithms have traditionally
struggled.

DATA AVAILABILITY

An implementation of the algorithm introduced in this
manuscript (using Snakemake (74) workflows) together
with documentation, tutorials, and pre-processed datasets
for benchmarking and files supporting the analysis are
available at https://github.com/data-int/vilon/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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