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ABSTRACT
Aims/Introduction: Non-coding ribonucleic acids (ncRNAs) have recently been shown
to be involved in various biological processes. However, most of these ncRNAs are of
unknown function or without annotation. This study first investigated the whole transcrip-
tome profiles of placentas to identify the potential functions that ncRNAs exerted in gesta-
tional diabetes mellitus (GDM).
Materials and Methods: Six placenta samples from healthy pregnant women (n = 3)
and GDM (n = 3) were collected to analyze the whole transcriptome profiles by high-
throughput sequencing. Differentially expressed ncRNAs were further validated by quanti-
tative real-time polymerase chain reaction on an independent set of normal (n = 20) and
GDM (n = 20) placenta samples.
Results: A total of 2,817 microRNAs (miRNAs), 23,339 long non-coding RNAs (lncRNAs)
and 9,513 circular RNAs (circRNAs) were identified. There were 290 differentially expressed
ncRNAs in GDM placentas compared with the placentas of healthy pregnant women.
Two miRNAs, 86 lncRNAs and 55 circRNAs were upregulated, while two miRNAs, 86
lncRNAs and 59 circRNAs were downregulated in GDM. The expression of the selected
ncRNAs, which were further validated by quantitative real-time polymerase chain reaction,
was consistent with the sequencing results. Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes pathway analysis showed that the major targets of these ncRNAs
were associated with insulin resistance, and abnormal glucose and lipid metabolism. A
GDM-related competing endogenous RNA network suggested the interactions between
lncRNAs, circRNAs, messenger RNAs and miRNAs.
Conclusions: The whole transcriptome profiles significantly differed in GDM placentas
compared with the placentas of healthy pregnant women, which might be valuable for
detecting novel ncRNAs, and providing new research insights into exploring the patho-
genic mechanisms of GDM.

INTRODUCTION
Gestational diabetes mellitus (GDM), characterized by glucose
intolerance with onset or first recognition during pregnancy, is
one of the most common pregnancy complications. The inci-
dence of GDM varies from countries to regions within a coun-
try, and it is presently approximately 17.5% in China1.
Accumulating studies have shown that GDM could result in
short-term and long-term adverse outcomes for both the
mother and fetus2–4. The risks of perinatal complications, such

as pre-eclampsia and type 2 diabetes in later life, were signifi-
cantly increased in pregnant women with GDM. The risks to
the fetus include premature birth, stillbirth, macrosomia, respi-
ratory distress syndrome and neonatal hypoglycemia, and
increased risks of metabolic diseases in offspring, including obe-
sity, type 2 diabetes and cardiovascular disease.
The etiology of GDM is still unclear; however, numerous evi-

dence has shown that GDM is a multifactorial disease, and its
pathogenesis might be related to genetic factors, lifestyle,
chronic inflammation and adipokines5,6. As a temporary organ
formed during pregnancy, the placenta is not just the onlyReceived 23 April 2019; revised 27 January 2020; accepted 16 February 2020
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interface connecting the mother and fetus, participating in the
process of nutrient transport, gas exchange and blood circula-
tion, but also has important endocrine functions. Placenta-
derived hormones antagonize insulin and increase insulin resis-
tance, which in turn leads to GDM7. Furthermore, the origin of
most GDM-related adverse pregnancy outcomes could be
traced to the placenta8. Therefore, the placenta has become an
important organ for researching the pathogenesis of GDM.
Initially, non-coding ribonucleic acids (ncRNAs) were

regarded as “transcriptional noises,” but accumulating evidence
has shown that these ncRNAs have a series of crucial regula-
tory potentials both in transcription and post-transcription,
which participate in many biological processes9. These ncRNAs
are divided into short non-coding RNAs and long non-coding
RNAs (lncRNAs) in accordance with their lengths10,11. Micro-
RNA (miRNA), a class of single-stranded RNA of 19–24
nucleotides in length, is recognized as a post-transcriptional
regulator of gene expression by binding to the target sites to
influence messenger RNAs (mRNAs) degradation or transla-
tional inhibition12. LncRNA, defined as ncRNAs longer than
200 nucleotides, is usually divided into exonic, intronic, inter-
genic and overlapping lncRNA according to their locations rela-
tive to the protein-coding transcripts13. Circular RNA
(circRNA), an emerging class of ncRNAs with covalently closed
loop structures, has highly conserved sequences, stable expres-
sion and high degrees of tissue specificity14,15. Most of the
known circRNAs are produced from the back-splicing of exons
through lariat-driven and intron pairing-driven circularization,
and intron self-circularization16. Studies have reported that
some circRNAs have miRNAs binding sites that competitively
interact with miRNAs, functioning as a miRNA sponge to reg-
ulate the transcription of miRNA-targeted genes17. Studies have
shown that these ncRNAs were involved in various biological
processes, including cell proliferation, differentiation, invasion,
apoptosis and other physiological functions. Dysregulated
expression of ncRNAs has been found to be associated with
many human diseases, such as cancer, diabetes, cardiovascular
and cerebrovascular disorders, and pregnancy-related complica-
tions18,19.
To date, the function of most ncRNAs has been unknown

and without annotation, especially lncRNAs and circRNAs, and
the potential molecular mechanisms underlying the ncRNAs in
GDM remain unclear. Therefore, we first investigated the whole
transcriptome profiles of placentas from GDM and healthy
pregnant women by high-throughput sequencing to identify the
potential functions that ncRNAs exerted in GDM and provide
novel insights into the pathological mechanisms of GDM in
the present study.

METHODS
Study participants
Between December 2017 and May 2018, singleton pregnant
women who underwent cesarean section with close follow-up
to postpartum in Shengjing Hospital of China Medical

University, Shenyang, China, were recruited. Participants were
divided into two groups according to the 75-g oral glucose tol-
erance test during pregnancy: the normal glucose tolerance
(NGT) group (n = 23) and the GDM group (n = 23). Exclu-
sion criteria for all participants included previous type 1 and
type 2 diabetes; any other diseases that affected blood glucose
levels, including hyperthyroidism, Cushing syndrome and pan-
creatitis; pregnancy-related complications, such as pre-eclamp-
sia; and severe heart, liver or kidney diseases. This study
protocol was approved by the ethics committee of Shengjing
Hospital of China Medical University. Written informed con-
sent was obtained from all enrolled participants. Data collection
included maternal age, height, pre-gestational weight, pre-gesta-
tional body mass index, delivery time, and sex and birthweight
of newborns. Characteristics of all participants are summarized
in Table 1.

Diagnostic criteria of GDM
According to the diagnostic criteria of the International Associ-
ation of Diabetes and Pregnancy Study Groups20, GDM was
diagnosed if one or more of the following criteria were fulfilled:
fasting plasma glucose ≥5.1 mmol/L, 1-h plasma glucose
≥10.0 mmol/L or 2-h plasma glucose ≥8.5 mmol/L following
the 75-g oral glucose tolerance test.

Table 1 | Characteristics of participants

Individuals for sequencing NGT group GDM group P
n = 3 n = 3

Maternal age (years) 29.3 – 0.6 29.0 – 0.0 0.423
Pre-gestational BMI (kg/m2) 28.2 – 0.7 29.0 – 0.0 0.128
Fasting plasma glucose (mmol/L) 4.5 – 0.2 5.7 – 0.2** 0.001
1-h plasma glucose (mmol/L) 8.3 – 0.3 10.7 – 0.1** <0.001
2-h plasma glucose (mmol/L) 6.4 – 0.5 8.8 – 0.2** 0.001
GA (%) 11.3 – 0.1 11.8 – 0.1** 0.002
HbA1c (%) 4.9 – 0.1 5.8 – 0.2** 0.001
Delivery time (weeks) 39.3 – 0.6 38.7 – 0.6 0.230
Birthweight of newborns (g) 3,333 – 58 3,300 – 100 0.643

Individuals for validation n = 20 n = 20

Maternal age (years) 29.6 – 0.4 29.4 – 1.2 0.768
Pre-gestational BMI (kg/m2) 28.0 – 1.8 29.0 – 1.9 0.106
Fasting plasma glucose (mmol/L) 4.7 – 0.3 5.6 – 0.5 ** <0.001
1-h plasma glucose (mmol/L) 8.1 – 1.2 10.5 – 0.9 ** 0.002
2-h plasma glucose (mmol/L) 6.7 – 1.0 8.5 – 1.7 ** 0.003
GA (%) 11.4 – 1.6 12.0 – 1.6 0.407
HbA1c (%) 5.0 – 0.2 5.6 – 0.5 ** 0.002
Delivery time (weeks) 39.0 – 1.0 38.7 – 0.6 0.454
Birthweight of newborns (g) 3,337 – 183 3,332 – 233 0.954

Data are presented as the mean – standard deviation. Compared with
the normal glucose tolerance (NGT) group. BMI, body mass index; GA,
glycated albumin; GDM, gestational diabetes mellitus; HbA1c, hemoglo-
bin A1c. *P < 0.05, **P < 0.01.
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Sample collection and preparation
The maternal surfaces of fresh placentas from pregnant women
were collected immediately after delivery. With the center of
the placenta as the center point, maternal surfaces of placenta
samples were collected at the three apex positions of the equi-
lateral triangle, which were 3.0–5.0 cm from the center. The cut
depth was 0.5–1.0 cm, and the sample size was
1.0 9 1.0 9 1.0 cm. The tissues were washed with phosphate-
buffered saline and immediately placed in liquid nitrogen to be
snap-frozen. Subsequently, all samples were stored at -80�C
until RNA extraction.

High-throughput sequencing
A total of six placenta samples (three NGT and three GDM)
were selected for whole transcriptome analysis by high-through-
put sequencing.

RNA extraction and quality control
Total RNA was extracted using TRIzol Reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instruc-
tions. RNA degradation and contamination were monitored on
1% agarose gels. RNA purity and concentration were measured
using a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington,
DE, USA) and a Qubit 3.0 Fluorometer (Life Technologies,
Carlsbad, CA, USA). RNA integrity was assessed using the
RNA 6000 Nano Kit with the Agilent 2100 Bioanalyzer (Agi-
lent Technologies, Santa Clara, CA, USA).

RNA library preparation and sequencing
Whole transcriptome analysis by high-throughput sequencing
required the construction of two sequencing libraries, a small
RNA library and a strand-specific library for ribosomal RNA
removal. The former library can obtain miRNAs sequence
information, and the latter library can obtain sequence informa-
tion of mRNAs, lncRNAs and circRNAs. The small RNA
library was constructed in accordance with the NEBNext�

Multiplex Small RNA Library Prep Set for Illumina� (NEB,
Ipswich, MA, USA). The strand-specific library for ribosomal
RNA removal was generated using the NEBNext� UltraTM II
Directional RNA Library Prep Kit for Illumina� (NEB) with
the Ribo-Zero rRNA Removal Kit Reference (Illumina, Madi-
son, MI, USA). Sequencing was carried out on an Illumina
HiSeq X Ten (Illumina).

Quantitative real-time polymerase chain reaction
A total of 40 placenta samples (20 NGT and 20 GDM) were
selected for validation of differentially expressed ncRNAs by
quantitative real-time polymerase chain reaction (qRT–PCR).
Total RNA extraction and concentration measurement were

the same as the previous method. Complementary deoxyri-
bonucleic acid (cDNA) was synthesized by using M-MLV Rev-
erse Transcriptase (Invitrogen) according to the manufacturer’s
instructions. Subsequently, qRT–PCR (BIONEER, Daejeon,
Korea) was performed to measure the expression levels of

miRNAs, lncRNAs and circRNAs according to the manufac-
turer’s instructions. qRT–PCR was performed in a 20-lL reac-
tion volume, including 10 lL 29Power Taq PCR Master Mix
(BioTeke, Beijing, China), 0.3 lL SYBR Green (Solarbio, Bei-
jing, China), 2 lL cDNA, 0.5 lL PCR Forward Primer
(10 lmol/L), 0.5 lL PCR Reverse Primer (10 lmol/L) and
6.7 lL nuclease-free water. The protocol was initiated at 94°C
for 5 min, followed by 94°C (10 s), 60°C (20 s) and 72°C
(30 s) for a total of 40 cycles. U6 and b-actin were used as
internal control for miRNAs, lncRNAs and circRNAs, respec-
tively. All reactions were performed in three independent wells.
The relative expression levels of differentially expressed ncRNAs
were determined using the 2-MMCt method21. The primer
sequences a listed in Table S1.

Gene ontology and Kyoto encyclopedia of genes and
genomes analysis
Gene Ontology (GO; http://geneontology.org/) analysis was per-
formed to describe gene annotations of differentially expressed
ncRNAs in biological process, cellular component and molecu-
lar function22.
Kyoto Encyclopedia of Genes and Genomes (KEGG; http://

www.kegg.jp/) analysis was performed to analyze the functions
and related biological pathways. The enrichment factor was the
value ratio between the sequenced genes and all annotated
genes enriched in the pathway23.

Competitive endogenous RNA network
Competitive endogenous RNA (ceRNA), a new mechanism of
transcriptional regulation, suggested that lncRNAs or circRNAs
might participate in the pathogenesis of GDM by competitively
binding to miRNAs through a miRNA response element. miR-
anda and microRNA.org (http://www.microrna.org/microrna/
home.do) were used to predict the interactions between the
possible targeted miRNAs of differentially expressed lncRNAs
or circRNAs and mRNAs.

Statistical analysis
All data processing and statistical analyses were performed
using SPSS 22.0 software (IBM Corporation, Armonk, NY,
USA) and GraphPad Prism 6.0 (GraphPad Software Inc., San
Diego, CA, USA). Variables were expressed as the mean – s-
tandard deviation. The differences between the groups were
analyzed using Student’s t-test. P < 0.05 was considered statisti-
cally significant.

RESULTS
Characteristics of ncRNAs
A total of 109,562,576 raw reads were obtained in the small
RNA library, with 109,535,915 clean reads remaining after
screening. A total of 405,557,836 raw reads were obtained in
the strand-specific library for ribosomal RNA removal, and
402,195,361 clean reads were remained after screening for the
following analysis. Each sample was subjected to compare with
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the reference genome and predict of miRNAs, lncRNAs and
circRNAs. Finally, 96.21% of clean reads mapped to the human
reference genome, and 35,669 ncRNAs were identified, includ-
ing 2,817 miRNAs, 23,339 lncRNAs and 9,513 circRNAs (Fig-
ure 1, Tables S2,S3).
A total of 2,817 miRNAs were identified, including 1,710

known miRNAs in miRbase and 1,107 new miRNAs predicted
by miRDeep224. A total of 23,339 lncRNAs were identified,
including 8,816 new lncRNAs predicted by the intersection of
Coding Potential Calculator25, Coding-Non-Coding Index26,
Coding Potential Assessment Tool27 and the protein families
database (Pfam)28 protein domain analysis. Of the 8,816 new
lncRNAs, there were 7,007 lincRNAs, 1,189 sense-lncRNAs,
285 antisense-lncRNAs and 298 intronic-lncRNAs. A total of
9,513 circRNAs were identified, including 4,493 known cir-
cRNAs in circBase and 5,020 new circRNAs predicted by the
intersection of Circular RNA Identification29 and find_circ30.
These genes were widely scattered on almost all human chro-
mosomes, and there were 8,326 exonic, 666 intronic and 521
intergenic regions.

Identification of differentially expressed ncRNAs
In total, 290 differentially expressed ncRNAs were determined
to have a fold change ≥2.0 and P < 0.05; 143 ncRNAs were
upregulated and 147 ncRNAs were downregulated (Table S4).
Compared with the NGT group, four miRNAs, 172 lncRNAs
and 114 circRNAs were differentially expressed in the GDM
group. Two miRNAs, 86 lncRNAs and 55 circRNAs were
upregulated, while two miRNAs, 86 lncRNAs and 59 circRNAs
were downregulated in the GDM group (Figure 2). The signifi-
cant differences in ncRNAs expression between the NGT and
GDM groups were represented by Volcano Plot (Figure 3).

Validation of differentially expressed ncRNAs by qRT–PCR
Among the aforementioned differentially expressed ncRNAs,
three miRNAs (two upregulated miRNAs and one

downregulated miRNA), seven lncRNAs (five upregulated
lncRNAs and two downregulated lncRNAs) and five circRNAs
(two upregulated circRNAs and three downregulated circRNAs)
were selected for validation by qRT–PCR. The relative expres-
sion levels of the selected ncRNAs were consistent with the
sequencing results (Figure 4; Table S5).

GO and KEGG pathway analysis
We performed functional annotation and enrichment analysis
on genes of differentially expressed lncRNAs and circRNAs
(Figure 5; Tables S6,S7).
GO analysis on genes of differentially expressed lncRNAs

showed that the term with the most genes and the most signifi-
cantly enriched term in biological process was nucleic acid
phosphodiester bond hydrolysis activity (GO: 0090305); the
term with the most genes was protein complex (GO: 0043234)
and the most significantly enriched term was microvillus (GO:
0005902) in cellular component; the term with the most genes
and the most significantly enriched term in molecular function
was RNA-directed DNA polymerase activity (GO: 0003964). Of
the top 10 enrichment pathways in the KEGG analysis, the
most enriched pathway was glycosaminoglycan degradation
(ko00531).

30,000
Total
Known

New

20,000

10,000

0
miRNA IncRNA circRNA mRNA

co
un

t

Figure 1 | Characteristics of different transcripts. circRNA, circular
ribonucleic acid; lncRNA, long non-coding ribonucleic acid; miRNA,
micro-ribonucleic acid; mRNA, messenger ribonucleic acid.
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Figure 2 | Characteristics of differentially expressed transcripts. circRNA,
circular ribonucleic acid; lncRNA, long non-coding ribonucleic acid;
mRNA, messenger ribonucleic acid; miRNA, micro-ribonucleic acid.
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GO analysis on genes of differentially expressed circRNAs
showed that the term with the most genes was small molecule
metabolic process (GO: 0044281), and the most significantly
enriched term was activation of phospholipase C activity (GO:
0007202) in biological process; the term with the most genes
was cell junction (GO: 0030054), and the most significantly
enriched term was phosphatidylinositol 3-kinase complex (GO:
0005942) in cellular component; the term with the most genes
was phospholipid binding (GO: 0005543), and the most

significantly enriched term was phosphatidylinositol binding
(GO: 0035091) in molecular function. Of the top 10 enrich-
ment pathways in the KEGG analysis, the most enriched path-
way was the Rap1 signaling pathway (ko04015).

ceRNA network
The ceRNA network can reveal the modes and functions of dif-
ferent ncRNAs, and a regulatory relationship among various
RNAs, which lncRNAs or circRNAs regulate gene expression

2.0

10

8

6

4

2

0

–4 –2 0 2
log2 (FC)

5

0

1.5

1.0
–l

og
10

 (P
Va

lu
e)

–l
og

10
 (P

Va
lu

e)

–l
og

10
 (P

Va
lu

e)

0.5

0.0

–2 0 2 4 –5 0 5 10
log2 (FC)log2 (FC)

(a) (b) (c)

Figure 3 | Volcano plots of differentially expressed non-coding ribonucleic acids (RNAs). Volcano plots showing significantly different expression of
(a) microRNAs, (b) long non-coding RNAs and (c) circular RNAs between the two groups. Red points, upregulated non-coding RNAs; green points,
downregulated non-coding RNAs. FC, fold changes.

0.030 0.060 0.250 0.040 0.100

0.080
0.060
0.040
0.020
0.000

0.030

0.020

0.010

0.000

0.200
0.150

0.100
0.050
0.000

0.040

0.020

0.000

0.020

0.010

0.000
NGT

LINC01483-001 AC019080.1-201 MSTRG.331530.18 MSTRG.310286.1 MSTRG.18519.13
***NS* **

0.050
0.040
0.030

0.020
0.010

0.010 0.300 0.080

0.060

0.040

0.020

0.000

0.080 0.200

0.150

0.100

0.050

0.000

0.060

0.040

0.020

0.000

0.200

0.100

0.000

0.008
0.006
0.004

0.002
0.000

NGT

0.000

0.050 0.150 0.040

0.030

0.020

0.010

0.000

0.040
0.050

0.030

0.020
0.010

0.000

0.100

0.050

0.000

0.040
0.030

0.020
0.010
0.000

GDM

NGT GDM

GDM NGT GDM NGT GDM

NS **
circ-HNRNPK circ-PTBP3 circ-OGDH circ-FMNL2

**

NGT GDM NGT GDM

NGT GDM NGT GDM NGT GDM

NGT GDM

NGT GDM NGT GDM

**
circ-DAPK1

NGT GDM

NGT GDM

novel_miR-17 novel_miR-195 novel_miR-257 MSTRG. 101240.17 SNHG5-003

** ** ** ** *

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct
Re

la
tiv

e 
ex

pr
ec

tio
n 

2–Δ
ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

Re
la

tiv
e 

ex
pr

ec
tio

n 
2–Δ

ct

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4 | Quantitative real-time polymerase chain reaction validation for the non-coding ribonucleic acids (RNAs). The relative expression levels of
selected (a–c) microRNAs, (d–j) long non-coding RNAs and (k–o) circular RNAs were validated by quantitative real-time polymerase chain reaction.
Compared with the normal glucose tolerance (NGT) group, *P < 0.05, **P < 0.01. GDM, gestational diabetes mellitus; NS, not significant.

ª 2020 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd J Diabetes Investig Vol. 11 No. 5 September 2020 1311

O R I G I N A L A R T I C L E

http://wileyonlinelibrary.com/journal/jdi Whole transcriptome expression of GDM



through a miRNA sponge mechanism by binding to the com-
mon miRNA-binding sites. Therefore, we constructed a GDM-
related ceRNA network to investigate the interactions between
lncRNAs, circRNAs, mRNAs and miRNAs (Figure 6). We
found that a lncRNA or circRNA could sponge several miR-
NAs, and a miRNA could also interact with multiple ncRNAs.
These results highlighted the important role of lncRNAs or cir-
cRNAs in pathogenesis of GDM by interacting with miRNAs.

DISCUSSION
With the development of molecular biotechnology, ncRNAs
have received increasing attention in recent years. Numerous
studies have shown that ncRNAs played a crucial role in vari-
ous biological processes and differentially expressed in many
placenta-related diseases, such as GDM18,19,31. Thus, investigat-
ing known ncRNAs and discovering novel unannotated
ncRNAs could provide a significant promotion for researching
GDM. The present study first investigated the whole

transcriptome profiles of placentas from GDM and healthy
pregnant women by high-throughput sequencing, a more com-
prehensive identification of ncRNAs, to identify the differen-
tially expressed ncRNAs, and to explore the potential biological
functions and the relationship between these ncRNAs and
GDM.
A total of 35,669 ncRNAs were identified, including 2,817

miRNAs, 23,339 lncRNAs and 9,513 circRNAs. In addition to
most ncRNAs located in the miRBase, RefSeq and circBase
database, we also found many novel transcripts in our sequenc-
ing data. There were 290 differentially expressed ncRNAs in
GDM placentas; 143 ncRNAs were upregulated and 147
ncRNAs were downregulated, including four miRNAs, 172
lncRNAs and 114 circRNAs. We performed qRT–PCR on
some of the differentially expressed ncRNAs based on our pre-
dicted sequences. The results showed that the expression of the
selected ncRNAs was in line with the expression in sequencing.
Compared with healthy pregnant women, these detected
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Figure 5 | Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of differentially expressed genes. Gene Ontology
annotation of (a) long non-coding ribonucleic acids (RNAs) and (b) circular RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analysis of
(c) long non-coding RNAs and (d) circular RNAs. The x-axis represents terms in biological process, cellular component and molecular function. DNA,
deoxyribonucleic acid.
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ncRNAs expression patterns in GDM placentas were signifi-
cantly different, speculating that they might play an important
role in the pathogenesis of GDM, and are expected to become
new molecular biomarkers of GDM.
We performed GO and KEGG pathway analysis to explore

the biological functions and potential pathways on genes of dif-
ferentially expressed lncRNAs and circRNAs. In the GO analy-
sis on genes of differentially expressed lncRNAs, the most
significant biological processes were nucleic acid phosphodiester
bond hydrolysis and cellular component organization, and the
most significant cellular components were microvillus and
mitochondrial ribosome. KEGG pathway analysis showed sev-
eral significantly enrich pathways that correlated with glucose
and lipid metabolism. The sphingolipid signaling pathway was
involved in the regulation of various biological processes, such
as cell proliferation, adhesion, migration survival and apoptosis.
It also participated in the progression of diabetes, including
insulin sensitivity and secretion, b‑cell apoptosis, and the devel-
opment of diabetic inflammatory states32. The Notch signaling

pathway was associated with the regulation of physiological
insulin33. Thyroid hormone34 and Hedgehog signaling path-
ways35 have also been found to be involved in the improve-
ment of insulin sensitivity in skeletal muscle and insulin
resistance in adipose tissue. Genes encoding cell cycle regulators
influenced gestational glucose tolerance and regulation36. Fur-
thermore, researchers found that the levels of several metabo-
lites (serine, proline, leucine/isoleucine, glutamic acid, tyrosine
ornithine, adipate and pyruvate) were significantly different in
GDM, highlighting the importance of altered amino acid, fatty
acid and carbohydrate metabolism, and suggesting that these
metabolites might have contributed to the occurrence and pro-
gression of GDM37,38. In the GO analysis on genes of differen-
tially expressed circRNAs, the most significant biological
processes were activation of phospholipase C activity and regu-
lation of insulin secretion. KEGG pathway analysis also showed
several pathways that correlated with GDM, including the pro-
lactin signaling pathway, insulin signaling pathway and insulin
resistance. Prolactin and placental lactogen signaled through the

Figure 6 | Competing endogenous ribonucleic acid (RNA) network. Blue nodes, circular RNAs; green nodes, long non-coding RNAs; gray nodes,
microRNAs; red nodes, messenger RNAs.
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prolactin receptor to promote the proliferation and expansion
of b-cells, which was indispensable for maintaining maternal
blood glucose. Deletion of the prolactin signaling pathway in b-
cells during pregnancy led to the development of GDM,
decreased b-cell proliferation and failure to expand b-cell mass.
These results revealed the molecular role of this pathway in
coordinating the physiological b-cell responses during preg-
nancy39. Loss of the estrogen signaling pathway resulted in glu-
cose intolerance and excessive weight gain, accompanied by
reduced physical activity and impaired adaptive heat produc-
tion40. Deregulation of the Rap1 signaling pathway also led to
multiple systemic metabolic disorders characterized by excessive
fat accumulation, dyslipidemia, hepatic steatosis and glucose
intolerance41. Additionally, the chemokine–receptor axis could
affect hepatic inflammation and fibrosis by mediating hepatic
infiltration42. Cellular and animal studies have established that
G protein-coupled estrogen receptor (GPER) was involved in
the regulation of feeding behavior and inflammation, as well as
glucose and lipid homeostasis. GPER manifested pleiotropic
effects in metabolically active tissues, such as adipose, liver,
pancreas and skeletal muscle. GPER deficiency led to increased
adiposity, insulin resistance and metabolic dysfunction in
mice43. Six-month-old GPER knockout (KO) male and female
mice displayed increased body weight compared with wild-type
littermates, and GPER KO female mice exhibited glucose intol-
erance at this age. Insulin resistance was evident in GPER KO
male mice from 6 months, and glucose intolerance was pro-
nounced at 18 months. One-year-old GPER KO male mice dis-
played an abnormal lipid profile with higher cholesterol and
triglyceride levels44. Previous studies have demonstrated that
angiopoietin 2 positively correlated with waist circumference,
body mass index, systolic blood pressure, fasting plasma glu-
cose, hemoglobin A1c, homeostasis model assessment for insu-
lin resistance and triglycerides in diabetes patients.
Angiopoietin 2 was independently associated with cardiovascu-
lar risk factors45. Meanwhile, angiopoietin 2 was also found to
be independently related to type 2 diabetes mellitus with
angiopathy46. Correlation analysis showed that lipoprotein
lipase gene polymorphism in placental tissue was positively
related to insulin resistance. It was determined to be associated
with GDM47. In addition, placental lipoprotein lipase activity
was positively correlated with newborn birthweight and per-
centage fat, and was also found to be related to insulin resis-
tance of their offspring48. In line with these studies, the present
data showed that ANGPT2 and lipoprotein lipase were higher
expressed, whereas GPER1 was lower expressed in the GDM
group compared with the NGT group. Furthermore, BCL2 and
BCL2L1 were upregulated in GDM placentas, speculating that
placental apoptosis abnormally affects placental growth and
function, as well as nutrient transport, and altered placental
morphology subsequent to apoptosis might account for func-
tional adaptations in GDM placentas49. The expression of
BCL2 and BCL2L1 were also higher in the GDM group com-
pared with the NGT group in the present study. In addition to

participating in cell proliferation, activation of extracellular sig-
nal-regulated kinase also mediated insulin resistance in skeletal
muscle of obese individuals50. It has been reported that extra-
cellular signal-regulated kinase was increased in patients with
GDM, and was associated to placental fatty acid translocase
and fatty acid-binding protein, which might affect lipid metabo-
lism. As aforementioned, the present results are consistent with
previous studies (Figure S1). Although the etiology of GDM
was unclear, our study demonstrated that insulin resistance and
insufficient insulin secretion were vitally fundamental patho-
physiological mechanisms for GDM, which was consistent with
previous molecular mechanism studies and genomic analy-
sis31,33. The transcripts in each term were valuable and mean-
ingful for further mechanism research, which might provide
ideas and insights into the pathogenesis of GDM, and the theo-
retical basis for new therapeutic strategies in GDM.
Based on high-throughput sequencing, researchers screened a

large number of differentially expressed ncRNAs in different
tissues or blood samples. These differentially expressed ncRNAs
have aroused general interest in mechanism research, but most
studies of GDM focused on miRNAs. Downregulation of miR-
143 mediated the metabolic transition from oxidative phospho-
rylation to aerobic glycolysis in GDM placentas, whereas over-
expression of miR-143 increased mitochondrial respiration and
mitochondrial complex expression, and decreased the expres-
sion of glycolytic enzymes52. Furthermore, miR-143 might play
a role in the mitogen-activated protein kinase signaling pathway
associated with macrosomia53. The expression level of miR-
518d in GDM placentas was significantly higher, and high
expression of miR-518d was negatively correlated with peroxi-
some proliferator-activated receptor-a, which might participate
in the occurrence of GDM by regulating expression54. MiR-410
could induce human embryonic stem cells to differentiate into
islet endoderm, promote b-cell proliferation, increase insulin
secretion and greatly improve glucose metabolism in mice with
GDM by direct targeting lactate dehydrogenase A55. In addi-
tion, miR-185 has also been involved in the insulin signaling
pathway56. MiRNAs are important post-transcriptional regula-
tors of gene expression and key elements in ceRNAs by direct
base pairing to target genes to regulate mRNA expression, and
influence the occurrence and development of diseases17,31. The
ceRNA network is a novel mechanism of interaction between
RNAs that reveals the patterns and a wide range of the regula-
tory relationships among different RNAs. Therefore, we con-
structed a GDM-related ceRNA network to explore the
functions and the potential interaction mechanisms of ncRNAs
based on our sequencing data. In the present study, we
observed that a lncRNA or circRNA could sponge several miR-
NAs, and a miRNA could also interact with multiple ncRNAs,
suggesting that these lncRNAs or circRNAs harbored one or
more miRNA-binding sites through a sponge mechanism to
participant in GDM. However, the interaction between the
lncRNA/circRNA-miRNA-mRNA ceRNA network requires fur-
ther mechanism studies.
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Nowadays, there are more than 1.9 million women with dia-
betes in the world, and this number is expected to increase to
313 million by 2040. Among them, the number of young
women with diabetes will reach 60 million57. As one of the
most common complications during pregnancy, GDM seriously
harms maternal and infant health. Non-coding RNA, which
participates in a variety of biological processes, has gradually
attracted attention in the etiology studies of GDM. In sum-
mary, our whole transcriptome expression profiles identified
differentially expressed ncRNAs between GDM and healthy
pregnant women, and bioinformatics analysis further helped us
fully understand and predict the potential interactions between
these dysregulated circRNAs, lncRNAs and miRNAs. This
might contribute to the diagnosis and treatment of GDM, and
provides new research insights into exploring the pathogenesis
of GDM. However, exploration has only just begun, and further
molecular mechanism researches should be performed for a
more comprehensive understanding of these differentially
expressed ncRNAs and their interactions in GDM.
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