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Abstract: This perspective article shows new advances in the synthesis of colloids, gels, and aerogels
generated by combining metal ions and ligands of biological interest, such as nucleobases, nucleotides,
peptides, or amino acids, among other derivatives. The characteristic dynamism of coordination
bonds between metal center and biocompatible-type ligands, together with molecular recognition
capability of these ligands, are crucial to form colloids and gels. These supramolecular structures
are generated by forming weak van der Waals bonds such as hydrogen bonds or π–π stacking
between the aromatic rings. Most gels are made up of nano-sized fibrillar networks, although their
morphologies can be tuned depending on the synthetic conditions. These new materials respond to
different stimuli such as pH, stirring, pressure, temperature, the presence of solvents, among others.
For these reasons, they can trap and release molecules or metal ions in a controlled way allowing
their application in drug delivery as antimicrobial and self-healable materials or sensors. In addition,
the correct selection of the metal ion enables to build catalytic or luminescent metal–organic gels.
Even recently, the use of these colloids as 3D-dimensional printable inks has been published. The
elimination of the solvent trapped in the gels allows the transformation of these into metal–organic
aerogels (MOAs) and metal–organic xerogels (MOXs), increasing the number of possible applications
by generating new porous materials and composites useful in adsorption, conversion, and energy
storage. The examples shown in this work allow us to visualize the current interest in this new type
of material and their perspectives in the short-medium term. Furthermore, these investigations show
that there is still a lot of work to be done, opening the door to new and interesting applications.

Keywords: colloids; hydrogels; aerogels; coordination compounds; nucleobases; amino acids

1. Introduction

Gel-like soft materials are colloidal systems which comprise two coexisting phases, a
solid one that is expanded throughout its volume entirely by a liquid phase, immobilized
inside the cross-linked solid phase. These materials can be classified in different ways.

(i) According to the nature of solvents such as hydrogels or organogels.
(ii) Depending upon the force driving their molecular aggregation. In this sense, the gel is

classified as a physical or supramolecular gel when gelation is caused by intermolecu-
lar non-covalent interactions, such as hydrogen bonding, hydrophobic interactions,
dipolar interactions, electrostatic interactions, and π–π stacking. In contrast, when
covalent bonds drive the cross-linking, the gel is defined as a chemical gel.

(iii) There are also gels depending on their composition, such as purely inorganic, which
are mainly made up of metal nanoparticles and metal oxides. Inorganic and organic
hybrids, where organic molecules are introduced to the aforementioned oxides. Purely
organic, and finally, around 2004, new coordination compound gels and aerogels
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began to appear called metal–organic gels (MOGs), or coordination polymer gels
(CPGs) [1].

MOGs and CPGs have expanded new approaches horizons beyond the synthesis of
new materials by changing the building blocks. These new soft materials with identical
chemical composition as the bulk material but drastically different physical properties can
be generated by playing with the synthetic conditions.

Hydrogels have to overcome some barriers yet to be successful overall related to
the tailoring of their chemical properties, which are important to generate functional
materials. In most cases, hydrogel matrices are attractive in biological applications such as
drug delivery and wound healing due to their cytocompatibility, high porosity, and water
content. However, in other practical applications such as catalysis and adsorption, the
architecture of materials has to be free of liquid in the macroscale. This can be achieved
through specific drying methods such as supercritical drying and freeze-drying, which lead
to the formation of the so-called aerogels, whose structural network is filled with gas. In
addition, the world of gels and aerogels is intimately related to nanomaterials science since
their obtaining mainly implies bottom-up approaches, which allow the creation of fibers,
ribbons, and cylinders nanostructures, among others. They have deeply been studied for
more than 80 years with an extended materials list continuously growing, looking forward
to finding the adequate synthetic conditions from any chemical compound obtaining their
gel and the respective aerogel.

There are outstanding revision works that explain in more detail what these types
of materials are [2–5], what are the standard or newest techniques to obtain them, and
what are their principal applications [6–9]. This work aims to show the recent advances
obtained by combining metal ions with biologically relevant ligands such as nucleobases [10],
nucleotides, oligonucleotides, amino acids, and peptides to mitigate the shortcoming of
individual components. An advantage of this type of metal–organic gels is its possibility
of spontaneous gelation without ultraviolet (UV) light or chemical initiators, thanks to the
molecular recognition capabilities of these molecules. For this reason, the reactions can be
made under mild and physiological conditions. However, these synthesis conditions prevent
obtaining quality single crystals, so the knowledge of real solid-state structures is a challenge
in most metal–organic gels/aerogels, which end up being proposed [11–13]. This kind of
new bioinspired coordination compounds will lead to the development of biomimetic and
biocompatible metal–organic gels/aerogels [14,15] with low toxicity. Furthermore, this new
type of metal–organic gels or aerogels will likely provide innovative applications in 3D
printing technologies [16,17] or as nanocarrier systems [18].

2. Colloid Dispersions Based on Coordination Bonds with Interesting
Biological Ligands

Within chemistry, the world of colloids is quite broad and attracts great interest from
medical, biological, food, or environmental perspectives [19–21]. They play a crucial role
in human health, nutrition, and the environment since they can transport nutrients and
transfer pollutants. The dispersed nanoparticles are suspended throughout another phase
without being settled to the bottom of the container for long periods. A colloid must have
particle dimensions between 1–1000 nanometers, which means the dispersed particles
in the phase have to be larger than a molecule’s size but smaller than what can be seen
with a naked eye. If the dimensions are smaller than this, the substance is considered a
solution, and if they are larger than the substance, it is a suspension. In the following
examples that we are going to mention here, the nanofibers or nanoparticles dispersed in
water are coordination compounds/polymers with ligands of biological interest stabilized
by supramolecular interactions, generally Van der Waals forces, and which by means of
stimuli can be transformed into the corresponding hydrogels by the sol−gel transition.
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2.1. Nucleobases and Nucleotides for the Creation of Colloids Useful as Luminescent, Nanocarriers,
Or 3D Printed Sensors

Nucleobases, nucleosides, and nucleotides are extremely interesting ligands with
extraordinary molecular recognition capability to form complex supramolecular structures.
They have a strong capacity to form π–π stacking and hydrogen bonds. Also, they have
extraordinary metal-ion-binding abilities and can easily modify for this purpose. Therefore,
they are helpful in colloids and gel formation (Figure 1) [22].
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Figure 1. Structure of natural nucleobases and nucleotides (where R = mono-, bi- or triphosphate
groups) that form DNA structure and some artificial or functionalized nucleobases.

In these novel materials, incorporation of metal ions is an effective method for es-
tablishing extra-interactions among the building blocks and consequently trigger colloid
or gel formation, being considered a straightforward way to integrate the specific prop-
erties of metals (conductivity, color, emission, magnetism, among others) with the col-
loid/gel/aerogel properties [23]. The use of metal–organic gels has been little studied,
probably due to the high focus on gels and aerogels derived from organic polymers and
purely inorganic materials, due to the initial difficulty of finding and understanding their
main formation mechanisms.

Recent works have shown that colloidal suspensions of nanoparticles, nanofibers, or
nanoribbons can be transformed into the corresponding gels through incubation times
or the application of physical stimuli (shaking, temperature). As a couple of examples, J.
Dash et al. exploited the chelating ability of Ag(I) ions with guanosine monophosphate
(GMP) to produce a series of supramolecular hydrogels based on the spontaneous self-
assembly of Ag-GMP nanofilaments in water [24]. The obtained hydrogels consist of
helically stacked nanofilaments with a gel-to-sol transition between 50–80 ◦C, as differential
scanning calorimetry (DSC) measurements showed depending on the matrix composition.
Rheological properties are strongly linked to the influence of the molar ratio between
metal centers and GMP ligands (see Section 3.1). Thanks to this, protein molecules like
cytochrome c could be immobilized without loss of their function, and cationic dyes such
as Hoechst-33258 induced chirality transfer and disrupted the hydrogel superstructure.

Li Xu et al. [25] have already reported that lanthanides-adenosine monophosphate
(AMP) at 2:1 ratio formed two models of coordination materials: the lightest lanthanides
from La(III) to Tb(III) formed nanoparticles, while the heaviest ones initially formed
nanoparticles followed by its spontaneously transformation to hydrogels (Figure 2). In
the beginning, colloidal suspensions of nanoparticles were obtained, and overnight, from
Dy(III) to Lu(III), all became hydrogels. The gels were formed by one unique sol−gel
transition, where the morphology of the initially produced nanoparticles turned into
nanofibers. These transformations depend on the critical size of lanthanide ions and,
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because of this, gelation in the heaviest lanthanides was favored, and the duration of the
process was different. In addition, monophosphate and lanthanide species were critical as
building blocks of the gels, which were stable under slightly acidic pH (see Section 3.1).
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Figure 2. Photographs of the colloid suspensions and metal–organic gels formed by mixing various
Ln(III) (A). Images of the formed products between Dy(III) with different (B) nucleotides or (C)
adenine and its derivatives and (D) changing the ratios while keeping the sum of Tm(III) and
adenosine monophosphate (AMP) concentrations. Transmission electron microscopy (TEM) images
of the coordination compounds formed by mixing AMP with La(III), Dy(III), and Lu(III) after
overnight incubation (E). Adapted from reference [25] with permission, copyright 2018 American
Chemical Society.

More recently, perspectives on the use of metal–organic colloids are changing, as
it has been demonstrated by Vegas et al. [18], who showed the synthesis of a 1D-Cu(II)
antiferromagnetic coordination polymer (CP) with modified thymine (thymine-1-acetic
acid, TAcOH). Thanks to the insolubility in the aqueous medium where it is obtained, this
1D-CP can be generated in nanoribbons forming a stable colloidal suspension for long
periods. This colloid is made up of nanoribbons a few microns long, 100–150 nm wide and
heights of 40–60 nm (Figure 3C). Its stability at physiological pHs means that this colloid
can be incubated with different cell lines to verify the low cytotoxicity of the CP obtained,
even considering the presence of Cu(II) ions. The positive results in the viability study
(Figure 3B) allowed to incubate this compound with synthetic oligonucleotides chains.
The results showed that the thymine residues present along the CP chain (Figure 3A) had
selectivity for adenine oligonucleotide (Figure 3D). This result opened the door to the
possible use of this CP as a cellular nanocarrier.

The main role of this colloidal coordination polymer did not remain in the previous
work. Its colloid stability, nanometric size, solvato- and thermochromic behavior against
temperature, and some organic solvents allowed the creation of 3D printing composite
material with moisture sensing capabilities (Figure 4) [17]. This embedded CP has a remark-
able water sensitivity in air and organic solvents (methanol, tetrahydrofuran, ethanol, and
acetonitrile) (Figure 4A). Its sensing capacity is connected to its structural transformation
due to the water molecules loss with temperature (60 ◦C) or by solvent molecules competi-
tion, which induces a relevant color change from blue to violet, whilst the color returns from
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violet to blue with the ambient moisture (Figure 4B). This process was carefully analyzed
through theoretical calculations and advanced X-ray techniques. Both the powder and
3D printed objects are stable on-air over 12 months at biological pHs, suggesting possible
applications as robust colorimetric sensors. These results prepare the way to create a family
of new 3D printed materials based on the incorporation of multifunctional coordination
polymers in stable colloids with organic polymers.
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Figure 4. Photos of the 1D Cu(II) antiferromagnetic coordination polymer with thymine-1-acetate
powders after soaking for 1–5 min. in different dry organic solvents (A). Conversion process mediated
by either temperature or vacuum (B). Schematic illustration of the 3D printing material with color
change in organic solvents (C). Adapted from reference [17] with permission, copyright 2019 John
Wiley and Sons, Inc.

3. Hydrogels Based on Coordination Bonds with Bioinspired Ligands

Gels are very useful forms because, given their physical and rheological properties,
they are practical to use overall in the pharmaceutical industry. According to the solvent’s
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nature, gels can be classified as hydrogel or organogel if the solvent is water or organic
solvent(s), respectively. As already indicated, hydrogels are self-assembled in water to
form 3D supramolecular networks, encapsulating abundant water. Regarding the gelation
driving forces, gels can be grouped into physical gels where the intermolecular interactions
are responsible for gel formation and chemical gels, where the gel skeleton is cross-linked by
covalent and/or coordination bonds [26]. Considering water is the only solvent necessary
to sustain life on Earth, it is not surprising that hydrogel applications in life sciences have
made significant progress [27–31]. In the following lines, we are going to expose the
advances in the MOGs related to amino acids, peptides, nucleobases, and mainly transition
metal ions such as Zn(II), Cu(II), Ni(II) or Co(II) [32].

3.1. Oligonucleotides, Nucleotides, and Nucleobases as Gelators for the Creation of Novel
Stimuli–Response and Self-Healing Metal–Organic Hydrogels for Drug Delivery, Wastewater
Treatment, Catalysis and Antibacterial Applications

The use of adenosine, guanosine, or thymine and uracil derivatives as interesting
gelators is mainly due to their pH tautomeric capacity and molecular recognition abil-
ities [33,34]. J. Dash et al. published some attractive Ag(I) GMP hydrogels in 2011,
with different structure and viscoelastic properties depending on the GMP:Ag molar
ratio (Figure 5) [24]. 1:1.5 molar ratio gels showed that the storage moduli presented an
elastic response and larger values than the loss moduli, confirming the presence of an
insistent solid-like viscoelastic hydrogel network. Gels with 1:1.2 ratio had the highest
storage modulus value. A similar tendency in both moduli was observed to the 1:1 and
1:1.25 ratios but at lower frequencies and lower stress, <0.01–1 Hz and 20 Pa instead of
102 Hz and 100 Pa for 1:1.5 molar ratio. These last gels also presented a viscous fluid
transformation with shear stress above 10 Pa. Hydrogel formation was related to a pH
reduction, consistent with Ag(I) ions binding to the guanosine moiety and the protons
release due to enol formation. On the other hand, photoreduction of Ag(I) ions is associ-
ated with the nanofilaments, resulting in the construction of nanocomposite hydrogels
impregnated with plasmonic Ag nanoparticles by prolonged exposure to light. Finally, the
molecular recognition ability of the Ag-GMP nanofilaments was also investigated using
water-soluble dyes such as methylene blue or fluorescein that were easily incorporated
into the Ag-GMP hydrogels to generate materials with optical and fluorescent properties.
The authors suggested possible uses of these soft materials in controlled drug release and
other molecular recognition-based applications.
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Figure 5. 1:1 Ag-GMP (guanosine monophosphate) hydrogel exposed to ultraviolet (UV) light (A);
when it is synthesized in stoichiometric 1:2/GMP:Ag and in the presence of cytochrome C (B);
1:1 Ag-GMP hydrogel after injection into acetonitrile and exposed to UV light (C). Adapted from
reference [24], with permission, copyright 2011 Royal Society of Chemistry.
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In 2015, Hao Liang et al. obtained a supramolecular gel formed by coordination
of Zn(II) with adenosine monophosphate (AMP) (Figure 6). In this case, the gelation
was induced by mechanical forces [35]. This hydrogel was selectively formed with AMP,
in contrast with GMP and CMP. The Zn(II) coordination with adenine seemed crucial
for forming the gel complex, and their ultraviolet–visible (UV–vis) data indicated the
Zn-AMP binding is the strongest of the three. Although the type of nucleobase was
crucial, phosphates number in the molecule seemed to have influence, being essential
to have just one phosphate linked to the nucleotide. A stimulating observation was that
the mechanically disrupted gels could be easily re-formed. Indeed, with mechanical
agitation by a vortex mixer, the Zn-AMP gel was converted into small gel pieces (like a sol
phase), yielding a turbid suspension which was put back together after sonication. This
mechanically induced gel transition can be repeated several times, and this property might
help entrap guest molecules in the gels and remove them from water.
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As we have already mentioned in the colloid section (see Section 2.1), six new ro-
bust lanthanides adenosine monophosphate (AMP) amorphous hydrogels have been
obtained after overnight incubation from the nanoparticles colloidal suspensions, with pH
stimulus-response according to the AMP protonation/deprotonation [25]. These hydro-
gels (Figure 7) are spontaneously formed with the heaviest of the group (Dy(III) to Lu(III))
after initial nanoparticles formation, while the lightest lanthanides (La(III) to Tb(III)) only
form nanoparticles. This slow sol-to-gel transition is accompanied by heat release, as
indicated by isothermal titration calorimetry. In the reticulation process, the researchers
proposed that heavy lanthanides bind preferentially to the phosphate groups forming
a structure more kinetically stable than thermodynamically. Applying thermal energy,
the system became thermodynamically more stable by replacing some of the phosphate
bindings with base binding, freeing part of phosphate groups. Surprisingly, this did not
happen with GMP, and again gels were not formed as in the case previously reported
by Hao Liang et al. [35]. The contribution of phosphate binding to the lanthanides can
be more significant than those of AMP, being reflected in the positive enthalpy of heavy
lanthanides. These novel gels were used to successfully encapsulate the glucose oxidase
enzyme (GOx) with better stability than the Ln-AMP nanoparticles.
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Figure 7. Transmission electron microscope (TEM) images of AMP with Dy(III) coordination com-
pound at time 0 h (a), after 8 h or 3 h at 4 ◦C and 60 ◦C, respectively (b). Adapted from reference [25]
with permission, copyright 2018 American Chemical Society.

Anil Kumar et al., have used akaganeite (β-FeOOH) as a possible iron oxide nanos-
tructure to integrate it together with AMP in order to combine the superparamagnetic
properties of this oxide, its tunnel-like structure, and low toxicity, together with the ability
of the nucleotide to generate supramolecular interactions and form a colloid that undergoes,
with an increase in AMP concentration, into a spontaneous and reversible (by stirring)
transformation (around 10 days) to the corresponding porous and superparamagnetic
hydrogel. In this work, they confirmed that gelation is triggered by phosphate groups and
sugar moiety, so that the AMP interaction with the β-FeOOH core can be manipulated
by a change in reaction parameters. The modification of the AMP-β-FeOOH ratio allows
aggregations of NPs and nanoribbons to be obtained with different sizes, and morpholo-
gies, found Fe (III) and Fe3O4 as a function of the reaction conditions. The results obtained
from the investigation show that the gel is formed by a β-FeOOH core, coated with AMP.
In addition, the porosity of the hydrogel can be 2.5 times greater than that of β-FeOOH
alone [36].

In 2016, Ag(I) ions were combined with unsubstituted nucleobases to form metal–
organic pH-responsive hydrogels [37]. In this study, nanofibrillar metal–organic gels are
obtained under deprotonated conditions with adenine (Ag-A), cytosine (Ag-C), thymine
(Ag-T), and uracil (Ag-U). The gelation process between guanine and Ag(I) occurred
only under acidic conditions (Ag-pG) via the self-organization of cubic metal–organic
particles (Figure 8). As usual in this sort of material, obtaining single crystals of Ag-
nucleobases metal–organic gels for understanding its exact coordination environment were
not successful. Therefore, density functional theory (DFT) studies were carried out to
propose a solid-state structure (Figure 8e). As silver and its compounds are known to
exhibit a broad bactericidal spectrum, these Ag-nucleobase hydrogels were tested against
the Gram-negative, rod-shaped bacteria Escherichia coli and the Gram-positive bacterium,
Staphylococcus aureus. The hydrogels showed excellent antimicrobial activity, finding that
the most effective of the four hydrogels was the Ag-U gel in contrast to the Ag-A hydrogel.
The Ag-pG was remarkably softer compared to the Ag-A gels in alkaline medium (storage
moduli of Ag-A and Ag-pG were 3.06 and 0.03 kPa in the linear regime, respectively), whilst
protonated adenine resulted in the formation of a white precipitate (Ag-pA). Along these
lines, cytosine and guanine were also used to create new highly crystalline nanofibrous
metallohydrogels with Zn(II) ions in an alkaline medium [13]. Gelation occurred mainly
by coordination bonds and was accompanied by Zn hydroxide clusters formation through
mixed chains of Zn(nucleobase) and Zn-(nucleobase)2 units, as the authors tentatively
propose. These metallogels were synthesized by direct reaction between cytosine and
guanine basified solutions with Zn(NO3)2·6H2O solutions, leading to hybrid flower-like
superstructures. Rheological tests suggested that the elastic behavior was predominant
over the viscous nature. This was authenticated by a more detailed study of the frequency
sweep measurements, which clearly showed that in the frequency range of 0.05 to 100 s−1,
storage modulus (G′) was always greater than the loss modulus (G′′) (Table 1). These
hybrid flower-like superstructures showed semiconducting properties and could be used
as photocatalysts to degrade model organic pollutant dyes such as methylene blue.
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nal stimuli such as sulfate anions, acids, bases, and different salts. Like all MOGs that 
contain Ag(I), its presents interesting properties as antimicrobial, in this case, it is effective 
versus Gram-negative bacteria E. Coli and Gram-positive bacteria S. aureus. 
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Figure 8. Monomeric and dimeric units of Ag-A (a,c) and Ag-G. (b,d). Proposed structure of
the polymeric Ag-A hydrogel (e). Schematic representation for forming coordination polymer
superstructures with purine nucleobases and field-emission scanning electron microscope (FESEM)
images of Ag-G and Ag-A, as precipitate (f–i) and gel (g,h). Adapted from reference [37].

Table 1. Rheological properties of the different metallohydrogels (coordination polymer gels (CPGs)-metal–organic gels
(MOGs)) based on their storage and loss moduli values at constant oscillation strains.

CPGs/MOGs
Range of

Frequency
Constant Oscillation

Strain (%)
Approx. Loss

Moduli, G′′ (Pa)
Approx. Storage
Moduli, G′ (Pa) References

Zn(II)-AMP 0.03–30 Hz 0.4 104 105 [35]

Dy(III)-AMP 0.1–100 Hz 0.2 104 105 [25]

Ag(I)- inosine
5′monophsphate

(IMP)
0.05–100 rad/s 1 ~10 >55 [38]

Ag(I)-A 0.1–100 s−1 1 3 × 102 103 [37]

Cd(II)–T
0.05–100 rad/s 1

25 100
[39]

Cd(II)–U 15 80

Zn(II)–cytosine
0.05–100 rad/s 1

3 20
[13]

Zn(II)–guanine 1.5 10

To obtain a stable multifunctional MOG in the dark just in a single step through a sponta-
neous self-assembly process at room temperature is an objective that Neha Thakur et al. [38]
have been achieved by mixing Ag(I) with commercial inosine 5′monophsphate (IMP) (Figure 9).
This self-healable gel, formed by fibers of 8 nm in height measured by AFM and TEM, presents
reversible gel–sol phase transitions in response to various external stimuli such as sulfate an-
ions, acids, bases, and different salts. Like all MOGs that contain Ag(I), its presents interesting
properties as antimicrobial, in this case, it is effective versus Gram-negative bacteria E. Coli and
Gram-positive bacteria S. aureus.
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Figure 9. Chemical structure of Ag-IMP metalorganic gel.

Likewise, as most of those that contain Ag(I) ions, it can be photo-reduced by visible
light, generating the corresponding silver nanoparticles, which in this case also act as
a catalyst, reducing the model substrate p-nitrophenol to p-aminophenol. Rheological
studies of this compound show that its mechanical properties are affected by both the
concentration of Ag(I) and IMP (Table 1). An exciting feature of this gel is that it can
separate oil from water and entrapment of polar impurities from a hydrophobic medium,
which makes it attractive for potential applications in water treatment (Figure 10).
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Figure 10. Images of phase-selective separation of water from different water-oil mixtures by the Ag-
IMP gel. Adapted from reference [38] with permission, copyright 2018 American Chemical Society.

A novel and interesting application of metal–organic hydrogels based on the devel-
opment of white light-emitting quantum dot (QDt)–gel systems using nucleobases was
published in 2018 by B. Sharma et al. [39] In this work, supramolecular Cd(II)-thymine
(Cd-T) and Cd(II)-uracil (Cd-U) metallohydrogels were used for the in situ growth of
color-tunable CdS quantum dots. This advance has attracted much consideration due
to the unique chemical properties of QDts and their technological applications, such as
light-emitting devices, solar cells, energy scavenging, bio-sensing, and bioimaging [40–43].
These spontaneous hydrogels were formed through coordinative interaction with Cd(II)
ions and these two nucleobases, at alkaline pH. As in the aforementioned work, the fre-
quency sweep experiments were carried out in these gels with similar results (Table 1),
showing that this type of solid-like behavior is characteristic of supramolecular gel systems.
The introduction of Na2S to the synthesis allowed the obtaining of these QDts within the
gels, with tunable emission color from blue to white to yellow just by varying the sulfide
precursor concentration. The effect of temperature on the QDts emission was also studied,
changing the reaction temperature during the synthesis. Using yellow emitting CdS-Cd-
thymine hydrogel as a model system, the emission intensity for the QDts synthesized at
5 ◦C was maximum, while for the QDts synthesized at 60 ◦C was the lowest. At 25 ◦C,
it showed intermediate emission intensity. This white light system was susceptible to
quenching upon the addition of 0.476 mM of Fe3+ and Cu2+ ions, causing an emission
quenching by 70% and 66% to the CdS-gel system dispersed in water respectively.
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New attractive perspectives related to the manufacture of novel drug delivery com-
posites have been recently obtained [43]. In particular, a recent study revealed that the
stimuli-responsive nucleic acid-based polyacrylamide hydrogel could coat metal–organic
frameworks (MOFs) nanoparticles for controlled drug release. A nanoMOF series of UiO-68
loaded with the antitumor doxorubicin was coated with a polyacrylamide copolymer and
functionalized with two nuclei acid chains of DNA to form an ATP-sensitive hydrogel on
the MOF surface. The release was produced when the hydrogel is disintegrated in the pres-
ence of ATP (overexpressed in cancer cells) via the formation of the ATP-aptamer complex.
It seemed to be proportional to the concentration of the ATP trigger. These gelled materials
reveal selectivity, which means that treatment with the other nucleotide triphosphates
(TTP, GTP, and CTP) leads to an ineffective release of the load and effective cytotoxicity
towards breast cancer cells in contrast with epithelial breast cells. This opens the door to
the development of improved hydrogels that could act as a drug delivery mechanism with
other types of stimuli such as pH, metal ions, lightning, or RNA biomarkers (Figure 11).

Nanomaterials 2021, 11, x FOR PEER REVIEW 11 of 33 
 

 

stimuli-responsive nucleic acid-based polyacrylamide hydrogel could coat metal–organic 
frameworks (MOFs) nanoparticles for controlled drug release. A nanoMOF series of UiO-
68 loaded with the antitumor doxorubicin was coated with a polyacrylamide copolymer 
and functionalized with two nuclei acid chains of DNA to form an ATP-sensitive hydrogel 
on the MOF surface. The release was produced when the hydrogel is disintegrated in the 
presence of ATP (overexpressed in cancer cells) via the formation of the ATP-aptamer 
complex. It seemed to be proportional to the concentration of the ATP trigger. These gelled 
materials reveal selectivity, which means that treatment with the other nucleotide triphos-
phates (TTP, GTP, and CTP) leads to an ineffective release of the load and effective cyto-
toxicity towards breast cancer cells in contrast with epithelial breast cells. This opens the 
door to the development of improved hydrogels that could act as a drug delivery mecha-
nism with other types of stimuli such as pH, metal ions, lightning, or RNA biomarkers 
(Figure 11). 

 
Figure 11. (A), Different stages of the cell aggregates after time intervals of 24 and 120 h: (a) cells 
treated with only hydrogel-coated nanoMOFs (metal–organic frameworks), (b) cells treated with 
nanoMOFs together with two acid nucleic chains loaded with doxorubicin and (c) cells treated with 
hydrogel-coated nanoMOFs loaded with doxorubicin. (B), Representation of the hydrogel-coated 
nanoMOFs unlocking mechanism and release the load via the formation of ATP–aptamer com-
plexes. (C), Scanning electron microscopy (SEM) images of the nucleic acid-functionalized UiO-68 
NMOFs before the deposition of the hydrogel and (D), SEM images of the hydrogel-coated nano-
MOFs. Adapted from reference [43] with permission, copyright 2017 John Wiley and Sons, Inc. 

3.2. Amino Acids and Peptides as Gelators for the Creation of Novel Stimuli–Response, Self-
Healing, Catalytic and Antibacterial Metal–Organic Hydrogels 

Essential amino acids such as arginine, tyrosine, glycine, aspartic acid, histidine, phe-
nylalanine, and their derivatives (Figure 12) are easily and naturally available in an af-
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Consequently, and due to their intrinsic properties of self-assembly, the structure and 
function of novel, bioinspired MOFs and CPs have been addressed. The human body uses 
amino acids to make peptides and proteins that help the body repair tissues. Taking as 
inspiration this self-healing ability, synthetic materials can be developed capable of recov-
ering their original shape, structure, functionality, and properties after being damaged, 
either autonomously [44] or by external stimuli-response [35,45]. The main functional 
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different metal ions and the dynamism of these coordination bonds, associated with the 
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Figure 11. (A), Different stages of the cell aggregates after time intervals of 24 and 120 h: (a) cells
treated with only hydrogel-coated nanoMOFs (metal–organic frameworks), (b) cells treated with
nanoMOFs together with two acid nucleic chains loaded with doxorubicin and (c) cells treated with
hydrogel-coated nanoMOFs loaded with doxorubicin. (B), Representation of the hydrogel-coated
nanoMOFs unlocking mechanism and release the load via the formation of ATP–aptamer complexes.
(C), Scanning electron microscopy (SEM) images of the nucleic acid-functionalized UiO-68 NMOFs
before the deposition of the hydrogel and (D), SEM images of the hydrogel-coated nanoMOFs.
Adapted from reference [43] with permission, copyright 2017 John Wiley and Sons, Inc.

3.2. Amino Acids and Peptides as Gelators for the Creation of Novel Stimuli–Response,
Self-Healing, Catalytic and Antibacterial Metal–Organic Hydrogels

Essential amino acids such as arginine, tyrosine, glycine, aspartic acid, histidine,
phenylalanine, and their derivatives (Figure 12) are easily and naturally available in an
affordable quantity-price ratio to prepare bulk materials using them as building blocks.
Consequently, and due to their intrinsic properties of self-assembly, the structure and
function of novel, bioinspired MOFs and CPs have been addressed. The human body
uses amino acids to make peptides and proteins that help the body repair tissues. Taking
as inspiration this self-healing ability, synthetic materials can be developed capable of
recovering their original shape, structure, functionality, and properties after being damaged,
either autonomously [44] or by external stimuli-response [35,45]. The main functional
groups of the amino acids (amines and carboxylic groups) are great coordinating sites to
different metal ions and the dynamism of these coordination bonds, associated with the
equilibrium constant between the metal ion and the organic ligand, are key in the creation
of self-healing metallogels.
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Figure 12. Some of the essential amino acid structures, used as building blocks to create metal–
organic hydrogels.

Within the possible combinations à la carte, those that combine tyrosine-based am-
phiphiles (hydrophobic chains covalently linked with one or more hydrophilic amino acids)
have aroused huge interest [45–48]. For instance, new interesting Ni(II) metal–organic
hydrogels, synthesized in aqueous phosphate buffer solutions (pH 7.0 to 8.0), exhibited
remarkable self-healing properties that can be tuned by modifying the tyrosine-based
amphiphiles (B1–B4) chain length (Figure 13). Moreover, these metallogels showed multi-
stimuli responsiveness towards various stimuli, including pH of the medium, temperature,
mechanical forces, and external chemicals (Figure 14) [47]. In this study, all amphiphiles
could not form any hydrogel in the presence of metal ions such as Zn(II), Cu(II), Co(II),
Mn(II), Fe(II), and Hg(II), which excludes an anionic effect on gelation process. Therefore,
the selectivity and specificity of the metallo-hydrogelation not only for tyrosine-based
amphiphiles but also for the presence of Ni(II) can be emphasized.
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The sol-gel transformations of Ni(II)-derived tyrosine hydrogels could be achieved
when temperature decreases from melting point gel to room temperature, assisted by
ultrasound. These hydrogels were also subjected to mechanical forces and then were
transformed into solution. They were recovered when forces were removed, and the
solution was kept without any disturbance at room temperature. To check their self-
healing properties, gels were cut into two pieces with a razor, and put together again
with a moderate press. These two parts fused into a continuous block after 25–30 min for
all hydrogels. By modifying the alkyl chain length of these gelator molecules, this self-
healability was successfully tuned, observing a stiffness increasing when the alkyl chain
length increases. Rheological experiments confirmed the presence of a stable and rigid gel
phase material in which G′ and G′ ′ did not vary significantly with the range of applied
angular frequency and did not cross each other (G′ > G′ ′) throughout the experimental
region (Table 2).

Hydrogels B1-B3 were subjected to a simple step strain experiment in several steps,
increasing strain from 0.1% to 20%, constant strain at 20%, decreasing from 20% to 0.1%
again, and constant strain at 0.1%. The recovery test results for B1, B2, and B3 gels were
80%, 80%, and 83% of their initial stiffness at the final interval showed.

Amphiphiles belong to an amazing class of low molecular weight gelators capable of
having response against pH changes allowing to modulate sol-gel phase transition. This
property can be exploited to propel the development of soft materials for encapsulation and
the controlled release of biological molecules such as vitamins. Researchers such as S. Ray
et al. tried to demonstrate this with a series of compounds made up with phenylalanine-
based bolaamphiphiles (named 1–4), being 1 the only one able to form hydrogels with
divalent metal salts (such as MnCl2, CoCl2, CuSO4, and NiCl2) thanks to it containing a
centrally located oligomethylene group (Figure 15) [46].
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The critical point is the substantial solubility variation of the bolaamphiphiles with
the pH. Therefore, once they are dissolved with NaOH solution, and after pH was ad-
justed between 6.5 and 7.2, metals salts were added to the previous solution (2:1 bolaam-
phiphiles:metal stoichiometry), obtaining four hydrogels. The gel–sol transition at higher
pH was not fully understood. At the higher pH values, the ionization of carboxylic acid
moieties could be helping the sol-gel transition. However, at lower pH (<6.5) one of
both carboxylic acid groups is protonated which decreases the solubility and, therefore,
the tendency of the bolaamphiphile to form gels. The pH-responsive metallohydrogels
were allowed to adsorb different dyes from water, indicating their possible applications
in wastewater treatment. One of these metallohydrogels also entrapped vitamin B12
molecules (Figure 16) and they could be released when the pH medium changes, suggest-
ing a possible use of this gel as a carrier of other biological compounds. Using histidine-
based bolaamphiphiles instead of phenylalanine-based ones, selective hydrogels can be
formed with Cu(II) ions over other metal ions. This acid-tolerable hydrogel suffers drastic
morphological changes, in which proton and copper ions, respectively, can trigger the
self-assembly into single-wall nanotubes or single-molecule thick fibers [49].
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Vittal et al. [50] have reported the formation of a 1D coordination polymer gel
(Figure 17), which aggregate to form 3D network fibrous nanostructures through non-
covalent interactions to catch water molecules. This gel is formed with N-(7-hydroxyl-4-
methyl-8-coumarinyl)-glycine (H2mugly) and Zn(II) in a basic aqueous solution and is
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pH-responsive. If the solution is acidified to pH 2, the gel converts into a clear colorless
solution, but it can recover its gel phase when the pH is raised to 8. In addition, this hydro-
gel exhibits a strong blue emission which decreases at lower pHs. The ligand protonation
seems to be a reasonable explanation for these behaviors at acidic pH values, leading to the
disruption of complexation and the quenching of the fluorescence. Dynamic oscillation
and steady shear measurements were carried out to understand the rheological properties
(Table 2) of the 3D structure of hydrogel. They also studied in detail the nature of the macro-
molecular assembly through the correlation known as the Cox–Merz rule. Interestingly, the
hydrogel violated the Cox–Merz rule [51], contrasting with macromolecules that interact
solely via topological entanglements. Dynamic viscosity measurements were around two
orders of magnitude higher than steady shear viscosity from small deformation oscillatory
at equivalent deformation rates. Those results seemed to support a weak network that
remains intact under low amplitude oscillation but is disrupted by continuous shear. In
this line, these authors have also reported a pH and mechano-responsive coordination-
polymeric gel by reaction of Mg(II) aqueous solution with the basic aqueous solution of
N-(7-hydroxyl-4-methyl-8-coumarinyl)-alanine (Figure 18) [52]. Herein again, the cause of
the gelation process might be connected to the formation of 3D nanostructures through
non-covalent interactions due to the self-aggregation of 1D coordination polymers. Mor-
phological studies of the freeze-dried hydrogel showed a fibrillar network from ribbons
whilst UV–vis absorption studies indicated the hydrogel exhibited a typical π–π* transition.
Once the gel is formed, a longer lifetime enhanced its fluorescence intensity, improving the
properties of the Zn-hydrogel as mentioned above. Thanks to the information achieved
about its supramolecular nature through a detailed study of its mechanical and rheological
properties, together with its biocompatibility, this Mg(II) hydrogel might be useful in
biomedical applications.
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Wang et al. [53–55] have synthesized a serial of tryptophan and phenylalanine deriva-
tives with specific gelation properties induced by metal ion (Figure 19). The gelator 2-((4-
(hydroxymethyl)benzyl)amino)-3-(1H-indol-3-yl) propanoic acid (HAIP) can selectively
interact with Pb(II) ions to form stable gels, while the PT-gelator forms a gel with Co(II)
ions, with both gelators belonging to the tryptophan derivatives group. The regioisomers
of phenylalanine derivatives (PF-gelator) specifically responds to Ni(II) ions. All hydrogels
have pH-responsive and show utterly different gelling abilities due to the various positions
of the pyridine nitrogen atoms or by carboxyl and amino groups in HAIP, responsible for
the Pb(II) ions coordination. More recently, these authors tried the possibility of selectively
constructing a new La3+-metallohydrogel by modifying the above gelator. They introduced
an imidazole group with two N atoms in the phenylalanine derivative (N-(1H-imidazol-4-
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yl)methylidene-l-phenylalanine) to provide the necessary multiple coordination sites for
La3+ ions and H-bonds for the hydrogels [56].
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Figure 18. Photograph of the ligand solution (a) and its structure (a′); and photograph of the mixture coordination
polymer Mg-alanine derivative as forming a hydrogel (b) and its proposed structure (b′). Adapted from reference [52] with
permission, copyright 2008 John Wiley and Sons, Inc.
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Figure 19. Scheme of the different tryptophan and phenylalanine derivatives used to synthesize new metal ion-induced hydrogels.

Recently, Vadivel Sasikala et al. [57] designed multifunctional gel based on argi-
nine [58], 1,3,5-benzene tricarboxlic acid (BTC) and Co(II) with tunable morphology, caused
by modifying pH. These structural changes are probably due reorganization in the metal
ion coordination mode at different pH, leading to 1D microfibers (pH 5), 2D micro sheets
(pH 7), 3D rugged (pH 8) and mixture of different morphologies (pH 9). Its mechanical
stability was studied showing a catastrophic disruption of the 3D net beyond 30% of strain
(Table 2). This gel of mesoporous nature (407 m2 g−1) shows a distinct fluorescence that
quenches with the addition of copper(II), offering small detection limits (0.0547 × 10−7 M)
for copper ions detection. This chemosensing gel displayed a high antibacterial activity
against S. Coccus and S. Marcescens breaking the cell wall of these pathogens.

However, lanthanides compounds are especially attractive as luminescent materials
due to their sole optical properties, such as narrow line-like emission, significant Stokes
shifts, long lifetimes and high luminescent efficiency. Phenylalanine (Phe) has also been
employed as sensitizer to enhance the lanthanide ions luminescence via an “antenna effect”
and avoid water molecules quenching the luminescence of lanthanide ions. Its reaction
with Tb(III) or Eu(III) using water as solvent led to long lifetimes of environment-friendly
metallohydrogels since water molecules from the coordination sphere could be replaced by
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Phe molecules resulting in strong luminescence (green emission in case of Phe-Tb and red
emission for Phe-Eu), with unclear solid-state structure (Figure 20) [59].
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The luminescent spectra of these hydrogels exhibit reversible gel-sol transition along
with the reversible luminescent ON/OFF properties. The dynamic coordination bonds
made them pH stimuli respond, and the shearing thinning properties convert them into
useful luminescent inks for anti-counterfeiting.

On the other hand, silver-related materials are well-known antimicrobial drugs spe-
cially to treat burn wounds due to their biocidal effects. Effective antibacterial Ag(I)-
glutathione bio-coordination polymer hydrogel has also been synthesized by Y. Liu et al. [60]
The glutathione (GSH) is a non-protein tripeptide formed by three amino acids: glutamate,
cysteine, and glycine, with antioxidant properties for cells helping protect them from reac-
tive oxygen species such as free radicals and peroxides. Because it contains one sulfhydryl
and two carboxyl groups, among others, it is a perfect candidate to create coordination
polymers. The Ag(I)-GSH hydrogel was synthesized by mixing equimolar AgClO4·H2O and
GSH in a solution with a final pH around 5.2. After several hours, the hydrogel was formed.
However, the amount of Ag(I) ions released and required for its application was impaired
and unfavorable due to its high solubility in water. To solve this problem, solubility in water
was decreased, introducing biocompatible Ca(II) ions into the Ag(I)-GSH hydrogel system
to make it cross-linked. Comparing powder X-ray patterns of both xerogel and precipitate,
and undertaking a detailed analysis of them, the authors proposed that Ag(I) ions and
sulfur atoms of GSH formed two-dimensional slabs through Ag–S bonds with both Ag and
S in a three-coordinate mode. At the same time, the GSH carboxylate groups in adjacent
layers are connected through ionic bridges of Ca(II) ions. Rheological measurement of the
strengthened hydrogel through cross-linking presented a storage modulus (G′) of up to
2 × 104 Pascal, two magnitude orders more than in the gel before cross-linking with Ca(II)
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ions [61–68]. However, the cross-linked hydrogel is broken when the strain is larger than
2% (Table 2).

Table 2. Rheological properties of the different metallohydrogels (CPGs/MOGs) based on their storage and loss moduli
values at constant oscillation strains.

CPGs/MOGs Range of
Frequency

Constant
Oscillation
Strain (%)

Approx. Loss
Moduli, G′′ (Pa)

Approx. Storage
Moduli, G′ (Pa) References

Ni(II)-derived
tyrosine

P1

1–100 rad/s 0.1

35 200

[47]P2 103 3 × 103

P3 2 × 103 0.5 × 104

Pt(II) nanoparticles-peptide(Phe)
bolamphiphile

0.01–100 Hz

- 2 × 104 1.7 × 105

[48]
Pt(II) nanoparticles-peptide(Tyr)

bolamphiphile 3 × 104 1.5 × 105

Zn(II)-H2mugly 0.1–10 rad/s 0.5 13 23 [50]

Mg(II)-alanine derivative 0.1–100 rad/s 0.1 25 30 [52]

Cu(II)-amino succinic acid
derivative (Cu-MOG) 1–100 rad/s 0.5 20 100 [11]

Co(II)-BTC-Arginine 104 1 [57]

Ag(I)-Fmoc-GCE 0.1–10 Hz - <2 × 104 >2 × 104 [61]

Ag(I)-IH6 0.1–100 rad/s 0.1 - 4 × 104 [62]

Ag(I)-Fmoc-amino acids 1–100 rad/s 1 50–100 200–1000 [63]

Zn(II)-GGH 0.01–100 rad/s 0.1 103 103
[68]

Zn(II)-GHHPH 0.01–100 rad/s 0.1 550 103

In 2015, Yuanyuan et al. [61] developed a glutathione-derived peptide ligand whose
N-terminal end is protected with a fluorenylmethoxycarbony group (Fmoc-GCE-OH,
G = glycine, C = cysteine, and E = glutamic). This ligand was used in the construction of
self-assembled peptide structures. In this case, the self-assembly generated by the gel into
nanofibres occurs thanks to the coordination through Ag(I) ions due to its high affinity for
the cysteine residues contained in the ligand structure, and also thanks to the π–π stacking
of fluorenyl groups. Once the coordination is produced and the self-assembly is fixed,
silver nanoparticles can be obtained along the already formed nanofibers, using reducing
agents or light (Figure 21).

The nanoparticles were obtained by the addition of reducing agents such as sodium
borohydride or by irradiation with light, observing a color change in the solution to dark
brown and giving rise to a colloid. The TEM study confirmed the role of silver ions in
the self-assembly process of the nanofibers, which are destroyed when the nanoparticles
are formed.

On the other hand, the Fmoc-GCE/Ag+ solution presents a sol–gel behavior depend-
ing on the NaOH concentration in the medium, forming the gel at 16mM with rheological
properties characteristic of these materials and indicating an elastic domain (Table 2). In
addition to the concentration of NaOH, it also presents this type of stimulus-response in
the presence of pyridine and melamine.
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The AgNPs growing along the Fmoc-GCE nanofibers exhibiting antibacterial prop-
erties to both Gram-negative (E. Coli) and Gram-positive (S. aureus) bacteria. Finally, its
catalytic activity was evaluated, producing the complete degradation of methyl orange in a
few minutes. They also tested its bactericidal effect against E. Coli and S. cereus and found
that the minimum inhibitory concentration of the compound is 0.14 mM.

Following the line on how silver ions can affect the processes of peptide self-assembly
and gel formation, a class of short aliphatic peptides has been designed in order to take
advantage of their structural simplicity, low synthesis cost, and biocompatibility. Specifi-
cally, a histidine-derived peptide called IH6 was developed in 2019 [62], with which the
silver activity was evaluated, not only in the assembly process but also the controlled
release of silver and its biological properties once the Ag-peptide matrix is formed. By
performing a detailed study using circular dichroism spectroscopy, they investigated how
the conformation of IH6 would be affected by its response to silver ions, which changed
from a mostly random coil to a β-sheet structure, increasing the mechanical stress of the
gel (Table 2, Figure 22). Thanks to the good results obtained in the copper release assays,
they proceeded to study this compound against E. Coli, P. Aeruginosa, and S. aureus. It was
observed that 1 mM was the minimum amount of silver ions in the hydrogel to cause a
total suppression of the growth of the strains. Based on these results, the authors further
advanced the study of this gel as a possible candidate wound-dressing material. They
found that this compound can provide selective killing of bacteria previously inoculated
into human cells with E. Coli.
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Figure 22. IH6 chemical structure (a). Scheme of the two possible assembly modes, antiparallel (b)
and hairpin-like parallel (c), of two IH6 peptides coordinated to Ag+ through imidazole residues;
possible intermolecular parallel mode (d). Adapted from reference [62] with permission, copyright
2018 American Chemical Society.

Recently, different biometallohydrogels in the form of nanofibers with interesting
mechanical properties based on the self-assembly and local mineralization of Ag+-Fmoc-
amino acids (N-(fluorenyl-9-methoxycarbonyl) (Fmoc)-modified amino acids), have been
developed. These Fmoc-amino acids metallohydrogels act as precursors to produce Ag-
NPs [63]. The high directionality and anchoring ability of the coordination interactions
allow silver ions to bind within the hydrogel nanofibers. These materials show advantages
compared to traditional gels formed by peptide-containing nanoparticles, as they can be
used in in vivo assays for localized drug delivery and controlled antimicrobial amino acids
and AgNPs release resulting in reduced drug dosage and toxicity, improved bioavailability,
prolonged drug effect, and adjustable mechanical strength. This material can act as a
broad-spectrum antimicrobial since it is able to trigger the bactericidal effect against E. Coli
and S. aureus. This effect is produced by the interaction of the biometallohydrogel with the
cell membranes in cultured cells and mice (Figure 23), causing detachment of the plasma
membrane and leakage of the cytoplasm and, therefore, cell death.

With the appropriate choice of transition metals, metal–organic gels [64,65] with
interesting catalytic activities can be designed. An example using Cu(II) and amino acids
have been recently published by Hao Qiu et al. [25] who developed one coordination
polymer hydrogel-based artificial enzyme with peroxidase-like activity for combating
bacteria and accelerating wound healing (Figure 24).
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Figure 23. Photographs of the In Vivo assays of the different metallohydrogels as treatment for
wound healing against the infection with S. aureus for 0 and 12 days (Where H = histidine, P = proline,
A = alanine, L = leucine and SSD = silver sulfadiazine cream). Adapted from reference [63].
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This copper(II)-aspartic acid gel was previously synthesized by D. Maspoch’s [66]
group in 2009 by the reaction of a Cu(NO3)2, L- aspartic acid, and NaOH in a water
solution. After, H. Qiu et al. evaluated the catalytic activity of the hydrogel by oxidation of
a chromogenic substrate, 3,3′,5,5′-Tetramethylbenzidine (TMB), in the presence of H2O2.
They monitored the time-dependent absorbance in a spectrophotometer of UV–vis at 652
nm, and a strong absorption was observed when the hydrogel was present, indicating
great peroxidase-like activity. Of course, it was previously verified that the same effect
was produced by the starting reagents separately, indicating zero catalytic activity in both
cases. Subsequently, the generation of hydroxyl radicals (·OH) was also verified by the
hydrogel when H2O2 is decomposed, in which terephthalic acid forms the 2-hydroxy
terephthalic acid, producing a remarkable fluorescence at 435 nm after incubation for 12 h.
In vitro assays showed that this hydrogel resulted effective against both drug-resistant
Gram-positive bacteria and Gram-negative bacteria. Additionally, they demonstrated
an enhancement in wound healing by stimulating collagen deposition and angiogenesis
because copper ions could be slowly released from the hydrogel.

Another metal–organic hydrogel, with catalytic activity towards fixation of SO2 and
CO2 with epoxides, has been obtained by the combination of Na2HL {H3L = 2-{(3,5-di-
tert-butyl-2-hydroxybenzyl)amino succinic acid with Cu(II) (called Cu-MOG) [11]. When
stoichiometric aqueous solutions of the ligand and copper chloride were mixed in a glass
vial at room temperature, a dark green hydrogel was instantly obtained. The authors
theorized that copper chloride’s reaction with the ligand’s disodium salt would afford a 1:1
copper complex with free carboxylate groups, leading to the hydrogel formation due to
the extensive hydrogen-bonding interactions between these carboxylate groups and water.
This hydrogel presents a quick thixotropic behavior when an external force is applied
(the longer the fluid is subjected to shear stresses, the greater its viscosity decreases) and
multi-stimuli responsive nature (Figure 25). The xerogel of this coordination compound
can be utilized as a catalyst for the chemical conversion of SO2 to cyclic 1,3,2-dioxathiolane-
2-oxides with high diastereoselectivity and the transformation of CO2 to carbonates by
reaction with the epoxides under standard conditions. Hydrogel mechanical properties
were measured by amplitude sweep which found the G′ was larger than G′ ′ over the entire
region of frequency, and the frequency-invariant characteristic confirmed the viscoelastic
nature of the metallohydrogel (Table 2). The thixotropic behavior was tested through
the step strain experiment. In this test, increasing and decreasing cycles of a percentage
strain were applied to cause the gel-to-sol transformation and vice versa, checking that the
recovery of the MOG was almost 100%.

C. Xu et al. [67] found that the peptide Nap-GFFYGGGHGRGD could self-assemble
into a gel upon binding to Zn(II). It could frustrate microbial growth due to the antibacterial
activity of Zn(II) (Table 2 and Figure 26). The polypeptide sequence was synthesized
following some principles: (i) the motif Nap-GFFY was used to facilitate the work of
forming gels to short peptides containing it; (ii) peptide sequence GGH (Gly-Gly-His)
was added as the metal-binding site because of its background; (iii) the RGD sequence
(tripeptide Arg-Gly-Asp) was included to try to increase the hydrophilicity and improve
the biocompatibility. Upon proving several conditions, the researchers optimized the gel
formation establishing that the minimum equivalent of Zn(II) to form hydrogel was 0.2 wt%
in phosphate-buffered saline (PBS), and the peptide:Zn ion ratio was fixed at 1:1, being
the minimum concentration of peptide to form hydrogel 0.3 wt%. This procedure was
tried with other metal ions: Ca2+, Mg2+, Ba2+, Mn2+ y Sr2+, but only hydrogel formation
happens with Ca2+, Mg2+. They also demonstrated that the gel formation did not happen
by removing the GGH sequence from the peptide formula. Interestingly, TEM images
and the rheology results showed that the higher zinc concentration is related to the fibers
being stronger, leading to hydrogels with an improved mechanical strength because of the
larger force-bearing capacity of the fibers. In vitro assays were carried out in the E. Coli
cell cultures in which hydrogel can inhibit the growth of this bacteria inside and on the
hydrogel surface and its antibacterial activity depend mainly on the amount of zinc ions.
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However, although the ions concentration is critical to improving antibacterial activity, the
metal presence is only effective if the ions are encapsulated inside the gel and not as free
ions in solution.
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Later in 2019, L. Zeng et al. [68] synthesized two self-healing hydrogels based on the
coordination of a Gly-Gly-His tripeptide (GGH) and a Gly-His-His-Pro-His polypeptide
chain (GHHPH) as ligands with Zn(II) as the metal center (Table 2 and Figure 27). They
investigated the possibility of mechanical resistance enhancement by increasing the co-
ordination binding sites without sacrificing the stretching ability and self-healing. The
different polypeptide chains and acrylamide solution were first mixed in MilliQ water for
their synthesis and degassed with an ultrasonic bath under argon atmosphere. Ammonium
persulfate was then added as a photoinitiator to cause polymerization by irradiating with
UV light. The resulting hydrogel was immersed for 24 h in Tris buffer at pH 7.6, which
additionally contains KCl and different concentrations of ZnCl2 to provoke the metal
coordination. They found that the hydrogels based on GHHPH had higher hardness and
Young’s modulus values than those synthesized with GGH. By increasing the peptide
concentrations in the synthesis, the authors demonstrated that the coordination number
of the cross-linkers plays a fundamental role achieving to synthesize gels with greater
stiffness, faster self-healing rate, and higher stretching ability and toughness values (867
and 1300 kJ/m3 for GGH and GHHPH, respectively).
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Figure 26. Schematic illustration of Zn-NapGFFYGGGHGRGD gel; their antibacterial growth inhi-
bition (a), and its macroscopic (b) and microscopic morphology by scanning electron microscopy
(SEM) (c). Adapted from reference [67] with permission, copyright 2015 The Author(s) and John
Wiley and Sons, Inc.
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4. Aerogels Based on Coordination Bonds with Biological Interest Ligands
Amino Acids and Nucleobases as Building Blocks to Generate Novel Composite/Hybrid
Metal–Organic Aerogels Useful for Energy and Bioanalytical Applications

Numerous applications of composite aerogels have been reviewed [69–71], including
catalysis, separation, adsorption, energy conversion, and storage devices such as batteries
and supercapacitors. Graphene oxide (GO) aerogels have recently been developed to
overcome the lack of electrical properties when an initial GO macrostructure is assembled
to form 3D graphene networks [70]. Thus, the goal is to form unions between graphene
sheets to reinforce the assembly and provide conductive interconnections between the
individual sheets [72]. On the other hand, aerogels are usually limited for their practical
application due to their weakness and brittleness. To solve that, these materials can be
doped or mixed with other chemical agents [73] to reinforce those properties. For example,
dopamine (DOPA) can be considered as a reductant and a surface modifying reagent for
GO. Also, polyaspartic acid, with –OH or –COOH functional groups, can interact with
GO sheets via covalent or non-covalent cross-linking. This combination was carried out
by Wang B. et al. [74], who manufactured a novel aerogel based on GO and amino acid
derived from polyaspartic acid, modified with DOPA, termed PAAD. Once PAAD and GO
were synthesized, both compounds were mixed in water and subjected to hydrothermal
conditions to obtain a hydrogel (Figure 28) that was incubated with a FeCl3 (in excess)
solution at different pHs (being the optimal pH 9) for 12 h forming a physically cross-
linked network. The water-soluble PAAD could efficiently react with the GO by strong
hydrogen bonds with the oxygen functional groups on the surface of GO sheets. The
catechol moiety from DOPA formed a strong and pH-responsive reversible coordination
bond with Fe(III), acting as the secondary cross-linker to further strengthen the PAAD/GO
hydrogel by coordinating Fe(III) and carboxylic acid groups and catechol groups. The
aerogel was obtained by freeze-drying the wet gel and, after, was reduced at 200 ◦C for
24 h by hydrothermal reaction method. The final PAAD-rGO-Fe aerogel provided high
conductivity, high porosity and surface area (Table 3), low density, and robust mechanical
properties, with reversible compressibility. This novel aerogel exhibited high specific
capacitance (276.4 F g−1 at 0.5 A g−1) and long cycle life for energy storage (capacitance
retention of 88.2% after 5000 cycles), making into a promising supercapacitor electrode due
to the reversible redox reaction quinone (Q)/hydroquinone (QH) (QH2 ↔ Q + 2H+ + 2e−)
provided by the catechol groups.
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Table 3. Porosity properties, density and applications of different metal–organic aerogels (MOAs).

MOAs
Specific

Surface Area
(m2 g−1)

Pore Size
(µm)

Density
(mg cm−3)

Simplicity of
the Synthesis Application References

polyaspartic acid +
dopamine, PAAD-graphene

oxide, rGO-Fe
83.65 0.01–0.2 18.6 complex Supercapacitors [74]

Cu-cysteine/cellulose - 4–130 41 complex Nitric oxide
delivery [75]

Cu-modified Uracil 21 0.05–0.2 32.9 simple Stationary
phase in HPLC [76]

Following with the manufacture of composite materials to reinforce properties, the
combination of two types of fibrous building blocks allowed the fabrication of a novel
biocompatibility composite aerogel by the bottom-up approach and freeze-drying tech-
nique. This aerogel was obtained from the assembly of cellulose fibers with a MOF, in
which Cu(II) ions are coordinated to L-cystine ligands, and was coated with polyally-
lamine hydrochloride (PAH) allowing their covalent linkage to TEMPO-oxidized cellulose
by means of EDC/NHS (N-hydroxysuccinimide=NHS; N-(3-dimethylaminopropyl)-N′-
ethylcarbodiimide hydrochloride=EDC). This lead to blue-colored nanocrystalline struc-
tures (4% of L-cysteine Cu(II)-MOF) [75]. To avoid the partial release of the MOF fibers
from the cellulose matrix, the blue foam was prepared using the ice-templating method
from 3% w/v suspensions, freezing the samples at −20 ◦C and then producing the subli-
mation of ice by lyophilization. This material was proved to decompose low molecular
weight S-nitrosothiols (RSNOs) similar to those existing in blood, to release nitric oxide
(NO) (Figure 29) as an antimicrobial agent, with the idea of its application as implants
or wound-dressing materials. Unfortunately, the quantities of generated NO (around
360 nM) were insufficient to display a bactericidal effect on the studied bacteria E. coli and
S. epidermidis, in the presence of a physiological concentration of RSNOs. Despite this,
cytotoxicity studies revealed this foam is friendly enough for further biological studies.

The fact that the aerogel formation can provide materials with a certain porosity that
previously they did not have is outstanding material engineering. On the other hand, one
of the least-studied chemical systems that can be applied to obtain new aerogels is based
on CPs. As we have already mentioned, there are many fewer works in which the aerogel
structure is accurately known. Interestingly, V. G. Vegas et al. [76] have overcome this issue
by designing a 1D coordination polymer (named 1) functionalized with uracil residues
with molecular recognition. They combined Cu(OAc)2, uracil-1-acetic acid (UAcOH) and
4,4′-bipyridine (4,4′-bipy) in a stoichiometry 1:2:1 in water at normal conditions (pH= 5.2),
to synthesize a 1D CP double chain based on a [Cu2(µ-CH3COO)2(µ-4,4′-bipy)2] core adorn
with UAcO moieties along both sides of the double chains. The fine-tuning of the synthetic
parameters, in which the addition of 0.07 mL of CH3COOH was essential, allowed the
formation of a purple water colloid (1n) composed of nanoribbons of 1. This colloid was
turned into a hydrogel upon sonicating the 1n for 20 min and leaving the sample 24 h at
room temperature (Figure 30). Finally, the supercritical CO2 drying of the hydrogel led to
the 1n-aerogel. The dimensions of the ribbons were measured by atomic force microscopy
(AFM) and scanning electron microscopy (SEM), which showed a broad dispersion in
thickness with values between 3 to 80 nm, and with average values of 28± 10 nm for 1n and
61 ± 18 nm for 1n-Aerogel. This material had a specific surface area of 21 m2 g−1 (Table 3),
and it can be ascribed to the ribbon-like shape of the crystals comprising the aerogel. As a
proof of concept, a stationary phase for high-performance liquid chromatography (HPLC)
was made up with this MOA thanks to its meso/macroporous nature, nanosize, and the
highly selective supramolecular interaction caused by the presence of nucleobases.
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5. Conclusions

This overview has enabled us to highlight new bioinspired colloids, gels, and aerogels
based on coordination bonds as a recent research area that has been emerging in recent
years by allowing the creation of new biological materials with interesting advantages and
novel applications in biomedicine and bioanalytical techniques (Table 4).

Table 4. Summary of coordination compounds-based colloids, gels and aerogels and its applications.

Metal Center Biological Interest Ligands Material State Applications References

Nucleotides/nucleobases
derivatives

Aminoacids/Peptides
derivatives

Ag(I)

GMP Gel Immobilization of protein [24]
A, C Gel Antibacterial [37]
IMP Gel Antibacterial, catalyst and

water treatment [38]

Fmoc-GCE-OH Gel Sol-gel stimulus-response,
catalyst and antibacterial [61]

IH6 Gel Selective killing of wound-
gressing/antibacterial [62]

Fmoc-Amino acids Gel Drug-
delivery/antibacterial [63]

Ln(III) AMP Gel
Sol-gel stimulus-response

and encapsulation of
glucose oxidase enzyme.

[25]

Cu(II)
TAcOH Colloid 3D printing ink and

humidity sensor [17,18]

Aspartic acid Gel Catalyst, antibacterial,
wound-healing agent [25,66]

UAcOH Aerogel Stationary phase for
HPLC column [76]

Phenylalanine
based-amphiphiles Gel Encapsulation of dyes and

vitamin B12 molecules [49]

Zn(II) AMP Gel Sol-gel stimulus-response
and self-healing [35]

GFFYGGGHGRGD Gel Antimicrobial [67]

Cd(II) T, U Gel Template for the in-situ
quantum dots growth [39]

UiO-68 ATP Gel Controlled drug release [43]

Ni(II) Tyrosine-based
amphiphiles Gel Sol-gel stimulus-response [47]

Mn(II), Co(II),
Ni(II)

Phenylalanine
based-amphiphiles Gel Encapsulation of dyes and

vitamin B12 molecules [46]

Co(II) BTC-arginine Gel Antibacterial/Sensor [57]

Mg(II)
N-(7-hydroxyl-4-

methyl-8-
coumarinyl)-alanine

Gel pH and
mechano-responsive [52]

Tb(III), Eu(III) Phenylalanine Gel Luminescent inks for
anti-counterfeiting [59]

Fe(III)/Fe(II) Polyaspartic acid Aerogel Supercapacitors [74]
AMP Gel Superparamgnetic/porosity [36]

The dynamism of metal–organic biomolecule interaction in these soft materials has
not only resulted in controllable nanostructures but also induced multi-stimuli responsive
behaviors. Therefore, nucleotides or nucleobases have been demonstrated to be useful
in the manufacture of nanocarriers metal–organic colloids/gels with selective molecular
recognition, entrapping guest molecules, and pH response, acting also as drug-delivery
materials; or even amino acids-based hydrogels have shown bactericide and wound-healing
properties. Herein, the selection of metal ions such as Zn(II), Ag(I), Ln(III), Co(II) or Cu(II)
is one of the most important factors in the tailoring of new metal–organic gels and aerogels
with antimicrobial and antibacterial qualities. Drug delivery is useful as artificial enzymes
due to their catalytic activity. Some of these reported works show the improvement of
processability and handling regarding powdery CPs. Indeed, their synthesis in many
cases leads to a reduction in size, resulting in their synergy with nanotechnology and the
launching of new technological advances such as 3D printing, light-emitting devices, solar
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cells, anti-counterfeiting, energy scavenging, biosensing, and bioimaging. The work also
shows how much remains to be done in relation to new possible applications, such as
in energy, where the emerging area of bio-batteries, biological fuel cells or microbial fuel
cells, and bio-inspired ligands such as enzymes used together with metals have not yet
been explored.

Despite such astonishing applications, there are challenging issues that still need
to overcome overall those related to structure-property correlation of CPGs and their
characterization. The development and use of new characterization techniques have
become a fundamental strategy, as a single-crystal structure determination is not possible
here. All these hybrid materials and their synthesizing strategies are broadening the
way forward for the rational optimization of CPs and MOFs with the enhancement of
stability, easy manufacturing, accessibility, and flexibility, which will emerge in potential
applications shortly.
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