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Abstract

Background Mechanical ventilation at high tidal volume (HTV)
may cause pulmonary capillary leakage and acute lung
inflammation resulting in ventilator-induced lung injury. Besides
blunting the Toll-like receptor-4-induced inflammatory cascade
and lung dysfunction in a model of lipopolysaccharide-induced
lung injury, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphorylcholine (OxPAPC) exerts direct barrier-protective
effects on pulmonary endothelial cells in vitro via activation of
the small GTPases Rac and Cdc42. To test the hypothesis that
OxPAPC may attenuate lung inflammation and barrier disruption
caused by pathologic lung distension, we used a rodent model
of ventilator-induced lung injury and an in vitro model of
pulmonary endothelial cells exposed to pathologic
mechanochemical stimulation.

Methods Rats received a single intravenous injection of
OxPAPC (1.5 mg/kg) followed by mechanical ventilation at low
tidal volume (LTV) (7 mL/kg) or HTV (20 mL/kg).

Bronchoalveolar lavage was performed and lung tissue was
stained for histological analysis. In vitro, the effects of OxPAPC
on endothelial barrier dysfunction and GTPase activation were
assessed in cells exposed to thrombin and pathologic (18%)
cyclic stretch.

Results HTV induced profound increases in bronchoalveolar
lavage and tissue neutrophils and in lavage protein. Intravenous
OxPAPC markedly attenuated HTV-induced protein and
inflammatory cell accumulation in bronchoalveolar lavage fluid
and lung tissue. In vitro, high-magnitude stretch enhanced
thrombin-induced endothelial paracellular gap formation
associated with Rho activation. These effects were dramatically
attenuated by OxPAPC and were associated with OxPAPC-
induced activation of Rac.

Conclusion OxPAPC exhibits protective effects in these
models of ventilator-induced lung injury.

Introduction
Acute lung injury (ALI) is a devastating clinical syndrome char-
acterized by acute lung inflammation and vascular barrier dis-
ruption that affects more than 200,000 patients per year in the
US and is associated with a mortality rate of 30% to 50%
[1,2]. Mechanical ventilation, particularly with high tidal vol-
umes (HTVs), can worsen or even cause de novo lung injury

[3-5]. The landmark ARDSnet trial demonstrated a 22%
decrease in mortality in acute respiratory distress syndrome
(ARDS) with the use of low tidal volume (LTV) mechanical ven-
tilation [6]. However, despite recent advances in LTV ventila-
tory strategies and a better understanding of the underlying
inflammatory pathophysiology of ALI, there remain few effec-
tive treatments for this devastating illness. Meta-analyses of
large-scale human trials have failed to show a mortality benefit
from early high-dose corticosteroids, N-acetylcysteine,
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surfactant, or prostaglandin E1 despite promising preclinical
studies [7]. Thus, ALI and ventilator-induced lung injury (VILI)
continue to present a significant clinical challenge, and novel
treatments aimed at reducing vascular leak and acute inflam-
mation in lung injury are needed.

Cell-membrane phospholipids and phospholipids present in
circulating lipoproteins may undergo oxidation by lipoxygen-
ases or reactive oxygen and nitrogen species as a result of
VILI, trauma, or septic inflammation [8-13]. One of the major
plasma membrane phospholipids is 1-palmitoyl-2-arachido-
noyl-sn-glycero-3-phosphorylcholine (PAPC), which upon oxi-
dation (OxPAPC) may propagate chronic vascular
inflammatory processes involved in atherogenesis [14-17] but
also exhibit potent anti-inflammatory effects in acute settings
[8-13]. Administration of a mixture of lipopolysaccharide (LPS)
and OxPAPC decreases inflammatory cell recruitment and
cytokine production in the lungs [18] and even protects
against LPS-mediated lethal shock [19]. We recently demon-
strated that intravenously administered OxPAPC protects
against tissue inflammation, lung vascular barrier dysfunction,
and inflammatory cytokine production caused by aerosolized
LPS [20]. The observation that intravenous injection of
OxPAPC significantly attenuated leukocyte extravasation and
decreased bronchoalveolar lavage (BAL) protein content
induced by intratracheal administration of LPS suggested that
the in vivo protective effect of OxPAPC may be associated, in
part, with its direct effects on the vascular endothelial barrier.

Previously, we described potent Rac-dependent barrier-pro-
tective effects of oxidized phospholipids on cultured pulmo-
nary endothelial cells (ECs) and identified the critical role of
cyclopentenone-containing oxidized modifications of ara-
chidonoyl moiety and polar head groups (choline and serine)
in the mediation of the OxPAPC effects [21,22]. Our pub-
lished data demonstrate the ability of barrier-protective oxi-
dized phospholipids to attenuate thrombin-induced stress
fiber and paracellular gap formation, Rho activation, myosin
light chain phosphorylation, and hyperpermeability. Further-
more, barrier-protective effects of OxPAPC in the model of
thrombin-induced EC barrier dysfunction are associated with
stimulation of Rac signaling critical for EC barrier recovery
[21,23,24].

In this study, we used rodent models of VILI and pulmonary
ECs exposed to physiologic and pathologic levels of cyclic
stretch (CS) and thrombin stimulation to test the hypotheses
that vascular leak caused by mechanical ventilation at HTVs
involves the Rho pathway of endothelial barrier dysfunction
and that OxPAPC may attenuate Rho activation induced by
VILI-associated pathologic mechanochemical stimulation via
Rac-dependent mechanisms. Selected parts of this study
were presented at the American Thoracic Society International
Conference in San Diego, California, 20 to 25 May 2006.

Materials and methods
Animal studies
Adult male Brown Norway rats (250 to 350 g) (Charles River
Laboratories, Inc., Wilmington, MA, USA) or adult male
C57BL/6J mice (8 to 10 weeks old with an average weight of
20 to 25 g) (The Jackson Laboratory, Bar Harbor, ME, USA)
were anesthetized with an intraperitoneal injection of ketamine
(75 mg/kg) and acepromazine (1.5 mg/kg). All rat studies
were performed using 2-hour mechanical ventilation. Trache-
otomy was performed and the trachea was cannulated with a
14-guage intravenous catheter, which was tied into place to
prevent air leak. Rats were assigned to either HTV (20 mL/kg)
or LTV (7 mL/kg) mechanical ventilation at 85 breaths per
minute and 0 positive end-expiratory pressure (PEEP) for 2
hours. Arterial blood pressure and pH were monitored via a
carotid artery catheter at 30-minute intervals. External dead
space in the HTV group allowed the maintenance of blood pH
of 7.30 to 7.44. Intravenous fluid boluses of phosphate-buff-
ered saline (PBS) were given to maintain a mean arterial pres-
sure of greater than 65 mm Hg. Rats were randomly assigned
to concurrently receive an intravenous bolus of sterile PBS or
OxPAPC (1.5 mg/kg) via the jugular vein at the initiation of
mechanical ventilation. At the end of each experiment, rats
were killed by exsanguination under anesthesia, and BAL was
performed on the left lung using 3 mL of sterile PBS. BAL
inflammatory cell counting was performed using a standard
hemacytometer technique. Differential cell counts were per-
formed on Diff-Quick-stained (Baxter Diagnostics, McGaw
Park, IL, USA) slides with a minimum of 300 cells per slide.
The BAL protein concentration was determined by a modified
Lowry colorimetric assay using a Bio-Rad DC protein assay kit
(Bio-Rad Laboratories, Inc., Hercules, CA, USA). In subse-
quent experiments, mechanical ventilation of mice was per-
formed for 4 hours as we [25] and others [26] have previously
described. Mice were treated intravenously with OxPAPC (1.5
mg/kg), oxidation-resistant phospholipid (di-myristoyl-sn-glyc-
ero-3-phosphorylcholine [DMPC]) (1.5 mg/kg), Rho inhibitor
Y27632 (10 mg/kg), or thrombin signaling peptide TRAP-6
(thrombin receptor activating peptide-6) (3 × 10-7 mol/mouse)
followed by HTV or LTV (30 or 7 mL/kg, respectively, at 75
breaths per minute and 0 PEEP for 4 hours). Control animals
were anesthetized and allowed to breathe spontaneously. At
sacrifice, BAL of both lungs was performed with 1 mL of sterile
Hanks' balanced salt solution for measurement of inflamma-
tory cells and protein. All animal experiments were approved
by the Institutional Animal Care and Use Committee at Johns
Hopkins University and the University of Chicago. The animals
were housed in pathogen-free conditions in the Johns Hopkins
Asthma and Allergy Center and the University of Chicago Ani-
mal Care Facilities, where they were cared for in accordance
with institutional and National Institutes of Health (Bethesda,
MD, USA) guidelines.
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Histological assessment for lung injury
At sacrifice, the lungs were harvested without lavage collec-
tion and fixed in 4% paraformaldehyde. After fixation, the lungs
were embedded in paraffin, cut into 4-μm sections, and
stained with hematoxylin and eosin. Sections were evaluated
at × 400 magnification.

Measurement of Evans blue accumulation
Measurement of Evans blue accumulation in the lung tissue
was performed by spectrofluorimetric analysis of lung tissue
lysates according to the protocol described previously [27].

Reagents and cell culture
PAPC was obtained from Sigma-Aldrich (St. Louis, MO, USA)
and oxidized by exposure of dry lipid to air for 72 hours. The
extent of oxidation was monitored by positive-ion electrospray
mass spectrometry as described previously [20,21,28].
Human pulmonary macro- and microvascular ECs were
obtained from Lonza Inc (Allendale, NJ, USA), maintained
according to the vendor's protocol, and used at passages 5 to
8 for CS experiments as previously described [29,30]. Human
thrombin was obtained from Sigma-Aldrich. RhoA and Rac1
antibodies were obtained from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA, USA).

Cell culture under cyclic stretch
All CS experiments were performed using an FX-4000T Flex-
ercell Tension Plus system (Flexcell International Corporation,
Hillsborough, NC, USA) equipped with a 25-mm BioFlex
Loading Station as previously described [29,30]. Experiments
were performed in the presence of culture medium containing
2% fetal bovine serum. Briefly, ECs were seeded at standard
densities (8 × 105 cells per well) onto collagen I-coated flexi-
ble-bottom BioFlex plates. After 48 hours of culture, each plate
received fresh medium, was mounted onto the Flexercell sys-
tem, and was exposed for 2 hours to either low-magnitude
(5% elongation) or high-magnitude (18% elongation) CS to
recapitulate the mechanical stresses experienced by the alve-
olar endothelium during normal respiration and HTV mechani-
cal ventilation, respectively [29,31,32]. At 2 hours, a subset of
plates were treated with OxPAPC (20 μg/mL) for 15 minutes
followed by treatment with thrombin (0.5 U/mL) and incuba-
tion for 15, 30, or 50 minutes with continuous exposure to CS.
Control BioFlex plates with static EC culture treated with
OxPAPC and/or thrombin were placed in the same cell culture
incubator. At the end of experiment, cell lysates were collected
for Rac and Rho activation assays, or CS-exposed endothelial
monolayers were fixed with 3.7% formaldehyde and used for
immunofluorescence staining as previously described [21,33].

Rho and Rac activation assays
Rho and Rac activation assays were performed using com-
mercially available assay kits purchased from Upstate Biotech-
nology (Lake Placid, NY, USA) as we have previously
described [21,33].

Measurement of transendothelial electrical resistance
The cellular barrier properties were analyzed by measurement
of transendothelial electrical resistance across confluent
human pulmonary artery and human lung microvascular
endothelial monolayers using an electrical cell-substrate
impedance sensing system (Applied BioPhysics, Inc., Troy,
NY, USA) as previously described [21,33,34].

Immunofluorescence staining
After exposure to CS and agonist stimulation, ECs were sub-
jected to immunofluorescence staining to visualize actin fila-
ments as previously described [21,33].

Statistical methods
All in vivo data are presented as mean ± standard deviation.
Group comparisons were evaluated by the analysis of variance
test with post hoc Newman-Keuls multiple comparison test. P
values of less than 0.05 were considered statistically
significant.

Results
Effects of OxPAPC on ventilator-induced lung 
inflammation and barrier dysfunction
We evaluated the effects of intravenously administered
OxPAPC on the parameters of lung inflammation and barrier
dysfunction in rats exposed to mechanical ventilation at HTV
(20 mL/kg) compared with control rats exposed to 'protective'
LTV mechanical ventilation (7 mL/kg) [35-37]. In our previous
studies, we have determined the range of OxPAPC doses (1.5
to 3.0 mg/kg) that provided the optimal barrier protection in
vivo and demonstrated that at these doses OxPAPC alone did
not change total cell count, neutrophil count, or protein con-
tent in the BAL of uninjured control animals [20]. Rats received
a single intravenous dose of OxPAPC (1.5 mg/kg) or sterile
PBS at the onset of HTV or LTV mechanical ventilation. At 2
hours, BAL and tissue harvesting were performed as
described above. HTV induced an increase in BAL inflamma-
tory cell count in comparison with LTV controls (9.92 × 104 ±
1.79 versus 5.83 × 104 ± 0.72 cells per milliliter in LTV con-
trols) (Figure 1a). This effect was due mainly to an influx of pol-
ymorphonuclear leukocytes (PMNs) (Figure 1b, bottom), and
OxPAPC markedly attenuated both total BAL cell count (5.89
× 104 ± 0.55 versus 9.92 × 104 ± 1.79 cells per milliliter in
HTV) and BAL PMNs (1.57 ± 0.32 × 104 versus 3.15 ± 0.86
× 103 cells per milliliter in HTV). Statistical analysis of BAL
macrophages (Figure 1b, top) showed that, despite a small
trend toward increased alveolar macrophages in the HTV
group compared with LTV controls and HTV + OxPAPC-
treated animals, there were no statistically significant differ-
ences in macrophage counts among the three groups. Like-
wise, HTV caused significant barrier disruption, inducing a
1.7-fold increase in BAL protein compared with LTV controls
(0.873 ± 0.136 versus 0.325 ± 0.038 mg/mL in control). This
effect was significantly attenuated by a single intravenous
injection of OxPAPC (0.500 ± 0.092 versus 0.873 ± 0.136
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mg/mL in HTV alone) (Figure 1c). T test comparison of non-
ventilated controls with LTV controls showed no statistically
significant differences in BAL inflammatory cells or protein
between the two groups (data not shown). Because PAPC is
subject to in vivo oxidation to OxPAPC, analyses of BAL pro-
tein and cell count were performed in an additional series of
experiments in a mouse model of VILI using the oxidation-
resistant PAPC analog, DMPC. DMPC had no effect on either
BAL cell count or protein in control animals and did not protect
against HTV-induced cell and protein accumulation in the BAL
(Figure 2). These results are also consistent with the lack of
barrier-protective effects by DMPC in EC cultures, as we have
previously described [21]. As in our previous study, OxPAPC
had no significant effect on BAL cell count or protein content
in uninjured control animals (Figure 2).

Histological analysis of paraffin-embedded rat lung sections
stained with hematoxylin and eosin revealed parenchymal
inflammatory cell recruitment (neutrophils noted with arrows)
and areas of alveolar hemorrhage indicative of vascular disrup-
tion with HTV ventilation that was attenuated with OxPAPC
(Figure 3a). Quantitative analysis of acute tissue inflammation
revealed a 10-fold increase in tissue PMNs with HTV ventila-
tion (39.94 ± 12.4 per 10 high power microscopic fields

Figure 1

Effects of OxPAPC on inflammatory cell recruitment in bronchoalveolar lavage (BAL) fluid of rats exposed to high tidal volume (HTV)Effects of OxPAPC on inflammatory cell recruitment in bronchoalveolar 
lavage (BAL) fluid of rats exposed to high tidal volume (HTV). HTV (20 
mL/kg, 2 hours) induced a marked increase in BAL total cell count (a) 
and macrophages and neutrophils (b) compared with low tidal volume 
(LTV) controls. Intravenous OxPAPC (1.5 mg/kg) markedly attenuated 
this response, reducing inflammatory cells to control levels and signifi-
cantly reducing neutrophil influx. *p < 0.05 versus LTV, **p < 0.05 ver-
sus HTV (n = 5 to 6 per group). (c) BAL protein concentration was 
assessed as a measure of vascular barrier disruption following 2 hours 
of mechanical ventilation with LTV or HTV. Intravenous OxPAPC (1.5 
mg/kg) significantly reduced the pronounced increase in BAL protein 
induced by HTV mechanical ventilation (*p < 0.01 versus LTV, **p < 
0.05 versus HTV). ND, no difference; OxPAPC, oxidized 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphorylcholine; PMN, polymorphonu-
clear leukocyte.

Figure 2

Effects of OxPAPC and DMPC on inflammatory cell recruitment in bronchoalveolar lavage (BAL) fluid of mice exposed to high tidal volume (HTV)Effects of OxPAPC and DMPC on inflammatory cell recruitment in 
bronchoalveolar lavage (BAL) fluid of mice exposed to high tidal volume 
(HTV). HTV (30 mL/kg, 4 hours) induced a dramatic increase in BAL 
total cell count (a) and protein content (b), which was markedly attenu-
ated by intravenous injection of OxPAPC (1.5 mg/kg) but not DMPC 
(1.5 mg/kg). There were no significant differences in cell counts and 
protein content between animals treated with vehicle, OxPAPC, or 
DMPC alone. *p < 0.05 (n = 6 to 9 per group). Con, control; DMPC, di-
myristoyl-sn-glycero-3-phosphorylcholine; ND, no difference; OxPAPC, 
oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine.
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[HPF] versus 3.33 ± 1.36 per 10 HPF in LTV controls) that
was significantly reduced by OxPAPC (10.08 ± 2.75 per 10
HPF versus 39.94 ± 12.4 per 10 HPF in HTV) (Figure 3b).
Injection of non-oxidized PAPC (1.5 mg/kg) was without effect
(data not shown).

The protective effects of OxPAPC against vascular leak were
further assessed by measurement of Evans blue leakage into
the lung tissue. HTV induced noticeable Evans blue leakage
from the vascular space into the lung parenchyma, which was
significantly decreased by OxPAPC pretreatment (Figure 4a).
Importantly, the oxidation-resistant PAPC analog DMPC did
not significantly reduce Evans blue accumulation in the tissue
(Figure 4b). Thus, our data clearly demonstrate protective
effects of OxPAPC in both rat and mouse models of ALI
induced by mechanical ventilation at HTV.

Involvement of Rho pathway in ventilator-induced lung 
inflammation and barrier dysfunction
In the following experiments, we investigated a role of Rho-
dependent signaling in lung injury induced by mechanical ven-
tilation. Pharmacologic inhibition of Rho-associated kinase by
Y-27632 markedly attenuated HTV-induced increases in lung
BAL cell count and protein content in our murine VILI model
(Figure 5a,b), suggesting the involvement of Rho signaling in
the lung dysfunction caused by mechanical stress. We have
previously described attenuation of thrombin-induced
endothelial barrier dysfunction by OxPAPC via Rac-dependent
suppression of Rho activity [21,22]. Taken together, these
results strongly suggest Rac-Rho crosstalk as the mechanism
underlying protective effects of OxPAPC in the model of VILI.

It is important to note that disturbances in coagulation and
fibrinolysis have been clearly demonstrated in patients with
ALI/ARDS. Recent reports also suggest that mechanical ven-
tilation may lead to or aggravate pulmonary coagulopathy [38].
Because thrombin is known to activate Rho both in vivo and
in vitro, increased thrombin levels may become a considerable
factor contributing to the Rho-mediated vascular endothelial
barrier dysfunction caused by HTV mechanical ventilation.
Because the in vivo use of thrombin is limited due to signifi-
cant intravascular thrombosis, we performed additional
experiments using thrombin-derived non-thrombogenic PAR-1
(protease-activated receptor-1) receptor ligand TRAP-6 in our
murine VILI model. Mice were given a single dose of intrave-
nous TRAP-6 (3 × 10-7 mol/mouse) followed by 4 hours of
HTV mechanical ventilation. Measurements of BAL protein
concentration and cell count revealed that TRAP-6 exacer-
bated HTV-induced lung dysfunction, inducing a 36% ± 6.7%
increase in BAL inflammatory cells and a 62% ± 9.2%
increase in BAL protein compared with animals treated only
with HTV. Notably, OxPAPC, but not its oxidation-resistant
analog DMPC (data not shown), significantly reduced these
parameters of lung injury in TRAP-6-treated animals (Figure
5c,d).

Figure 3

Histological assessment of the effect of OxPAPC on ventilator-induced lung injuryHistological assessment of the effect of OxPAPC on ventilator-induced 
lung injury. Whole lungs (4 to 6 animals from each experimental group) 
were agarose-inflated in situ, fixed in 10% formalin, and used for histo-
logic evaluation by hematoxylin and eosin staining as described in 
Materials and methods. Histological analysis of lung tissue (×40 magni-
fication) (a) and quantitative analysis of lung tissue neutrophil count (b) 
obtained from rats exposed to high tidal volume (HTV) mechanical ven-
tilation demonstrate a neutrophilic inflammation and areas of alveolar 
hemorrhage, which were attenuated by co-treatment with intravenous 
OxPAPC. For tissue polymorphonuclear leukocyte (PMN) counts, 10 
fields per slide were counted for n = 4 animals per experimental group. 
*p < 0.01 versus low tidal volume (LTV), **p < 0.05 versus HTV (n = 4 
to 6 per group). HPF, high power microscopic field; OxPAPC, oxidized 
1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine.
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Effects of OxPAPC on monolayer recovery in human 
pulmonary endothelial cells exposed to cyclic stretch 
and thrombin
Thrombin stimulation of pulmonary ECs exposed to pathologi-
cally relevant levels of CS in vitro was used to reproduce a
'double-hit' model of VILI and lung vascular dysfunction, com-
bining excessive levels of mechanical ventilation with an ede-
magenic agent (thrombin) known to activate Rho signaling
[33,39-42]. Using this model, we evaluated the protective
effects of OxPAPC. We have previously shown that pathologic
CS (18% elongation) enhances endothelial disruption
induced by the edemagenic agonist thrombin as indicated by
pronounced paracellular gap formation and activation of acto-
myosin contraction governed by increases in myosin light
chain phosphorylation [23]. Human pulmonary ECs were
exposed to pathologic 18% CS for 2 hours and treated with
OxPAPC (20 μg/mL, 15 minutes) or vehicle followed by stim-
ulation with thrombin (0.5 U/mL) with continuing CS (Figure
6). Cells exposed to OxPAPC alone during CS revealed

enhanced monolayer integrity, with increased peripheral F-
actin staining and a reduced number of central actin stress fib-
ers (Figure 6b). PAPC alone affects neither F-actin remodeling
nor small GTPase activity [21]. Consistent with our recent
studies [23], thrombin treatment of pulmonary ECs exposed to
18% CS induced rapid barrier disruption with dramatic para-
cellular gap formation and enhanced stress fiber formation
(Figure 6c) with partial recovery by 50 minutes (Figure 6e).
Pretreatment with OxPAPC dramatically attenuated the para-
cellular gap formation in ECs exposed to 18% CS at 30 min-
utes of thrombin treatment and completely restored EC
cytoskeletal organization and monolayer integrity at 50 min-
utes (Figure 6d,f). At the 30-minute time point, monolayer
recovery in the OxPAPC-treated cells was almost complete
(Figure 6d) in comparison with the delayed monolayer recov-
ery of the cells without OxPAPC treatment (Figure 6c,e). Sim-
ilar to the 30-minute time point, OxPAPC treatment diminished
stress fiber and gap formation in the endothelial monolayers
exposed to 18% CS and thrombin for 15 minutes (data not

Figure 4

Effects of OxPAPC on high tidal volume (HTV)-induced lung vascular leakEffects of OxPAPC on high tidal volume (HTV)-induced lung vascular leak. Mice were treated with OxPAPC (1.5 mg/kg, intravenous) or DMPC (1.5 
mg/kg, intravenous) followed by mechanical ventilation at low tidal volumes (LTVs) (7 mL/kg) or HTVs (30 mL/kg) for 4 hours. Effects of phospholip-
ids on the HTV-induced vascular leak were assessed by measurements of Evans blue leakage into the lung tissue. HTV, but not LTV, induced Evans 
blue leakage from the vascular space into surrounding lung tissue, which was dramatically attenuated by OxPAPC (a), but not by DMPC (b), pre-
treatment. The results are representative of three independent experiments. Insets depict the quantitative analysis of Evans blue-labeled albumin 
extravasation in the shown lung preparations, which was performed by spectrophotometric analysis of Evans blue extracted from the lung tissue 
samples as described in Materials and methods. Evans blue accumulation in the lungs from HTV-exposed animals (122 ± 12 μg/g wet weight lung 
tissue) was taken as 100%. The results are representative of three independent experiments. DMPC, di-myristoyl-sn-glycero-3-phosphorylcholine; 
OxPAPC, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine.
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shown). These data demonstrate that OxPAPC enhances pul-
monary EC monolayer integrity and peripheral actin
cytoskeletal rearrangement in CS-preconditioned pulmonary
ECs without thrombin treatment, dramatically attenuates para-
cellular gap formation in cells exposed to 18% CS and
thrombin, and accelerates EC barrier recovery after thrombin
challenge.

Because the site of transvascular flux in the lungs is the micro-
vasculature, and phenotypic differences between macro- and
microvascular endothelium are well recognized, we next used
human lung microvascular ECs to further characterize the
effects of oxidized phospholipids. Our results demonstrate
that, as with human pulmonary artery ECs (HPAECs),
OxPAPC increased baseline transendothelial electrical resist-
ance in human lung microvascular ECs in a dose-dependent
manner (Figure 7a). Furthermore, OxPAPC was protective
against thrombin-induced permeability in both macro- and

Figure 5

Effects of Rho kinase inhibition on severity of high tidal volume (HTV)-induced lung injuryEffects of Rho kinase inhibition on severity of high tidal volume (HTV)-
induced lung injury. Mice received a single dose of Rho kinase inhibitor 
Y27632 (10 mg/kg, intraperitoneal) or TRAP-6 (3 × 10-7 mol/mouse, 
intravenous) followed by mechanical ventilation (30 mL/kg, 4 hours) 
with or without OxPAPC injection (1.5 mg/kg, intravenous). Inhibition of 
the Rho pathway markedly attenuated HTV-induced bronchoalveolar 
lavage (BAL) cell count and protein content (a,b). TRAP-6 further 
enhanced HTV-induced increases in BAL cell count and protein con-
tent (c,d), whereas OxPAPC significantly reduced these effects. *p < 
0.05 (n = 4 to 8 per group). Con, control; OxPAPC, oxidized 1-palmi-
toyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine; TRAP-6, thrombin 
receptor activating peptide-6; Yinh, Y27632.

Figure 6

Cells subjected to pathologic cyclic stretch (CS) (18%, 2 hours) were pretreated with vehicle (a) or OxPAPC (20 μg/mL) (b) followed by thrombin (0.5 U/mL) stimulation for 30 (c,d) or 50 (e,f) minutesCells subjected to pathologic cyclic stretch (CS) (18%, 2 hours) were 
pretreated with vehicle (a) or OxPAPC (20 μg/mL) (b) followed by 
thrombin (0.5 U/mL) stimulation for 30 (c,d) or 50 (e,f) minutes. F-actin 
was visualized by immunofluorescence staining with Texas-Red phalloi-
din. Cells subjected to CS and thrombins (30 or 50 minutes) demon-
strate barrier disruption, with the formation of transcellular actin stress 
fibers resulting in increased tension, cellular contraction, and paracellu-
lar gap formation (arrows). OxPAPC enhanced monolayer integrity and 
peripheral actin cytoskeletal rearrangement in ECs exposed to 18% CS 
alone and dramatically attenuated thrombin-induced gap formation and 
disruption of monolayer integrity and accelerated EC barrier recovery. 
Representative results from three independent experiments are shown. 
Two wells from each experiment were observed for each stimulation. 
OxPAPC, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphoryl-
choline; Thr, thrombin.
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microvascular ECs (Figure 7b). Interestingly, macro- and
microvascular ECs exhibited different sensitivities to OxPAPC
and, in microvascular EC OxPAPC, induced a greater barrier-
protective effect than in macrovascular ECs.

Effects of OxPAPC on Rac and Rho activation following 
cyclic stretch and thrombin stimulation
The small GTPases Rho and Rac play opposing roles in the
regulation of EC permeability [24,43,44]. Time-dependent
effects of thrombin and OxPAPC on Rho and Rac activities in
static EC cultures have been previously reported in our
[21,22,33] and other studies. Similar to HPAEC cultures,
direct activation of Rac by OxPAPC and OxPAPC-mediated
attenuation of thrombin-induced Rho activity has also been

observed in the lung microvascular EC cultures (data not
shown). Thrombin-induced regulation of Rho and Rac in CS-
stimulated pulmonary EC cultures has also been described in
detail in our previous publications [23]. Our data demon-
strated that, in comparison with static conditions, pathologic
strain promoted thrombin-induced Rho activation during the
acute phase and suppressed Rac activation during the recov-
ery phase of thrombin-induced EC barrier disruption, whereas
physiologic CS caused opposite effects on Rho and Rac. In
the present study, Rho and Rac activities were measured in
vitro at time points corresponding to the acute phase of
thrombin-induced barrier disruption (5 to 15 minutes) and the
recovery phase (50 minutes) based on our previous studies
[23]. Pulmonary ECs were exposed to 5% CS or 18% CS for

Figure 7

Effects OxPAPC on barrier properties in macro- and microvascular pulmonary endothelial cells (ECs)Effects OxPAPC on barrier properties in macro- and microvascular pulmonary endothelial cells (ECs). Human pulmonary artery (HPAEC) or microv-
ascular (HLMVEC) ECs were plated on gold microelectrodes to measure transendothelial electrical resistance (TER) and were cultured to conflu-
ence. Growth medium was replaced with serum-free Opti-MEM (Invitrogen Corporation, Carlsbad, CA, USA). After equilibration and stabilization, 
measurements of TER were performed. At the time indicated by the arrow, ECs were treated with various concentrations of OxPAPC (a) or cells 
were pretreated with OxPAPC (20 μg/mL) followed by thrombin (0.5 U/mL) stimulation (marked by second arrow) (b). Results are representative of 
three to six independent experiments. OxPAPC, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine; Thr, thrombin.
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2 hours and pretreated with OxPAPC (20 μg/mL, 15 minutes)
or vehicle prior to thrombin stimulation (0.5 U/mL, 15 minutes).
Thrombin-induced Rho activation was significantly increased
in ECs preconditioned at 18% CS as compared with ECs
exposed to 5% CS (Figure 8a). Furthermore, OxPAPC pre-
treatment significantly decreased thrombin-induced Rho acti-
vation in ECs exposed to both physiologic and pathologic CS
levels (Figure 8a). Thus, the OxPAPC-induced attenuation of
Rho activation in ECs exposed to 18% CS and thrombin
observed in these experiments is highly consistent with the
OxPAPC-induced reduction in actin stress fibers and paracel-
lular gap formation described above (Figure 6).

We have previously shown that thrombin stimulation causes a
decrease in basal Rac activity, which correlates with recipro-

cal Rho activation and Rho-dependent paracellular gap forma-
tion during the acute phase (15 minutes) of thrombin-induced
EC barrier dysfunction. Subsequent increases in Rac activa-
tion were seen at later time points and corresponded to EC
barrier recovery [22,23]. In this study, we analyzed Rac activa-
tion after 50 minutes of thrombin challenge in CS-precondi-
tioned cells pretreated with OxPAPC or vehicle control. As
above, pulmonary ECs were exposed to 5% CS or 18% CS
for 2 hours and pretreated with OxPAPC (20 μg/mL, 15 min-
utes) or vehicle prior to thrombin stimulation (0.5 U/mL, 50
minutes). OxPAPC treatment of ECs exposed to 5% CS or
18% CS caused significant increases in Rac activity (Figure
8b). In ECs preconditioned at 5% CS, pretreatment with
OxPAPC dramatically enhanced Rac activation during the
recovery phase after 50 minutes of thrombin stimulation (Fig-
ure 8b, right panel), whereas in ECs exposed to 18% CS, Rac
activity after 50 minutes of thrombin challenge was markedly
lower and comparable between OxPAPC-pretreated and
untreated cells. (Figure 8b, left panel). These results strongly
suggest potential synergistic effects of OxPAPC and physio-
logic CS on Rac-mediated pulmonary EC monolayer recovery
after challenge with edemagenic agents.

Discussion
Vascular barrier dysfunction and acute lung inflammation are
fundamental features that contribute to the significant mortality
associated with VILI and ARDS. Despite advances in protec-
tive LTV ventilation strategies, effective pharmacotherapy for
this devastating syndrome is lacking. Using an aseptic in vivo
model of VILI, we show here for the first time that a single intra-
venous dose of OxPAPC significantly attenuates the early vas-
cular barrier disruption and acute inflammation induced by
mechanical ventilation at HTV. Intravenous OxPAPC signifi-
cantly reduced alveolar and tissue inflammatory cell recruit-
ment and protein accumulation in the BAL after 2 hours of
mechanical ventilation at HTV.

In our previous study, we described similar protective effects
of OxPAPC in an animal model of LPS-induced lung injury
[20]. In that model, OxPAPC prevented neutrophil influx and
barrier disruption likely in part via direct competitive inhibition
of Toll-like receptor (TLR) binding [13,19,20]. However,
despite the apparent similarities between VILI and LPS-
induced lung injury, there are fundamental differences in the
mechanisms leading to these pathologies. LPS-induced lung
injury involves TLR-4-receptor-mediated activation of nuclear
factor-kappa-B (NF-κB) and other pathways leading to an
innate immune response, robust neutrophil infiltration, and
lung tissue inflammation, which culminate in lung barrier dys-
function, edema, and compromised gas exchange. In turn, VILI
induces a more modest acute inflammatory response with mild
lung neutrophil accumulation and distinct mechanisms leading
to inflammation and barrier dysfunction involving a different set
of signaling molecules [23,45-47] and transcription factors
[48]. For example, a group of genes upregulated by HTV

Figure 8

Effects of OxPAPC on RhoGTPase and RacGTPase activation in an in vitro model of ventilator-induced lung injuryEffects of OxPAPC on RhoGTPase and RacGTPase activation in an in 
vitro model of ventilator-induced lung injury. Human pulmonary 
endothelial cells (ECs) were exposed to 5% cyclic stretch (CS) or 18% 
CS for 2 hours and pretreated with OxPAPC (20 μg/mL, 15 minutes) 
or vehicle prior to thrombin stimulation (0.5 U/mL, 15 or 50 minutes). 
Measurements of Rho (a) and Rac (b) activation were performed using 
pull-down assays as described in Materials and methods. In ECs 
exposed to 5% CS or 18% CS, OxPAPC attenuated thrombin-induced 
Rho activation during the acute phase (15 minutes) (a) and promoted 
Rac activation during the recovery phase (50 minutes) (b) after 
thrombin challenge. Graphs represent results of scanning densitometry 
of the membranes and are expressed in relative density units (RDUs). 
Results are mean ± standard deviation of three to five independent 
experiments. *p < 0.05, comparison between OxPAPC+Thr and Thr 
alone. HTV, high tidal volume; LTV, low tidal volume OxPAPC, oxidized 
1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine; Thr, 
thrombin.
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mechanical ventilation alone (ETF, E2F, Nrf1, CREB, and
HIF1) is not found in the list of genes upregulated by LPS [49].
In turn, LPS-induced genes (ISRE, cREL, IRF, NF-κ B,
ICSBP, and PU.1) detected in the lung tissue are not upregu-
lated by mechanical ventilation [49,50].

Clinical studies suggest that the vascular leak observed in VILI
patients is caused by a combination of lung mechanical strain
and increased levels of edemagenic and inflammatory media-
tors such as thrombin, histamine, tumor necrosis factor-alpha,
and interleukin (IL)-8 and IL-1 [51-54]. Several two-hit animal
models have been proposed to reproduce the VILI syndrome,
combining experimentally induced lung inflammation (LPS,
acid aspiration) and mechanical ventilation at HTVs to more
appropriately reflect common comorbidities and risk factors
present in patients with ALI [55]. In line with these observa-
tions, we used an in vitro model of pulmonary ECs precondi-
tioned at a pathologically relevant level of CS (18% CS)
[29,31,32] and stimulated with the edemagenic agonist
thrombin to recapitulate VILI conditions in vitro.

Previous studies have shown that the EC barrier dysfunction
induced by pathologic CS and thrombin is mediated by Rho-
dependent mechanisms, whereas restoration of monolayer
integrity is dependent on Rac activation [23]. Furthermore,
Rac-dependent enhancement of peripheral actin cytoskeleton
and EC barrier integrity has been observed in static EC cul-
tures upon stimulation with OxPAPC [21,56]. Using an in vitro
model of VILI, we demonstrated the protective effects of
OxPAPC on barrier disruption induced by high-magnitude
(18%) CS and thrombin and linked them with OxPAPC-
induced reduction in Rho activity and modest increases in Rac
activity. Furthermore, the combination of physiologically rele-
vant CS (5% CS) and OxPAPC dramatically attenuated
thrombin-induced Rho activation in the acute phase of EC bar-
rier disruption and further promoted Rac activation associated
with EC recovery after thrombin challenge.

The in vitro and in vivo results presented here, as well as our
previously published results [20-22], strongly suggest that
OxPAPC can prevent or reverse the increased endothelial per-
meability caused by a variety of barrier-disruptive agents,
including inflammatory cytokines, edemagenic peptides, LPS,
and high-magnitude CS. Furthermore, results from our in vivo
model of VILI induced by HTV and TRAP-6 and data from pul-
monary ECs exposed to pathologic CS and thrombin in vitro
show potent barrier-protective effects of OxPAPC in the two-
hit models of ALI. Taken together, these results strongly sug-
gest that OxPAPC does not act as a specific anti-thrombin but
rather promotes endothelial barrier function via regulation of
Rac/Rho signaling leading to acceleration of EC monolayer
recovery and enhancement of peripheral cytoskeleton and
cell-cell junctions)[22,56-58]. Based on ample evidence from
in vitro and in vivo studies, we believe that intravascular
OxPAPC can act directly on the vascular endothelial layer and

cause cytoskeletal changes that serve to counteract a variety
of injurious insults that lead to barrier disruption.

Studies by several groups clearly suggest reciprocal relations
between Rho and Rac activation [59-62] and opposing roles
of Rho and Rac in maintaining EC barrier function
[22,33,43,63]. Upstream mechanisms of Rho regulation and
crosstalk between small GTPases Rho and Rac are the focus
of current studies by several groups [23,64,65]. The results of
this study show involvement of Rho-Rho kinase pathway in the
development of lung vascular leak in response to HTV
mechanical ventilation of mice, as vascular leak was
significantly attenuated by pretreatment with Rho kinase inhib-
itor Y27632 (Figure 5). Our results also suggest suppression
of agonist-induced activation of Rho pathway by oxidized
phospholipids in pulmonary ECs (Figure 8).

Several potential mechanisms may be involved in the barrier-
protective effects of and suppression of Rho signaling by
OxPAPC. OxPAPC stimulates protein kinase A [16,66], which
may suppress Rho activation via phosphorylation of Rho GDP
dissociation inhibitor (RhoGDI) [67]. Other mechanisms may
involve modulation of Rho-specific guanosine nucleotide
exchange factors (GEFs) by signal protein kinases (PKA, PKC,
and Src) activated by OxPAPC [66,68]. Recent studies sug-
gest downregulation of the Rho pathway by Rac-mediated sig-
naling cascades [60] via (a) direct Rac interaction with
RhoGDI [59], (b) PAK1-dependent inhibition of Rho-specific
GEF p115RhoGEF, and (c) stimulation of Rho-specific
GTPase-activating protein p190-RhoGAP by Rac [61].
However, mechanisms of Rac-Rho crosstalk, though critical
for endothelial permeability responses [21,23,69,70], are still
poorly understood. Ongoing studies in our group are aimed to
define upstream mechanisms of Rac activation by oxidized
phospholipids and crosstalk between Rac and Rho signaling
in the lung endothelial barrier regulation.

There is an apparent controversy between the protective
effects of OxPAPC described in this study and the role of oxi-
dant stress, lipid peroxidation, and tissue damage in patients
with ARDS and ALI. Isoprostanes, prostanoid compounds pri-
marily formed by non-enzymatic lipid peroxidation, have been
used as markers of in vivo oxidant stress, and their plasma lev-
els inversely correlate with outcome in patients with ARDS
[71]. Pathologic oxidation of surfactant lipids results in the
generation of both fragmented and oxygenated lipid peroxida-
tion products, which may exert different effects on the alveolar
epithelium [13,72]. Analysis of lipid peroxidation products
associated with these pathologies indicates generation of
fragmented phospholipids (such as POPVC and PGPC),
which exhibit barrier-disruptive effects shown in our studies
and other studies [21,73-75]. In contrast, sn-2-oxygenated,
but not sn-2-fragmented, phospholipids (PEIPC and PECPC)
are responsible for the OxPAPC-mediated Rac/Cdc42 activa-
tion, cytoskeletal remodeling, and induction of barrier-protec-
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tive effects in the vascular endothelium [21]. Thus, selection
for the protective sn-2-oxygenated products by precisely mon-
itored oxidation of synthetic phospholipids or direct synthesis
of lead compounds will be a promising but challenging task in
generating a novel group of phospholipid-derived compounds
combining anti-inflammatory and barrier-protective properties.
In conclusion, this study demonstrates for the first time the
protective effect of OxPAPC in the in vivo and in vitro models
of VILI. Although further studies are needed to clarify molecu-
lar mechanisms of OxPAPC barrier-protective effects, these
findings suggest that oxidized phospholipids and OxPAPC, in
particular, may be considered as a new group of therapeutic
candidates in ALI/VILI, combining anti-inflammatory and
barrier-enhancing properties in the treatment of this devastat-
ing disease.

Conclusion
The results presented here, as well as our previously published
data [20-22,58], strongly suggest that OxPAPC can prevent
or reverse the increased endothelial permeability caused by a
variety of barrier-disruptive agents, including inflammatory
cytokines, edemagenic peptides, LPS, and high-magnitude
CS. Using the in vivo and in vitro models of VILI, we demon-
strated for the first time the protective effect of oxidized phos-
pholipids against early vascular barrier disruption and acute
inflammation induced by mechanical ventilation at HTV. In con-
trast to the direct effects of OxPAPC on inhibition of the TLR-
4-mediated inflammatory cascade in the model of LPS-
induced lung inflammation and vascular dysfunction, we
attribute the protective effects of OxPAPC on the lung vascu-
lar endothelium in the aseptic VILI model to the OxPAPC-
induced activation of Rac signaling and reduction of Rho-
induced endothelial hyperpermeability. These findings
suggest that oxidized phospholipids may be considered as a
new group of therapeutic candidates in ALI/VILI, combining
anti-inflammatory and barrier-enhancing properties in the treat-
ment of this devastating syndrome.
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