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Abstract

Urinary tract infections (UTI) are extremely common and can be highly recurrent, with 1–2%

of women suffering from six or more recurrent episodes per year. The high incidence of

recurrent UTI, including recurrent infections caused by the same bacterial strain that caused

the first infection, suggests that at least some women do not mount a protective adaptive

immune response to UTI. Here we observed in a mouse model of cystitis (bladder infection)

that infection with two different clinical uropathogenic Escherichia coli (UPEC) isolates,

UTI89 or CFT073, resulted in different kinetics of bacterial clearance and different suscepti-

bility to same-strain recurrent infection. UTI89 and CFT073 both caused infections that per-

sisted for at least two weeks in similar proportions of mice, but whereas UTI89 infections

could persist indefinitely, CFT073 infections began to clear two weeks after inoculation and

were uniformly cleared within eight weeks. Mice with a history of CFT073 cystitis lasting four

weeks were protected against recurrent CFT073 infection after antibiotic therapy, but were

not protected against challenge with UTI89. In contrast, mice with a history of UTI89 cystitis

lasting four weeks were highly susceptible to challenge infection with either strain after anti-

biotic treatment. We found that depletion of CD4+ and CD8+ T cell subsets impaired the abil-

ity of the host to clear CFT073 infections and rendered mice with a history of CFT073

cystitis lasting four weeks susceptible to recurrent CFT073 cystitis upon challenge. Our find-

ings demonstrate the complex interplay between the broad genetic diversity of UPEC and

the host innate and adaptive immune responses during UTI. A better understanding of

these host-pathogen interactions is urgently needed for effective drug and vaccine develop-

ment in the era of increasing antibiotic resistance.

Author summary

Many patients suffer from highly recurrent urinary tract infections (UTI) caused by

Escherichia coli, which are genetically diverse bacteria. Recurrent episodes are often

caused by the same E. coli strain that caused the first infection, suggesting that some

patients may not develop a protective immune response. We found that two E. coli UTI
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strains behaved differently in a mouse model of UTI. One strain, UTI89, could infect the

bladder indefinitely, whereas strain CFT073 was always cleared within eight weeks. After

mice had a CFT073 infection and antibiotic treatment, they were protected from a

CFT073 challenge infection, but were susceptible to a UTI89 challenge infection. In con-

trast, mice with a UTI89 infection and antibiotics were susceptible to recurrent UTI when

challenged with either strain. We found that depleting T cells, immune cells important for

developing protection against infection, prevented mice from clearing their CFT073 infec-

tions and made them susceptible to recurrent CFT073 UTI. Thus, while infection with

one E. coli strain could trigger a protective immune response, another strain sidestepped

this response. Our findings shed new light on immune responses to UTI and may be

important for drug and vaccine development.

Introduction

Urinary tract infections (UTI) are among the most common infections: more than half of

women, as well as some men, will have at least one UTI in their lifetime [1], mostly caused by

uropathogenic E. coli (UPEC) [2,3]. In humans, the adaptive immune response to UTI, and

particularly to cystitis (bladder infection), is not well understood. Placebo studies show that in

some women an acute UTI spontaneously resolves, whereas other women develop symptom-

atic or asymptomatic colonization lasting weeks [4–8]. UTI can also be highly recurrent: after

receiving appropriate antibiotic therapy, 20–30% of women with an acute UTI will have a

recurrent episode (rUTI) within six months [1], despite the fact that about half of rUTI epi-

sodes are caused by the same UPEC strain that caused the initial infection [9]. These findings

suggest that individuals with UTI frequently fail to mount an adaptive immune response that

protects against subsequent infection, even with the same strain. Although bacterial factors

and host responses that impact innate immune responses to UTI have been characterized

[10,11], less is known about host and/or microbial factors that impact the host’s ability to

mount a protective adaptive immune response.

Studies of experimental infection in different strains of inbred mice have illustrated the

complexity of the role of adaptive immunity in determining UTI outcomes. In C57BL/6 mice,

UPEC infection is inherently self-limiting, independent of infectious dose, and adaptive

immune responses can partially protect from recurrent infection [12,13]. For example, the

adoptive transfer of either cellular or humoral immunity after experimental UPEC bladder

infection partially protects naive C57BL/6 mice against infection with an isogenic UPEC strain

[12]. Other strains of mice have been shown to be susceptible to same-strain recurrences

caused by the well-studied clinical cystitis isolate UTI89 [14,15]. For example, C3H/HeN mice

can develop chronic and severe same-strain recurrent infections with UTI89 in an infectious

dose-dependent manner [14], indicating that adaptive immunity towards UTI89 is insufficient

to prevent these outcomes. However, vaccination of C3H mice with bacterial antigens can

strongly protect against both acute and recurrent UTI [15,16], demonstrating that a protective

adaptive response to UTI can be experimentally induced in these mice.

Our previous studies in C3H/HeN mice (summarized in Fig 1) have revealed that within

24 hours post infection (hpi) with UTI89, a cyclooxygenase-2-dependent acute host-pathogen

checkpoint determines the outcome of the infection [14,17]. The hallmarks of “checkpoint

activation” are high urine bacterial titers (bacteriuria), pyuria (neutrophil accumulation in

urine), elevated serum levels of pro-inflammatory cytokines, and severe bladder inflammation

with bladder epithelial wounding. Elements of this checkpoint are predictive of recurrent UTI
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in women, demonstrating clinical relevance of the model [17]. Mice that do not activate the

checkpoint spontaneously resolve the infection within four weeks, and have bladder titers

<104 colony-forming units (CFU) at time of sacrifice [14]. In contrast, mice that activate the

checkpoint develop chronic cystitis, which we define as persistent, high-titer bacteriuria (>104

CFU/ml urine for four weeks) coupled with high bladder bacterial burden (>104 CFU/blad-

der) and bladder inflammation at sacrifice four weeks post infection (wpi). Strikingly, we have

found that those mice that develop chronic cystitis lasting at least four weeks remain infected

apparently indefinitely (six months or longer) [14], indicating that, once established, chronic

UTI89 bladder infections cannot be cleared by adaptive immunity. Antibiotics can clear the

chronic infection, but we found that a “molecular imprint” remains on the bladder mucosa in

the form of significant bladder mucosal remodeling [15,17] that modulates host response to

challenge infection. Thus, mice with a history of chronic UTI89 cystitis are highly susceptible

(or “sensitized”) to checkpoint activation and severe recurrent chronic cystitis upon challenge

infection with either UTI89 or other clinical uropathogenic strains [15,17].

Fig 1. The C3H/HeN mouse model of chronic and recurrent cystitis using the clinical cystitis isolate UTI89. (A) In the inbred

mouse strain C3H/HeN, inoculation with 108 CFU of the clinical UPEC isolate UTI89 can trigger a cyclooxygenase-2 (COX-2)-

dependent acute host-pathogen checkpoint (B) comprising high urine bacterial titers, elevated proinflammatory cytokines in the

serum, polymorphonuclear neutrophils (PMNs) in urine, and severe bladder inflammation and mucosal wounding [14,17]. (C) Mice

that trigger the checkpoint develop chronic cystitis (persistent bacteriuria�104 CFU/ml urine coupled with bladder titers�104 CFU

and bladder inflammation at sacrifice) lasting for four weeks or more [14]; (D) mice that do not trigger the checkpoint spontaneously

resolve the infection and develop sterile urine [14]. (E) In mice that develop chronic cystitis, antibiotic therapy administered at four

weeks post infection sterilizes the bladder; however, we found that the bladder does not return to its naive state. Instead, the bladder

harbors a “molecular imprint” of infection, comprising changes to the bladder transcriptome [15], smaller superficial cells with altered

differentiation [15], a remodeled epithelial membrane proteome [17], and the presence of lymphoid follicles [14]. When “challenged”

with a second bacterial exposure (typically 107 CFU), these remodeled bladders respond differently from age-matched naive bladders: if

cyclooxygenase-2 (COX-2)-mediated inflammation and checkpoint activation is triggered [15,17] (F), then (G) the host develops

severe recurrent chronic cystitis [14], which can be caused by UTI89 or other uropathogens such as the urosepsis isolate CFT073 [15].

During infection in the remodeled bladder, the bacterial niche is altered relative to the naive bladder (intracellular replication is

reduced) and the host responds with COX-2-mediated PMN infiltration and exfoliation of epithelial cells [15]. In the present study, we

investigated whether infection of juvenile C3H/HeN mice with CFT073 would result in the same constellation of phenotypes seen with

UTI89 infection, i.e. checkpoint activation, chronic cystitis and bladder remodeling, and susceptibility to recurrent UTI.

https://doi.org/10.1371/journal.ppat.1007457.g001
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In this study, we used these well-characterized mouse models of chronic and recurrent UTI

in C3H/HeN mice (Fig 1) to probe the roles of bacterial diversity and adaptive immunity in

UTI by comparing and contrasting the disease outcomes of two clinical UPEC isolates: the cys-

titis isolate UTI89 [18] and the pyelonephritis/urosepsis isolate CFT073 [19]. These isolates

belong to the B2 clade of E. coli, the clade in which uropathogenic strains are most commonly

found, but differ in their serotypes and their carriage of various mobile genetic elements, such

as plasmids and pathogenicity islands that are known to harbor virulence genes [20–22]. We

found that adaptive immunity was able to restrict chronic and same-strain recurrent cystitis

caused by CFT073, but this restriction did not translate to cross-protection against UTI89

challenge infection. A better understanding of the complexities of the adaptive immune

response to UTI could ultimately allow the development of new therapeutics, and inform our

understanding of adaptive immunity in the context of chronic bacterial infections in general.

Results

Cystitis outcomes are bacterial strain-dependent

First we assessed differences in host outcomes 28 days after infection with 108 CFU of either

UTI89 or CFT073 (Fig 1C and 1D). We found that CFT073 caused chronic cystitis lasting four

weeks, but at a significantly lower rate than UTI89 did (30% incidence for CFT073 vs. approxi-

mately 50% incidence with UTI89; Fig 2A), consistent with a previous study [21]. Whether

infected with UTI89 or CFT073, mice with chronic cystitis at 28 dpi had significantly higher

bladder bacterial burdens (Fig 2B) and bladder edema (Fig 2C) than mice that spontaneously

resolved their infection, in accordance with our definition of chronic cystitis. Kidney titers

were also higher in mice with chronic cystitis than those that resolved their infection (Fig 2D).

In a blinded analysis of scanning electron micrographs of chronically infected bladders at 28

dpi, there were no obvious differences between chronic UTI89 and chronic CFT073 cystitis,

with both infections causing epithelial disruption, immune cell infiltration, and abundant

extracellular rod-shaped bacteria (Fig 2E). However, compared to chronic UTI89 cystitis,

chronic CFT073 cystitis at 28 dpi trended toward reduced: bladder titers (Fig 2B), bladder

edema (Fig 2C), and kidney titers (Fig 2D), suggesting that chronic CFT073 cystitis at this

time point may be less robust than chronic UTI89 cystitis.

During chronic cystitis, CFT073 urine bacterial titers dropped significantly between 1 and

28 days post infection (dpi), though they remained above our predefined cutoff of 104 CFU

(Fig 2F). As well, in the course of this study we repeatedly observed that a subset of mice

resolved their CFT073 infection between 21 and 28 days (i.e. persistent bacteriuria >104 CFU

until 21 dpi, but urine and/or bladder titers <104 at 28 dpi), which we dubbed “late resolu-

tion.” Late resolution was not observed with UTI89 infection. Extending our studies past 28

days of infection revealed that every CFT073-infected mouse cleared bacteriuria within eight

weeks (Fig 2G; note that four of 18 mice had “late resolution” between weeks three and four).

In contrast, urine titers remained persistently high for 14 weeks post infection in the UTI89-

inoculated mice that had developed chronic cystitis (Fig 2G). Analysis of a late-resolving

CFT073-inoculated bladder by SEM revealed a calm surface at 28 dpi, with an intact epithe-

lium having no immune cells or visible bacteria (Fig 2H).

A critical distinction between UTI89 and CFT073 is each strain’s allele of the mannose-

binding fimH adhesin, which tips the type 1 pilus and mediates bladder colonization [23].

UTI89 has the FimH variant A62/V163, whereas CFT073 has the FimH variant S62/A163,

which has a lower in vitro affinity for mannose and reduced virulence in the mouse bladder

[21]. We found that a strain of CFT073 that expresses UTI89’s higher mannose affinity fimH
allele, CFT073ΔfimH::FimHUTI89, had a significantly greater incidence of chronic cystitis at 28
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dpi than wild-type CFT073 did (Fig 2A), in line with previous findings [21]. Strikingly, this

strain was able to persist longer in the bladder than wild-type CFT073, but nevertheless all but

one mouse eventually cleared the infection over the course of 14 weeks (Fig 2G). These obser-

vations indicate that while the high mannose affinity variant FimH enhances and prolongs the

colonization of CFT073ΔfimH::FimHUTI89 in the mouse urinary tract relative to the wild type

strain, other factors unique to CFT073 account for its propensity for being cleared from the

Fig 2. CFT073 infection is less robust than UTI89 at 28 dpi and clears over time. Juvenile Naive (7–8 week old) female C3H/HeN mice were infected

with 108 CFU UTI89, CFT073, or CFT073ΔfimH::FimHUTI89 (“CFT073-FimH”) and monitored for 28 days. (A) Percentage of mice (infected as

indicated) that developed chronic cystitis, which was defined as persistent, high-titer bacteriuria (>104 CFU/ ml urine), bladder bacterial burden>104

CFU/bladder and bladder inflammation at time of sacrifice [14]. � P< 0.05, �� P< 0.01, Fisher’s exact test. (B-D) Bacterial burdens (B) and edema (C)

and kidney burdens (D) at 28 dpi in mice with chronic cystitis caused by UTI89 or CFT073 (“Chronic”) compared to mice that had spontaneously

resolved these infections (“Resolved”). (E) Scanning electron microscopy (SEM) of bladders harvested from mice with chronic UTI89 or chronic

CFT073 cystitis at 28 dpi. Representative images from N = 1 experiment with n = 3 mice per group are shown; scale bars, 50 μm. (F) UTI89 and CFT073

urine titers over time in mice meeting the criteria for chronic cystitis (persistent, high-titer bacteriuria>104 CFU/ ml urine). (G) Mice infected with

UTI89 (n = 12), CFT073 (n = 18), or CFT073ΔfimH::FimHUTI89 (n = 15) were followed for 14 weeks. Dashed lines indicate our previously established

cutoff for high-titer persistent bacteriuria, 104 CFU/ml urine. Note that 4 out of 18 CFT073-infected mice resolved the infection between weeks 3 and 4

(indicated by the arrow); this “late-resolving” phenotype contributes to the lower incidence of CFT073 chronic cystitis at 4wpi, seen in 2A. (H) SEM at

28 dpi of a mouse that resolved a CFT073 infection between days 21 and 28 (a so-called “late resolver”); scale bar, 50 μm. Data are combined from two

to three independent experiments; data points represent actual values for each individual mouse, zeros are plotted at the limit of detection, and bars

indicate median values. � P< 0.05, �� P< 0.01, ��� P< 0.001, ���� P< 0.0001, Kruskal-Wallis test with Dunn’s multiple test correction.

https://doi.org/10.1371/journal.ppat.1007457.g002
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host. As well, in the course of this work we became aware that the CFT073 strain used has a

frameshift mutation in rpoS [24]. However, a CFT073 strain with a wildtype rpoS allele still

had “late resolution” between days 21 and 28, and was cleared from all mice within eight

weeks (S1 Fig), indicating that the rpoS frameshift mutation does not explain CFT073 clear-

ance relative to UTI89.

An acute checkpoint predicts chronic CFT073 infection, which leaves an

imprint on the bladder

We have previously shown that chronic UTI89 cystitis in C3H/HeN mice is predicted by an

immune checkpoint at 24 hours post infection (Fig 1B), and that chronic bladder inflamma-

tion lasting four weeks results in a bladder imprint that persists after antibiotic therapy

(Fig 1E). At 24 hpi, mice infected with CFT073 or UTI89 did not significantly differ in overall

urine bacterial titers, pyuria, or pro-inflammatory serum cytokines. However, when mice were

grouped by disease outcome, regardless of whether infected with UTI89 or CFT073 those that

ultimately would develop chronic cystitis lasting four weeks had activation of the immune

checkpoint, indicated by: higher urine bacterial burdens (Fig 3A), though here just a trend

with UTI89; greater pyuria (Fig 3B); and increased serum levels of G-CSF and the IL-8 ana-

logue KC, relative to the mice that would resolve their infection (Fig 3C and 3D). As well,

there were trends toward higher serum IL-5 and IL-6 levels in mice that would develop chronic

CFT073 cystitis (Fig 3E and 3F), but, unlike with UTI89-infected mice, the differences were

not statistically significant. Thus, while we saw some minor differences between UPEC strains,

checkpoint activation predicts the development of chronic cystitis lasting four weeks for both

UTI89 and CFT073 in a similar manner.

Scanning electron microscopy (SEM) analysis of bladders 28 days after antibiotic therapy

showed that mice with a history of chronic CFT073 infection, referred to herein as CFT073HC

mice, had significantly smaller urothelial cells (average cell surface area approximately one

eighth the size of Adult Naive cells) (Fig 4A and 4B), similar to the previously observed

reduced size of urothelial cells from mice with a history of chronic UTI89 (UTI89HC) infection

[15]. This change in bladder cell morphology is long-lasting in UTI89HC mice: SEM analysis

performed six months after antibiotics showed that UTI89HC urothelial cells were still about

one fourth the size of age-matched naive controls (S2A and S2B Fig).

Immunofluorescence microscopy of bladder sections revealed that while CFT073HC mice

expressed the terminal differentiation marker uroplakin IIIa (Fig 4C), expression of the termi-

nal differentiation marker keratin 20 was weak and patchy, in line with previous observations

for UTI89HC mice [15] (Fig 4D). Weak and patchy keratin 20 staining was also found six

months after initial infection in UTI89HC mice (S2C Fig), suggesting that these infection-

induced changes to the host may be permanent. Finally, histological examination of bladder

sections from CFT073HC mice 28 days after antibiotic therapy revealed the presence of lym-

phoid follicles (S3 Fig), which were previously found to develop between two and four weeks

post infection in UTI89HC mice [14]. Thus, chronic CFT073 infection results in a constellation

of bladder remodeling phenotypes similar to those seen after chronic UTI89 infection, suggest-

ing that bladder remodeling is a broad consequence of chronic E. coli infection.

The ability of UPEC to cause recurrent UTI is bacterial strain-dependent

C3H/HeN mice become resistant to UPEC UTI with age [14,15,25], but UTI89HC mice have

enhanced susceptibility to UTI relative to age-matched (so-called “Adult”) Naive mice, a phe-

nomenon we have termed “sensitization” to rUTI [14] (Fig 1G). To assess whether CFT073HC

mice were also sensitized to rUTI, mice with an initial chronic or mock infection were given
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antibiotics at four wpi and then challenged four weeks later with 107 CFU of an isogenic strain

with a different antibiotic resistance marker. Acute and chronic rUTI outcomes were then

assessed. Previously, we found that UTI89HC mice displayed a colonization resistance pheno-

type within the first 12 hours after challenge infection: UTI89 was less able to invade and repli-

cate within remodeled bladder epithelial cells relative to naive ones, possibly due to their

smaller cell size, resulting in significantly lower CFUs in UTI89HC mice relative to age-

matched Adult Naive mice [15]. We found that CFT073HC mice also displayed a colonization

resistance phenotype, with significantly reduced CFUs six hours after CFT073 infection in

both UTI89HC and CFT073HC mice compared to age-matched Adult Naive mice (Fig 5A).

Kidney titers were not statistically significantly different at this time point (Fig 5A). Despite

Fig 3. An acute host-pathogen checkpoint predicts the outcome of CFT073 bladder infection. At 24 hpi, urine and

serum was collected from mice infected with 108 CFU UTI89 or CFT073, and urine bacterial burden (A), pyuria (B)

and serum cytokines (C-F) were assessed. Infection outcomes (chronic cystitis vs. resolution) were determined over

the course of four weeks, and data are plotted according to the four week infection outcome. There were no statistically

significant differences in the overall data (i.e. all UTI89-infected mice vs. all CFT073-infected mice) at 24 hpi. Data are

combined from two to three independent experiments. Data points represent actual values for each individual mouse,

zeros are plotted at the limit of detection, and bars indicate median values. � P< 0.05, �� P< 0.01, ��� P< 0.001,
���� P< 0.0001, Kruskal-Wallis test with Dunn’s multiple test correction. PMN, polymorphonuclear neutrophil.

https://doi.org/10.1371/journal.ppat.1007457.g003
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Fig 4. Chronic CFT073 cystitis causes bladder remodeling phenotypes that persist after antibiotic therapy. Mice

were initially mock-infected (“Adult Naive”), or infected with 108 CFU CFT073, and followed for four weeks, at which

time ten days of antibiotics were initiated. Four weeks after the start of antibiotic therapy, convalescent bladders were

harvested and assessed by microscopy. (A and B) Scanning electron microscopy (SEM) was used to assess bladder

epithelial (urothelial) superficial cell size. (A) Superficial cells from N = 2 replicates with a total of n = 4 mice per group

were measured in ImageJ and the average surface area (pixels2) was calculated. Data points represent the average of all

measurements for a given mouse. � P< 0.05, Mann-Whitney U test. (B) Representative images from the analysis in

Host restriction of urinary tract infections
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(A). Scale bars, 25 μm. (C and D) Cell morphology and differentiation was assessed via immunofluorescence of

paraffin-embedded bladder sections from N = 2 staining experiments with bladder sections from n = 3 Adult Naive

mice and N = 5 CFT073HC mice; representative images are shown. In (C) uroplakin IIIa is in green, Trp63 in red,

keratin 5 in white and nuclei in blue. Scale bars, 50 μm. In (D), keratin 20 is shown in white, E-cadherin in green,

Trp63 in red and nuclei in blue. Scale bars, 100 μm.

https://doi.org/10.1371/journal.ppat.1007457.g004

Fig 5. CFT073HC mice are protected against CFT073 rUTI, but not against UTI89 rUTI. Mice were initially infected with 108 CFU UTI89 or

CFT073 and monitored over four weeks, at which time antibiotic therapy was initiated. Those mice that developed chronic cystitis during the initial

infection were then challenged four weeks after antibiotics (A-C) or six months after antibiotics (D) with 107 CFU UTI89 or CFT073 as indicated.

Initially mock-infected mice were included as a control (“Adult Naive”). (A) Mice were sacrificed six hours after infection with CFT073 and bladder

and kidney titers were assessed. � P< 0.05, Kruskal-Wallis test with Dunn’s multiple test correction. (B and C). Mice were challenged with UTI89 or

CFT073 and followed over four weeks. (B) Urine titers at 24 hours post challenge, representing acute cystitis. (C) Incidence of chronic cystitis over the

four week challenge. � P< 0.05, Fisher’s exact test. (D) Incidence of chronic cystitis over the four week challenge, six months after the initiation of

antibiotics, compared to age-matched (“Naive”) mice and mice that had resolved their initial infection (“UTI89HR”). � P< 0.05, Fisher’s exact test. #

denotes the number of mice per group. Data are from two to three independent experiments. Data points represent actual values for each individual

mouse, zeros are plotted at the limit of detection, and bars indicate median values.

https://doi.org/10.1371/journal.ppat.1007457.g005
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early colonization resistance, UTI89 is nevertheless able to cause severe UTI at 24 hpi in about

half of UTI89HC mice, as indicated by high urine titers (median titer ~106 CFU/ml) (Fig 5B)

that precede the development of recurrent chronic cystitis over the 28 day challenge (Fig 5C).

In contrast, CFT073 is not able to cause severe UTI in CFT073HC mice, with median urine

titer ~104 CFU/ml urine at 24 hpi (Fig 5B) and zero incidence of chronic cystitis during the 28

day challenge (Fig 5C). Notably, CFT073HC mice were only protected from same-strain chal-

lenge: UTI89 titers were high in the urine at 24 hpi (median titer ~106 CFU/ml) (Fig 5B) and

caused recurrent chronic cystitis in 50% of CFT073HC mice (Fig 5C and S4 Fig). Likewise,

UTI89HC mice were susceptible to recurrent CFT073 cystitis (Fig 5B and 5C and S4 Fig), in

line with previous observations [15], and remained susceptible to CFT073 for at least six

months after antibiotic therapy (Fig 5D). Thus, whereas a history of UTI89 chronic cystitis

predisposes to rUTI caused by either UTI89 or CFT073, a history of chronic CFT073 cystitis

predisposes to rUTI caused by UTI89, but not caused by CFT073.

T cell depletion abrogates protection from rUTI in a bacterial strain-

dependent manner

The observations that chronic CFT073 infection resolves over time (Fig 2) and confers protec-

tion against CFT073 challenge (Fig 5) suggest that chronic CFT073 cystitis may elicit an adap-

tive immune response that clears the infection and protects against challenge. Thus we

questioned whether components of the adaptive immune system played a role in this model.

We assessed bacterial-specific IgG levels in the serum and found that both CFT073 and UTI89

elicited antibody responses, though anti-CFT073 IgG levels were somewhat higher than anti-

UTI89 IgG levels (S5 Fig). We also tested whether T cell depletion would affect chronic and/or

recurrent cystitis outcomes. For other chronic Gram-negative bacterial infections, depletion of

both CD4+ and CD8+ T cells resulted in significantly worse infection phenotypes than single

depletions did [26–29]. Hence, we tested the effects of both single subset depletions and com-

bined depletions, compared to an equivalent dose of isotype (0.5 or 1 mg, respectively), during

an initial UPEC infection. Depletion of lymphoid subsets and effects on myeloid subsets was

determined four weeks after the initial infection, and at the time of the challenge infection, by

flow cytometry of spleen single cell suspensions (S6 Fig).

Depletion of CD4+ and CD8+ T cell subsets did not affect the incidence of chronic cystitis

caused by UTI89 (Fig 6A). For CFT073 infection, the incidence of chronic cystitis at 28 dpi

was higher in the single depletion groups (67% for CD4-depleted and 62% for CD8-depleted,

compared to 46% in isotype-treated mice, S7A and S7B Fig), but the difference was not statisti-

cally significant, and similar proportions of mice cleared the infection after seven days (S7C

Fig). Furthermore, mice depleted of single T cell subsets were still protected from same-strain

rUTI (S7D and S7E Fig). In the combined CD4+ and CD8+ T cell depleted group, the rate of

chronic CFT073 cystitis was 61%, vs. 40% in the isotype-treated group (Fig 6A), and CFT073

urine titers at 28 dpi were significantly elevated in the combined T cell-depleted mice relative

to isotype-treated controls (Fig 6B). Notably, significantly fewer mice depleted of both CD4+

and CD8+ T cell subsets resolved the CFT073 infection after 7 dpi, relative to isotype-treated

mice (Fig 6C). Accordingly, combined CD4+ and CD8+ T cell depletion also prevented the so-

called “late resolver” phenotype (wherein some mice resolve their CFT073 infection between

days 21 and 28 post infection; see Fig 2G). In the T cell-depleted group, n = 12 mice resolved

the CFT073 infection: nine resolved within the first week and none between days 21 and 28. In

contrast, of the n = 21 isotype-treated mice that resolved the CFT073 infection, ten resolved

between days 21 and 28 (Fig 6D and 6E).
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Fig 6. Depletion of CD4+ and CD8+ T cell subsets increases chronic and recurrent CFT073 cystitis. Mice infected with

108 CFU UTI89 or CFT073 were given weekly doses of anti-CD4 and anti-CD8 antibodies, or isotype control, and followed

for four weeks. (A) The incidence of chronic cystitis was determined at 28 dpi; # indicates the number of mice per group.

(B) Urine bacterial burdens at 28 dpi. (C) CFT073-infected mice from (A) were binned according to the length of their

infection. �� P< 0.01, Fisher’s exact test for resolving 8–28 dpi. (D) CFT073 urine titers over the course of infection from

isotype-treated (left panel) and anti-CD4/8-treated (right panel) mice. Dashed lines indicate our previously established

cutoff for high-titer persistent bacteriuria, 104 CFU/ml urine. (E) Shown are the percentages of mice with persistent high-

titer CFT073 bacteriuria (>104 CFU/ml urine) over time. (F-J) At 28 dpi, antibiotic therapy was initiated. Those mice that

developed chronic cystitis during the initial infection were then challenged four weeks after antibiotics with 107 CFU of the

same strain as their initial infection. Depletion antibodies were not administered during the challenge infection. (F) The

incidence of recurrent chronic cystitis was determined at four weeks post challenge; # indicates the number of mice per

group. (G) CFT073 urine titers over the course of the challenge infection in CFT073HC mice, from mice initially isotype-

treated (left panel) and initially anti-CD4/8-treated (right panel). Some samples were unavailable at three days post

challenge. (H) Shown are the percentages of CFT073HC mice with persistent high-titer recurrent CFT073 bacteriuria (>104

CFU/ml urine) during the challenge infection. (I and J) Shown are bladder and kidney bacterial burdens (I) and bladder

edema (J) at time of sacrifice. Data are combined from two to four independent experiments; data points represent actual

values for each individual mouse, zeros are plotted at the limit of detection, and bars indicate median values. �, P< 0.05,

Mann-Whitney U test. rUTI, recurrent urinary tract infection.

https://doi.org/10.1371/journal.ppat.1007457.g006
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Based on the above results, we tested whether the abrogation of CD4+ and CD8+ T cell

responses during the initial CFT073 infection would render mice susceptible to recurrent

CFT073 cystitis. Four weeks after the initial infection and concomitant T cell depletion, mice

were given antibiotics and then challenged four weeks later with the same strain as their initial

infection, without additional T cell depletions. UTI89HC mice were susceptible to developing

recurrent UTI89 cystitis, whether they were initially treated with anti-CD4/8 or isotype (Fig

6F). In contrast, T cell depletion had a striking effect on CFT073 challenge of CFT073HC mice.

No mice (out of n = 8) in the isotype-treated group developed recurrent chronic CFT073 cysti-

tis, consistent with our observations in untreated mice (see Fig 5C); one mouse had persistent

bacteriuria but had a bladder titer<104 CFU. However, four of 11 mice that received anti-

CD4/8 during their initial chronic infection developed recurrent chronic CFT073 cystitis last-

ing four weeks (Fig 6F–6H) and one mouse was a “late resolver,” similar to what is seen during

CFT073 infection of juvenile naive mice (see Figs 2G and 6D). Bladder and kidney bacterial

burdens did not differ between isotype vs. anti-CD4/8 treatments in UTI89HC mice after

UTI89 challenge, but in CFT073HC mice challenged with CFT073, titers at sacrifice were

higher in those that received anti-CD4/8 than those that received isotype control (Fig 6I). As

well, bladder edema four weeks post challenge with CFT073 was significantly greater in

CFT073HC mice that received anti-CD4/8 than in those that received isotype control (Fig 6J).

In sum, these experiments show that depletion of both CD4+ and CD8+ T cell subsets during

an initial CFT073 infection renders C3H/HeN mice susceptible to chronic and same-strain

recurrent cystitis, whereas T cell depletion during a UTI89 infection does not impact chronic

or same-strain recurrent cystitis.

Discussion

Some women who suffer from an acute UTI will become afflicted by highly recurrent UTI, but

most women do not experience this fate. It may be that adaptive immunity protects at least

some women from rUTI, but relatively little is known about adaptive immune responses to

cystitis. We showed that the clinical urosepsis isolate CFT073 can cause severe acute and

chronic UTI in C3H/HeN mice. In line with our previous findings for the clinical UTI isolates

UTI89 and J96 [14], chronic CFT073 cystitis developed after the triggering of an acute host-

pathogen checkpoint, and chronic infection lasting four weeks resulted in bladder mucosal

remodeling. Thus, we suggest that checkpoint activation is broadly predictive of chronic

UPEC UTI, and that bladder mucosal remodeling is a general consequence of chronic UPEC

infection and/or infection-associated inflammation. Unlike UTI89, however, CFT073 cystitis

did not last indefinitely; all mice cleared CFT073 infection within eight weeks, and after an ini-

tial chronic infection lasting four weeks, mice were protected from CFT073 challenge, but sus-

ceptible to UTI89 challenge, demonstrating strain-specific protection. We found that the

combined depletion of CD4+ and CD8+ T cell subsets during the initial CFT073 infection

increased the incidence of chronic cystitis and rendered mice susceptible to recurrent chronic

CFT073 cystitis. T cell depletion did not significantly impact chronic or recurrent cystitis

caused by UTI89, in line with a previous study of recurrent UTI in C57BL/6 mice [13]. Thus,

this study provides evidence for a role of T cells and adaptive immunity in restricting chronic

and same-strain recurrent UTI caused by some, but not all, UPEC strains.

Placebo-controlled studies have demonstrated two general outcomes of uncomplicated cys-

titis: while many women can resolve their infections without the aid of antibiotics, others

remain bacteriuric (with or without symptoms) for weeks [30], suggesting an ineffective or

absent adaptive response. As well, we note that spontaneous resolution of infection in placebo-

treated women has been reported to occur both early in infection (within seven days) and later
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on (between four to seven weeks) [6]. Much is known about innate immune responses to UTI

[10,11], but fewer studies have focused on the role of adaptive immunity. In our study we reca-

pitulated the two general cystitis outcomes seen in women by using inbred C3H/HeN mice,

which can spontaneously resolve bladder infections or develop chronic cystitis lasting two or

more weeks. A role for adaptive immunity was elucidated via depletion of T cells, which

skewed the balance of infection outcomes in a bacterial strain-specific manner. In T cell-

depleted mice, the incidence of chronic CFT073 cystitis was increased due to the elimination

of the “late resolvers” (mice that resolved a chronic infection after 21 days), while chronic

UTI89 cystitis was not affected because late resolution does not occur after infection with this

strain. Our finding of strain-specific adaptive immunity echoes the recent discovery that dif-

ferent clinical isolates of the Gram-positive pathogens Staphylococcus aureus and Streptococcus
pyogenes vary substantially in their ability to elicit adaptive immune responses in vitro depend-

ing on the content of their accessory (non-core) genome [31].

It has previously been shown that adaptive responses can protect against same-strain rUTI

in C57BL/6 mice or mutants on the C57BL/6 background [12,13,32]. The work presented

herein elucidates the complexity of this response by showing bacterial strain-dependent vari-

ability. Studying multiple UPEC strains is critical because ongoing genome sequencing has

revealed remarkable genetic diversity in E. coli, as the pan-genome remains “open” and contin-

ues to expand beyond more than 16,000 genes, resulting in the extremely variable accessory

genome, typically comprised of secretory systems, metabolic pathways, and virulence gene net-

works [33]. A large-scale genomic study of 43 E. coli isolates from 14 women suffering from

recurrent UTI [34] revealed that the isolates were phylogenetically diverse, as they represented

five major E. coli clades and only about 60% of each strain’s genome was found to be shared

among all of the strains. Upon infection in mice, significant heterogeneity in bladder titers was

observed with these genetically diverse strains. Notably, some strains from clades that are not

considered traditionally uropathogenic (such as B1) could robustly colonize the mouse blad-

der, while conversely, some strains from the B2 clade (typically considered uropathogenic)

were poor colonizers of mice. Further, no single genetic signature predicted a strain’s ability to

colonize the mouse bladder. This study indicated that a complex interplay between UPEC

genetics and host susceptibility was necessary for UTI to develop, and that there may be multi-

ple pathogenic pathways in UPEC that can lead to infection [34]. Based on our work here, we

argue that depending on the host and the infecting strain, adaptive immunity may or may not

be capable of restricting chronic and same-strain recurrent UTI. Further, even if an adaptive

response restricts same-strain rUTI, it may not broadly protect against challenge with diverse

UPEC strains.

The present study adds further proof of the complexity of UTI in the form of host adaptive

immune responses that vary with the infecting strain. By comparing and contrasting different

clinical UPEC isolates, we begin to recapitulate the great genetic and phenotypic diversity of

uropathogens–and thus, bacterial antigens–to which women are exposed. During chronic cys-

titis the host is likely to have significant exposure to the highly immunogenic UPEC outer

membrane components that comprise the classical bacterial serotype: the O antigen polysac-

charide of LPS; the K capsule; and the H antigen, flagellin. The components of the E. coli sero-

type, defined by their ability to generate an immune response in a diagnostic setting, are

numerous: as of 2003, 170 O antigens, 103 K antigens, and 56 H antigens had been identified

[35]. Host immune responses acting against certain serotype components may present a selec-

tive pressure that drives the high diversity in serotype components. Although UTI89 and

CFT073 are genetically relatively similar and both belong to the B2 clade [34], they have differ-

ent serotypes: UTI89 is O18:K1:H7 while CFT073 is O6:K2:H1 [20]. Interestingly, a previous

study found that experimental UTI with an E. coli O6:K13:H1 strain elicited a T cell response
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in rats [36]. One or more components of the UTI89 serotype may be able to subvert adaptive

immunity to facilitate long-term persistence and same-strain recurrence.

Depletion of both CD4+ and CD8+ T cell subsets during the initial infection was necessary

to prevent “late resolution” of chronic CFT073 cystitis and render the host susceptible to recur-

rent chronic CFT073 cystitis, suggesting that one subset may compensate for the loss of the

other. A similar paradigm was observed for infection with the Gram-negative intracellular

pathogen Francisella tularensis, wherein studies using T cell depletions or T cell knockout

mice have demonstrated that while mice that have lost either CD4+ or CD8+ T cells are able to

clear an initial or challenge infection, the loss of both CD4+ and CD8+ T cell subsets impairs

bacterial clearance and protective memory responses [29,37,38]. CD4+ or CD8+ T cells could

control F. tularensis growth in macrophages in vitro in part through the production of IFN-γ
[39], and in vivo both subsets produced IFN-γ [38]; interestingly, IFN-γ knockout mice on the

C57BL/6 background were previously shown to be more susceptible to UTI than immuno-

competent mice [40]. In our study of chronic and recurrent UTI, the mechanism(s) of T cell-

mediated protection are as yet unknown. CD4+ T cells could play a variety of protective roles,

including: i) directly stimulating neutrophil recruitment via IL-17 production; ii) activating

macrophages and CD8+ T cells via IFN-γ; iii) supporting B cell affinity maturation and isotype

switching; and/or iv) themselves becoming memory T cells [41]. CD8+ T cells could be directly

cytotoxic against infected urothelial cells, and/or could be responding to cross-presentation of

antigens by dendritic cells or other cell types; previously, macrophages were found to sequester

UTI89 from dendritic cells, limiting adaptive responses to same-strain recurrent UTI in

C57BL/6 mice [13]. We found that splenic monocytes and neutrophils, but not macrophages,

were elevated in T cell-depleted mice at 28 dpi, which might suggest an expanded role for

monocytes and neutrophils in host response in the absence of T cells. Further studies are

needed to determine the mechanisms of T cell-mediated protection against specific UPEC

strains, as well as to assess the role of B cells and antibodies in this UTI model. A previous

study in C57BL/6 mice found that concurrent kidney and bladder infections led to a strong

pathogen-specific serum IgG response, compared to bladder-restricted infections [42]. Here

we observed that pathogen-specific serum IgG levels were higher in CFT073HC mice than

UTI89HC mice. These data suggest that CFT073 is better able to induce an antibody response,

though the exact reason for this difference is unclear at this point. Finally, γδ T cells were pre-

viously shown to play a role in protection against UTI in C57BL/6 mice [43]; our depletion

antibodies are not expected to target γδ T cells, so their potential role in this model of chronic

and recurrent UTI remains unexplored.

Although UTI are among the most common bacterial infections, most cases are uncompli-

cated and readily treated by antibiotics. However, our ability to treat these infections is threat-

ened by the global rise of multidrug-resistant “superbugs”; indeed, recently the first United

States case of E. coli resistant to the last line drug colistin was reported in a UTI patient [44]. It

has become increasingly clear that rUTI result from complex interactions among host risk fac-

tors (both intrinsic, like genetic polymorphisms affecting UTI susceptibility, and extrinsic, i.e.

behavioral risk factors such as sexual activity) [45] and genetically diverse uropathogens pos-

sessing an enormous variety of bacterial virulence factors [34]. Our study emphasizes the addi-

tional complexity of host immune responses to specific bacterial strains. A major question

going forward will be what bacterial factor(s) govern the development or suppression of adap-

tive immunity in susceptible hosts. Many experimental UTI vaccines–including attenuated or

inactivated whole bacteria as well as specific bacterial components–have elicited protection

against UTI in animal models [46]. However, translating these preclinical studies to a success-

ful and widely used clinical UTI vaccine has proven difficult. Our study demonstrates that the

development of a broad spectrum vaccine will need to take into account the genetically diverse
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uropathogens that women encounter in the community, and emphasizes the importance of

incorporating multiple bacterial strains and the effects of previous exposures in animal models

of host-pathogen interactions and outcomes.

Materials and methods

Ethics statement

All mouse experiments were conducted according to the National Institutes of Health guide-

lines for the housing and care of laboratory animals. All experiments were performed in accor-

dance with institutional regulations after review and approval by the Institutional Animal Care

and Use Committee (IACUC) at Washington University School of Medicine in St. Louis, MO

(animal protocol number 20150226).

Bacterial strains

The uropathogenic E. coli isolates used in this study were the human cystitis isolate UTI89 [18]

and the antibiotic-resistant derivatives UTI89 attHK022::COMGFP (kanamycin-resistant) and

UTI89 attl::PSSH10-1 (spectinomycin-resistant) [47]; the human urosepsis isolate CFT073,

wild-type and ΔrpoS [19], and the antibiotic-resistant derivatives CFT073ΔrpoS HK::Cm

(chloramphenicol-resistant), CFT073ΔrpoS HK::Kan (kanamycin-resistant), and

CFT073ΔrpoS ΔfimH::FimHUTI89 (kanamycin-resistant) [21]. Strains were cultured statically

in lysogeny broth (LB) at 37˚C for two to three overnight passages to induce type 1 pilus

expression. In experiments where mice had an initial infection and subsequent challenge infec-

tion, the challenge strain was marked with different antibiotic resistance from the initial strain.

Mouse infections

C3H/HeN mice were obtained from Envigo Research Model Services, Inc. (formerly Harlan).

All mice were female and 7–8 weeks old (“Juvenile”) at the time of the first infection (or mock-

infection in the case of the Adult Naive group). Bacterial inocula were prepared as previously

described [14] and 107 or 108 CFU of bacteria were inoculated into the bladders of C3H/HeN

mice by transurethral catheterization under isoflurane anesthesia as previously described [48].

For infections in Juvenile Naive mice, 108 CFU was always used, since C3H/HeN mice develop

chronic cystitis in an infectious dose-dependent manner. For challenge infections, 107 CFU

(of a differently antibiotic-marked strain than the initial infection) was used, to facilitate com-

parisons with prior studies [14,15,17]. To monitor infection outcomes, urine, bladder and kid-

ney bacterial burdens were determined as previously described [14]. Mice were humanely

euthanized by isoflurane inhalation followed by cervical dislocation. Chronic cystitis was

defined as persistent high-titer bacteriuria (>104 CFU/ml urine) at every urine collection time

point (1, 3, 7, 10, 14, 21, and 28 days post infection, and weekly thereafter if experiments con-

tinued). A cutoff of 104 CFU/ml persistent bacteriuria is highly specific and sensitive for the

detection of chronic cystitis [14]. In addition, chronic cystitis was also indicated by a high

bladder bacterial burden (>104 CFU/bladder) and a visibly enlarged, inflamed bladder (indi-

cating inflammation and edema) at time of sacrifice (�28dpi). Resolution of cystitis was

defined as urine bacterial titer dropping below 104 CFU/ml urine during at least one time

point, and/or bladder bacterial burden<104 CFU at time of sacrifice. For long-term “chal-

lenge” experiments, beginning four weeks after the initial infection, all mice (including mock-

infected controls, and regardless of infection outcome) were treated with trimethoprim and

sulfamethoxazole in the drinking water (54 and 270 μg/ml water, respectively) for ten days.

Urine samples were collected weekly after the initiation of antibiotics to confirm sterile urines
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and any mice with treatment failure were excluded from subsequent analysis. Four weeks or

six months after the initiation of antibiotics to clear initial infection, mice were challenged

with 107 CFU of bacteria. The same criteria were used to define chronic cystitis during the

challenge infection as in the initial infection (persistent bacteriuria >104 CFU/ml urine; blad-

der burden>104 CFU; enlarged bladder), with the exception that urine titers could be<104

CFU/ml on the first day post challenge, as we have found that checkpoint activation in mice

with a history of chronic cystitis may take longer (up to 72 hours) than in Juvenile Naive mice

(24 hours).

Histopathology and immunofluorescence

Bladders were aseptically harvested and fixed overnight in methacarn (60% methanol, 30%

chloroform, 10% glacial acetic acid), bisected to give two halves per bladder, paraffin-embed-

ded and sectioned. For histopathological examination, slides were stained with hematoxylin

and eosin and imaged with a Zeiss Axio Scan Z.1 brightfield slide scanner. Immunofluores-

cence experiments were conducted as previously described [15]. Primary antibodies used were

uroplakin IIIa (mouse monoclonal, 10R-U103a, Fitzgerald), Trp63 (rabbit polyclonal,

GTX102425, GeneTex), E-cadherin (goat polyclonal IgG, AF748, R&D Systems), cytokeratin 5

(chicken polyclonal, 905901, BioLegend) and cytokeratin 20 (mouse monoclonal, M7019,

DAKO). Samples were mounted in ProLong Gold Antifade Mountant with DAPI (Thermo-

Fisher Scientific) and fluorescence was visualized on a ZEISS Axioskop Observer.Z1

microscope.

Scanning electron microscopy

Two microscopy sample preparation protocols were used during the course of this work. For

urothelial cell size determination six months after antibiotics, bladders were aseptically har-

vested, bisected, splayed in dissecting trays, and fixed in EM fixative as previously described

[15]. The fixative comprised 2% paraformaldehyde and 2% glutaraldehyde in 0.1M sodium

phosphate buffer, pH 7.4. Samples were prepared by critical point drying. Briefly, samples

were post-fixed in 1% osmium tetroxide, dehydrated in increasing concentrations of ethanol,

then dehydrated at 31.1˚C and 1072 PSI for 16 minutes in a critical point dryer. Samples were

mounted on carbon tape-coated stubs and sputter-coated with gold/palladium under argon.

After these experiments, subsequent SEM samples were processed with a different protocol,

which we verified gave the same results as prior studies. Thus, for all other experiments, the

EM fix comprised 2% paraformaldehyde, 2.5% glutaraldehyde in 0.15M sodium cacodylate

buffer with 2 mM CaCl2 at pH 7.4, and after post-fixing in 1% osmium tetroxide and critical

point drying, samples were sputter-coated with iridium. For urothelial cell size determination

after UTI89 vs. CFT073 infection, bladders were aseptically harvested, bisected, splayed in dis-

secting trays, and fixed in EM fixative before further processing. For the bladders obtained

during chronic UTI89 or CFT073 cystitis at 28 dpi, the “balloon method” was used, wherein

bladders were instilled with fixative prior to harvest, as previously described [49]. All bladders

were imaged on a Zeiss Crossbeam 540 FIB-SEM or a Zeiss MERLIN FE-SEM. For urothelial

cell size determinations, ImageJ 1.47v (National Institutes of Health, USA) was used to calcu-

late epithelial cell surface area in five 500x magnification fields per bladder half (ten per

mouse).

Assessment of acute inflammation and checkpoint activation

Bacteria were enumerated in urine or bladder samples by serial dilution as previously

described [14]. Urine sedimentation to determine neutrophil influx was performed as
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previously described [14]. Briefly, 80 μl of a 1:10 dilution of urine was centrifuged onto poly-L-

lysine-coated glass slides and stained with a Hema 3 kit (Fisher Scientific). Slides were exam-

ined by light microscopy and the average number of polymorphonuclear leukocytes (PMN)

per high-powered field (hpf; 400x magnification) was calculated from counting five fields. A

semi-quantitative scoring system was used: 0, less than 1 PMN/hpf; 1, 1–5 PMN/hpf; 2, 6–10

PMN/hpf; 3, 11–20 PMN/ hpf; and 4, >20 PMN/hpf. Bladder edema was assessed by pre-

weighing empty bladder homogenization tubes, weighing the bladder-containing tubes, and

calculating the difference. Serum cytokines were assessed using the Luminex-based multiplex

cytometric bead array platform (Bioplex, Bio-Rad, Hercules, CA) using beads individually pur-

chased for IL-5, IL-6, KC, and G-CSF. The assay was performed according to the manufactur-

er’s instructions, except using 10-fold less standard and half the amount of coupled beads and

detection antibodies indicated in the protocol, as described in [50]. Individual samples were

run in duplicate and the mean value was used for plotting and statistical analysis.

Serum ELISAs

Blood was obtained from convalescent mice (four weeks after the initiation of antibiotics) via

submandibular puncture using a 5 mm lancet (Goldenrod) and collected in a BD Microtainer

serum separator tube (BD Biosciences). UTI89 and CFT073 were grown as described above

and 1 ml of OD600 = 1 bacteria was lysed by boiling at 100˚C for 5 minutes. Lysed bacteria

were diluted tenfold in PBS and applied to high-affinity Immulon 2 HB 96 well plates (Thermo

Fisher) overnight at 4˚C. Plates were washed with PBS containing 0.05% Tween 20 and a dilu-

tion series of serum was applied for 90 minutes at room temperature. After washing, a 1:10,000

dilution of HRP-conjugated goat anti-mouse IgG (Invitrogen) was applied for 90 minutes at

room temperature. After a final wash step, the TMB substrate reagent set (BD Biosciences) was

used to develop the reaction. Absorbance was measured on a VersaMax microplate reader

(Molecular Devices).

T cell depletions

Depletion antibodies were obtained from BioXCell: α-mouse CD4 (GK1.5, BP0003-1), α-

mouse CD8a (2.43, BP0061), and rat IgG2b isotype control (LTF-2, BP0090). Mice were given

intraperitoneal injections one day prior to infection and at days 7, 14, and 21 post infection.

For depletions of both CD4+ and CD8+ T cell subsets, mice were treated with 500 μg α-CD4

and 500 μg α-CD8, or 1 mg isotype control, in a 500 μl volume of pH 7.0 dilution buffer (BioX-

Cell). For single subset depletions, mice received 500 μg α-CD4 or 500 μg α-CD8, or 500 μg

isotype control, in a 250 μl volume of pH 7.0 dilution buffer (BioXCell). T cell depletions were

performed only during the initial infection, not the challenge infection.

Flow cytometry

Spleens were dissected and placed in RPMI (Gibco) on ice until spleens were removed from all

animals. Each sample was dissociated by placing the spleen between two frosted glass slides

and rubbing the slides together. The spleens were placed in ACK buffer (Gibco) for 5 minutes

at room temperature to lyse red blood cells. Ten mls of RPMI was added to each tube and

tubes were inverted to mix, then centrifuged at 1300 rpm at 4˚C for 5 minutes. The superna-

tant was discarded and the pellet was resuspended in 3 mls RPMI and pushed through a 70 μm

cell strainer (Fisher). The cells were washed twice in 1X dPBS and centrifuged at 500 X g. The

pelleted cells were resuspended in Fc block (BD Biosciences) and incubated in 1 μl of live/dead

blue fluorescent reactive dye (Thermo Fisher/Invitrogen, L34962) per 106 cells for 20 minutes

at 4˚C, then washed in 1X dPBS. Cells were stained with surface markers, all from Biolegend,
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in two separate panels: Panel 1: CD45 (30-F11), CD8a (53–6.7), CD3 (17A2), CD19 (GD5),

and CD4 (GK1.5); Panel 2: CD45 (30-F11), CD11b (M1/70), Ly6G (1A8), F4/80 (BM8), and

Ly6C (HK1.4). Sample data was acquired on the LSR II flow cytometer (BD Biosciences)

recording 10,000 events. The data was analyzed using FlowJo software (version 10.0). The rela-

tive proportion of cellular infiltrates was expressed as a percentage of live cells.

Statistical analysis

Our experience with the C3H/HeN chronic and recurrent cystitis model shows that when

assessing bimodal responses, five mice per replicate (two replicates minimum) is the minimum

number necessary to overcome any biological and/or technical variability and provide reliable

and interpretable results within an experiment; a statistical analysis was not used to determine

the number of mice per experiment. Investigators were not blinded to the infection history of

the animals, except for Fig 2E. Statistics were performed in GraphPad Prism v7.01. A two-

tailed Fisher’s exact test was used to test for significant differences in the incidence of chronic

cystitis and kinetics of infection resolution. For bacterial titers, pyuria, cytokine expression lev-

els, and surface area differences in superficial cells, comparisons of three or more groups were

performed with the Kruskal-Wallis test followed by Dunn’s multiple test correction. Pairwise

comparisons were performed with a two-tailed Mann-Whitney U test. P< 0.05 was consid-

ered statistically significant.

Supporting information

S1 Fig. The “late resolution” phenotype of CFT073 is not due to its rpoS allele. (A) Mice

were infected with a strain of CFT073 with a wild-type rpoS allele, verified by sequencing using

the primers in [24], and followed over four weeks. Data are from two experiments; data points

represent actual values for each individual mouse and zeros are plotted at the limit of detec-

tion. (B) A subset of mice (not depicted in panel A) that were still chronically infected at four

weeks were followed for an additional five weeks, during which time all mice resolved the

infection.

(TIF)

S2 Fig. The “molecular imprint” of chronic UTI89 cystitis lasts for at least six months after

sterilizing antibiotic therapy. Mice were initially mock-infected (“Age-Matched Naive”), or

infected with UTI89. Antibiotics were initiated at four wpi, and mice were allowed to conva-

lesce for six months. (A and B) Scanning electron microscopy (SEM) was used to assess

urothelial superficial cell size in the Naive mice vs. mice that initially had a chronic UTI89

infection (UTI89HC) or initially resolved their UTI89 infection (UTI89HR). (A) Representative

images from N = 2 replicates with a total of n = 3–4 mice per group are shown. Scale bars,

25 μm. (B) Superficial cells from N = 2 replicates with a total of n = 3–4 mice per group were

measured in ImageJ and the average surface area (pixels2) was calculated. Data points repre-

sent the average of all measurements for a given mouse. � P< 0.05, Kruskal-Wallis test with

Dunn’s multiple test correction. (C) Immunofluorescence microscopy was performed on par-

affin-embedded bladder sections from N = 2 staining experiments with bladder sections from

n = 3 Adult Naive mice, N = 5 UTI89HC mice, and N = 4 UTI89HR mice; representative images

are shown. Keratin 20 is shown in white, E-cadherin in green, Trp63 in red and nuclei in blue.

Scale bars, 50 μm.

(TIF)

S3 Fig. Chronic CFT073 infection results in lymphoid follicles. We previously observed that

chronic UTI89 infection results in lymphoid follicles that persist after antibiotic therapy [14].
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Here bladders were harvested from CFT073HC mice four weeks after antibiotic therapy. Histo-

logical examination of hematoxylin & eosin-stained sections shows evidence of lymphoid folli-

cles in the lamina propria of CFT073HC mice (top; example circled in orange). Lymphoid

follicles were not observed in mice that spontaneously resolved a CFT073 infection (bottom).

Representative images from N = 2 replicates with a total of n = 4 mice are shown.

(TIF)

S4 Fig. CFT073HC mice are protected from same-strain rUTI but susceptible to UTI89

rUTI. Shown are the urine titers during challenge infection for mice in Fig 5B and 5C. Mice

were initially infected with 108 CFU UTI89 or CFT073, or mock-infected, and monitored over

four weeks, at which time antibiotic therapy was initiated. Four weeks after antibiotics, mice

were challenged with 107 CFU CFT073 or UTI89. We note the instance of two “late resolvers”

in the initially mock-infected (Adult Naive) mice challenged with CFT073 (see Fig 2G). Data

are combined from two to three independent experiments; data points represent actual values

for each individual mouse and zeros are plotted at the limit of detection. The dotted line indi-

cates 104 CFU/ml urine, which we use as a cutoff for persistent bacteriuria.

(TIF)

S5 Fig. Bacterial strain-specific IgG can be detected in the serum of mice with a history of

chronic cystitis. Serum from Adult Naive mice, mice with a history of chronic UTI89 or

CFT073 cystitis (UTI89HC and CFT073HC, respectively), and mice with a history of self-resolv-

ing UTI89 or CFT073 cystitis (UTI89HR and CFT073HR, respectively) was used in an enzyme-

linked immunosorbent assay (ELISA) with bacterial lysate from UTI89 (A) or CFT073 (B) as

the coating antigen. The secondary antibody was HRP-conjugated goat-anti mouse IgG and

the absorbance at 650 nm is shown. Samples were tested in duplicate and representative data

from N = 3 experiments is shown.

(TIF)

S6 Fig. Flow cytometry of splenic single cell suspensions was used to verify T cell depletion.

Mice were infected with CFT073 and given weekly doses of 500 μg α-CD4 and 500 μg α-CD8,

or 1 mg isotype control. At 28 dpi, mice with chronic cystitis were humanely sacrificed and

spleens were harvested (“isotype (4 wk)” and “anti-CD4/8 (4 wk)”); other mice were treated

with antibiotics as described above. Four weeks after the initiation of antibiotics, mice with a

history of chronic cystitis were humanely sacrificed and spleens were harvested (“isotype (8

wk)” and “anti-CD4/8 (8 wk)”). As an additional control, spleens were obtained from C3H/

HeN mice with no infection or antibody treatment (“no treatment”). After live lymphocyte

gating, cell phenotypes were determined as follows: (A) CD3, CD4 and CD8a differentiate

populations of T cells from CD19+ B cells. (B) CD11b+, Ly6G+ are neutrophils, CD11b+,

Ly6C+ are monocytes, and F4/80+ cells are macrophages.

(TIF)

S7 Fig. Depletion of CD4+ or CD8+ T cells did not cause a statistically significant increase

in chronic CFT073 cystitis or impact the incidence of recurrent chronic CFT073 cystitis.

Mice were treated with 500 μg α-CD4 or α-CD8, or isotype control (IgG2b), 24 hours prior to

infection with 108 CFU CFT073 and weekly thereafter. (A) Urines were collected to assess the

infection outcome over four weeks. Dashed lines indicate our previously established cutoff for

high-titer persistent bacteriuria, 104 CFU/ml urine. Samples were unavailable for two isotype-

treated mice at 1 dpi. (B) The overall incidence of chronic cystitis did not vary significantly

among the groups. (C) Shown are the percentages of mice with persistent high-titer CFT073

bacteriuria (>104 CFU/ml urine) over time. (D and E) Four weeks post infection, mice

received antibiotics, and four weeks thereafter, mice that had developed chronic cystitis during
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the initial infection (CFT073HC) were challenged with 107 CFU CFT073 and monitored over

four weeks for the development of recurrent chronic cystitis. No additional antibody deple-

tions were performed. (D) Urines were collected to monitor infection outcomes during the

four week challenge period. Dashed lines indicate our previously established cutoff for high-

titer persistent bacteriuria, 104 CFU/ml urine. (E) Shown is the incidence of recurrent chronic

cystitis during the challenge infection. One isotype-treated mouse had persistent bacteriuria

but bladder titer <104. Data are from two experiments. Data points represent actual values for

each individual mouse, zeros are plotted at the limit of detection, and bars indicate median val-

ues; # denotes the number of mice per group.

(TIF)
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