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Diarrhea is the leading cause of morbidity, mortality and antimicrobial drug use in

calves during the first month of age. Alteration in the bacterial communities of the

gastrointestinal tract occurs during diarrhea. Diarrheic calves often develop anion

gap (AG) acidosis associated with increased concentrations of unmeasured anions

including D- and L-lactate. However, studies investigating the association between

gut microbiota alterations and the development of acid-base disorders in diarrheic

calves are lacking. We investigated the fecal bacterial alterations of calves with

diarrhea and its association with changes in blood pH, and AG. Blood and fecal

samples from healthy and diarrheic veal calves were taken 7 days after arrival

to the farm. The fecal microbiota of healthy and diarrheic calves was assessed

by sequencing of 16S ribosomal RNA gene amplicons. Blood gas analysis was

completed using an i-Stat analyzer. In healthy calves, higher richness, evenness,

and diversity were observed compared to diarrheic calves. Phocaeicola, Bacteroides,

Prevotella, Faecalibacterium, Butyricicoccus, Ruminococcaceae and Lachnospiraceae

were enriched in healthy compared with diarrheic calves. Enterococcus, Ligilactobacillus,

Lactobacilus, Gallibacterium Streptococcus, and Escherichia/Shigella were enriched

in diarrheic calves. In diarrheic calves, an increased abundance of lactate-producing

bacteria including Lactobacillus, Streptococcus, Veillonella, Ligilactobacillus and

Olsenella was detected. Diarrheic calves had a lower pH and bicarbonate concentration

and a higher AG concentration than healthy calves. Together, these results indicate

that calf diarrhea is associated with a shift from obligated to facultative anaerobes and

expansion of lactate-producing bacteria which are related to acidemia, low bicarbonate

and increase AG. Our results highlight the importance of the gastrointestinal microbiota

on the clinicopathological changes observed in diarrheic calves.
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INTRODUCTION

The U.S. National Animal Health Monitoring System reported
that 32% of calf mortality in 2018 was caused by diarrhea during
the first 3 weeks of life (1). Calf diarrhea is predominantly caused
by infectious agents, such as viruses, bacteria, and protozoa. The
main causative agents of calf diarrhea include bovine rotavirus
group A, bovine coronavirus, Salmonella spp., Enterotoxigenic
Escherichia coli (ETEC), Clostridium perfringens type C, and
Cryptosporidium parvum (2). Regardless of the cause of diarrhea,
reduced bacterial diversity and changes in the gut bacterial
populations from normal have reported in diarrheic calves (3).
In calves, diarrhea is associated with an increase in taxa from
the phylum Proteobacteria, especially increased abundance of
Enterobacteria (4–6) and decreased abundance of butyrate-
producing bacteria (e.g., Bifidobacterium and Faecalobacterium)
(3, 7). In humans, a reduction in butyrate producing obligate
anaerobes such as Faecalibacterium prausnitzii (8–10) and an
increase in facultative anaerobes such as Escherichia coli appears
to be a feature of gastrointestinal diseases (8–10). It has been
hypothesized that this shift from obligate anaerobes to facultative
anaerobes results from an increased release of hemoglobin
carrying oxygen and reactive oxygen species into the lumen of
the gastrointestinal tract (oxygen hypothesis), which favor the
growth of facultative anaerobes (11). Therefore, the first objective
of this study was to investigate the fecal bacterial alterations of
calves with acute diarrhea (<48 h (h) duration) to determine
whether a shift from obligatory to facultative anaerobes occurs
in diarrheic calves.

Metabolic acidosis (decreased blood pH and HCO−

3
concentration) is the most common acid-base disorder
occurring in calves with diarrhea (12). Metabolic acidosis is
usually accompanied by an increased anion gap (AG), which
represents the presence of unmeasured anions (UA) in plasma,
commonly D- and L-lactate (6, 7, 12–14). The mechanisms
resulting in increased concentrations of UA in diarrheic calves
are not fully understood; however, the concentration of D- and
L-lactate in fecal samples of diarrheic calves is higher than that
of healthy calves (13). These findings suggest that gut bacterial
fermentation could contribute to the development of AG acidosis
in diarrheic calves. Therefore, the second objective of this study
was to investigate if there is a relationship between the fecal
microbial alterations of diarrheic calves and the changes in blood
pH, bicarbonate, and the load of unmeasured ions calculated
using the Anion Gap (AG).

MATERIALS AND METHODS

Calf Housing and Feeding
This study was conducted at a commercial grain-fed veal
producer in southern Ontario, Canada. The farm was selected
based on its proximity to the University of Guelph and
willingness to participate in the study. Calves arrived at the
facility in 2 batches of 80 Holstein calves which arrived on
December 21, 2020, and January 11, 2021. The age of the calves
ranged from 3–10 days of age. They were sourced from local dairy
farms, auctions, and a drover, and, after arrival to the facility,

were housed in individual pens. Calves were offeredmilk replacer
(26% protein and 20% fat with 2.4% lysine and 0.8% methionine
whey protein concentrated based milk replacer without any feed
additives) twice daily using the following schedule: week 1: 650 g
mixed in 5 L of water/day; week 2: 780 g in 6 L/day; week 3: 910 g
in 7 L/day; week 4 and 5: 1040 g in 8 L/day; week 6: 780 g in 6
L/day; week 7: 520 g in 4 L/day; and week 8: 325 g in 2.5 L/day.
Calves were also offered texturized calf starter [20% crude protein
(CP)] upon arrival until week 8. Both the milk replacer and the
starter were medicated with decoquinate.

Data Collection and Outcomes
Upon arrival to the facility, calves were weighed using a digital
scale. Body weight was also taken at 7 days following arrival.
In addition, all antimicrobial and supportive treatments were
recorded when administered to each calf. Calves were scored
daily for fecal consistency by farm staff over the first 28 d after
arrival using the following scoring method: fecal score 0 =

normal consistency; 1 = semi-formed or pasty; 2 = loose feces;
3 = watery feces (14). Calves with a fecal score of 2 or 3 were
classified as having diarrhea. At d 7 following arrival to the facility
in both groups, researchers visited the farm to collect fecal and
blood samples for blood gas and electrolyte analyses. Calves were
classified as “healthy” if they did not have an abnormal fecal
consistency score over the previous 7 d at the facility. Calves
were classified as having diarrhea if they had a fecal score of 2
or 3. For the calves that fell under these specific classifications,
fecal samples were collected fresh from calves upon rectal
stimulation into CorningTM FalconTM 15mL Polystyrene Conical
Centrifuge Tubes. The samples were transported on ice to
the University of Guelph where they were stored at −20◦C
until analysis. Blood samples were collected from the jugular
vein of the calf using a 20-gauge 1-inch needle into a 3ml
lithium heparin syringe (Vyaire Medical, Inc. Mettawa, IL, USA).
The sample was immediately inserted into an EC8+ cartridge
(Abbott, Mississauga, ON, Canada) and analyzed using an i-Stat
analyser (Abbott, Mississauga, ON, Canada). From the analyser,
the concentration of sodium (mmol/L), potassium (mmol/L),
chloride (mmol/L), glucose (mmol/L), blood urea nitrogen
(mmol/L), and haematocrit (%), pH, and venous pressure of
carbon dioxide (PvCO2; mmHg) were determined and recorded.
In addition, base excess (mmol/L) and the plasma concentration
of hemoglobin (Hb, g/dL) and HCO3 (mmol/L) were calculated.
The AG (mmo/L) was calculated using the formula: AG = (Na+

+ K+) – (Cl− +HCO−

3 ).

Sample Size Calculation
A minimum sample size of 6 calves was established to detect
a 25% change in operational taxonomic unit (OTU) counts,
assuming a normal distribution with a mean ± SD OTU count
of 2886± 391 per sample, a power of 0.80 and alpha of 0.05 (15).

Sample Processing
The bacterial DNA from frozen fecal samples were extracted
using the E.Z.N.A Stool DNA Kit (Omega Bio-Tek, Norcross,
GA, USA) according to the manufacturer’s protocol. The V4
region of the 16s rRNA gene was amplified via PCR, using
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modified 515-F and 806-R primers. Amplification was completed
in a 25µl reaction consisting of 12.5µl of KAPA 2G Fast HotStart
ReadyMix 2X (KapaBiosystems, MilliporeSigma, ON, Ca), 9.0 µl
of molecular-grade water, 2.5 µl template DNA, and 0.5 µl each
of both the forward and reverse primers (10.0µM). The reaction
conditions for PCR were 94 ◦C for 10min, and 27 cycles of 94
◦C for 45 s, 53 ◦C for 60 s, and 72 ◦C for 90 s, followed by a
final period of 72 ◦C for 10min. Using the Mag Bind RXNPure
Plus Beads, the PCR products were then purified following the
manufacturer instructions. The library pool was sequenced on
an Illumina MiSeq for 250 cycles from each end conducted at
Guelph’s Agriculture and Food laboratory (Guelph, ON, Canada).

Bioinformatic and Statistical Analysis
Bioinformatic analysis was conducted using the Mothur software
(1.45.3) following a previously published protocol (16, 17).
The Ribosomal Database Project classifier was used to identify
and ensure that the sequences passed quality control. The
sequences were then clustered at the genus level and clustered
into Operational Taxonomic Units (OTUs). The value at which
we sub-sampled was chosen based off the sample with the
fewest reads and to ensure sub-sampling representation, Good’s
coverage for each sample was calculated (18). To evaluate
the alpha diversity of the fecal microbiota, chao (richness),
Shannon’s evenness (evenness), and inverse Simpson (diversity)
was calculated. The values were then compared using the
non-parametric Steel-Dwass test for multiple comparisons. The
Jaccard (19) and Yue & Clayton (20) indices were calculated to
determine community membership and structure, respectively,
of the fecal microbiota of healthy and diarrheic calves. Principal
Coordinates Analysis (PCoA) plots were then generated using
JMP 16.0 based on the Jaccard and Yue & Clayton indices to
characterize clustering of different groups and the analysis of
Molecular Variance (AMOVA) was used to determine differences
between groups. Dirichlet multinomial mixtures method (DMM)
was used to determine the number of metacommunities (distinct
groups of samples with similar microbial composition) that
the data could be clustered into (21). Relative abundance of
the predominant taxa at the phylum, class, order, family, and
genus levels were calculated and compared using the Steel-
Dwass test for multiple comparisons and P values were adjusted
using the Benjamini-Hochberg correction (22) (R! Core Team,
2013, R Foundation for Statistical Computing, Vienna, Austria).
Linear discriminant analysis Effect Size (LEfSe) (23) analysis was
performed to determine operational taxonomic units explaining
the differences between each group based on a P < 0.05 and LDA
score > 3.5 and graphed using JMP 16.0.

RESULTS

Calves
Of the 160 calves available, 60 calves were randomly chosen
for this study based on the enrollment criteria. These 60 calves
consisted of 2 groups: 20 of them were in the healthy group, 40
calves with diarrhea. We then removed the calves that received
any antimicrobial treatment, which resulted in the diarrheic
group to have nine calves removed. Within the healthy calves,

16 had a fecal score of 0, 4 of them had a fecal score of 1, and
no calves had a fecal score of 2 or 3. In the diarrheic group, no
calves had fecal score of 0 or 1, 8 had a fecal score of 2, and 23
had a fecal score of 3. On the day of arrival, the mean weight
differed significantly between healthy calves (109.7± 7.6 lbs) and
diarrheic calves (103.7± 7.74 lbs) (P < 0.01). On day 7 (sampling
day), the mean weight of healthy calves (113.7± 9.5 lbs) was also
higher than diarrheic calves (108.6± 11.2 lbs) (P = 0.09).

Blood Gas and Electrolytes Measurement
The results of blood gas and electrolyte analysis is presented
in Table 1. Diarrheic calves had lower pH and bicarbonate
concentration than healthy calves (P< 0.01, for all comparisons).
The concentration of unmeasured anions estimated using the
AG was higher in diarrheic than healthy calves (P = 0.006)
(Figure 1).

Microbiota Sequence Analysis
A total of 10,455,063 raw sequences were obtained, and after
filtering and curating 7,739,843 sequences were available for
analysis. Subsampling was performed at 92,000 sequences per
sample and coverage was adequate based on a Good’s coverage
index value of 99.9%. In total, 23 phyla, 43 classes, 81 orders, 151
families, and 392 genera were identified in the samples.

Alpha and Beta Diversity Measurements
Richness, evenness, and diversity were significantly greater
in healthy calves compared to diarrheic calves (P < 0.001)
(Figure 2). The community membership (Jaccard index) and
structure (Yu and Clayton index) were different between healthy
and diarrheic calves (AMOVA P < 0.001) (Figure 3). This was
evident by the different clustering of samples from healthy and
diarrheic groups (Figure 3).

TABLE 1 | Blood gas and electrolyte analysis of healthy and diarrheic calves.

Variable Healthy Diarrheic P-value

n = 20 n = 31

PCV (%) 26.4 ± 4.89 29.45 ± 5.10 0.038

Hb (g/dL) 8.98 ± 1.67 10.02 ± 1.73 0.038

pH 7.38 ± 0.03 7.33 ± 0.05 < 0.001

PvCO2 (mmHg) 54.9 ± 4.33 55.31 ± 5.98 0.776

HCO3 (mmol/L) 32.48 ± 2.08 29.45 ± 5.35 0.006

BE (mmol/L) 7.3 ± 2.30 3.55 ± 6.02 0.003

Anion Gap (mmol/L) 12.95 ± 1.36 14.32 ± 2.09 0.006

Na+ (mmol/L) 135.7 ± 1.81 136.81 ± 3.63 0.155

K+ (mmol/L) 4.80 ± 0.28 5.05 ± 0.61 0.046

Cl− (mmol/L) 93.55 ± 7.07 98.10 ± 6.08 0.023

Glu (mg/dL) 103.8 ± 22.22 91.13 ± 17.61 0.038

BUN (mmol/L) 9.8 ± 2.46 14.39 ± 9.27 0.012

PCV, packet cell volume; Hb, Hemoglobin; Venous pressure of carbon dioxide; HCO3,

Bicarbonate; BE, Base excess; Glu, Glucose; BUN, Blood urea nitrogen. P-values were

obtained using a t-student test.
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FIGURE 1 | Venous blood ph (A) and anion gap (AG) concentration (B) of healthy (n = 20) and diarrheic (n = 31) calves. The AG was calculated using the following

formula: AG = (Na + K) – (Cl + HCO−

3 ). Level of significance *P < 0.001 and **P < 0.01. P-values were obtained using a t-student test.

FIGURE 2 | Indices of alpha diversity at the genus level of taxonomy of the fecal samples from healthy and diarrheic calves represented by box and whisker plots. (A)

Diversity (Inverse Simpson’s diversity index); (B) Richness (Chao-1 index). Level of significance *P < 0.001. The center line denotes the median value (50th percentile),

while the upper and lower bounds of each box represent the 25th and 75th percentiles, respectively. The whiskers mark the 95th and 5th percentiles. Outliers are

denoted with dots (·). The P values were obtained using the non-parametric Steel-Dwass test for multiple comparisons.

Relative Abundance and LefSe Analysis
The relative abundance of Firmicutes was significantly lower
in healthy calves than that of diarrheic calves (P < 0.01).
The abundance of Proteobacteria was significantly higher in
the diarrheic group than in the healthy group (P = 0.002).
The relative abundance of Bacilli and Lactobacillaceae was
significantly lower in healthy calves than diarrheic calves
(P < 0.001). Bacteroidales, Prevotella, Faecalibacterium, and
Blautia were significantly higher in healthy than diarrheic
calves (P < 0.001). The relative abundance of Streptococcus
and Ligilactobacillus were significantly higher in diarrheic calves
compared to healthy calves (P < 0.001) (Figure 4).

The LefSe analysis revealed that Phocaeicola, Bacteroides,
Prevotella, Faecalibacterium, Butyricicoccus, Ruminococcaceae
and Lachnospiraceae were enriched in healthy compared to
diarrheic calves. The samples from diarrheic calves were

enriched with taxa from the phylum Firmicutes, Proteobacteria
and Actinobacteria. Enterococcus, Ligilactobacillus, Lactobacilus,
and Gallibacterium Streptococcus were enriched in diarrheic
calves (Table 2).

Meta-Communities
Using DMM, samples were classified into two different Meta-
communities. Meta-community 1 comprised 49% (20/41) of
healthy calves, 51% (21/41) diarrheic calves. Meta-community 2
consisted of 100% (10/10) of samples from diarrheic calves.

DISCUSSION

This study investigated the fecal bacterial alterations of
calves with diarrhea and examined the association of
those bacterial changes with changes in blood pH, HCO−

3
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FIGURE 3 | Principal coordinate analysis (PCoA) of bacterial community (A) membership (Classic Jaccard analysis) and (B) structure (Yue and Clayton analysis).

Samples from these 20 healthy (green circles) and 31 calves with diarrhea were analyzed. Comparison between healthy and diarrheic calves showed significant

difference in community membership and structure (AMOVA P < 0.001, for both comparisons).

FIGURE 4 | Median relative abundance of predominant bacteria at the phylum (A) and genus (B) level identified in feces of healthy (n = 20) and diarrheic dairy calves

(n = 31). The 6 most abundant phyla and 17 most abundant genera are displayed.

concentration and AG. In diarrheic calves, richness, evenness
and diversity were reduced compared to healthy calves, and
both community structure and membership were different
between healthy and diarrheic calves. These alterations indicated
that dysbiosis occurred in the diarrheic calves included in
our study. In our study, a shift from obligate anaerobes
to facultative anaerobes was characterized by a decrease in
Bacteroidales, Bacteroides, Phocaeicola, Prevotella, Odoribacter
Lachnospiraceae, Ruminococcaeceae, Butyricicoccus, Blautia
and Faecalibacterium and an enrichment of Streptococcus,
Enterococcus, Gallibacterium, and Escherichia/Shigella in
diarrheic calves. This shift from obligate anaerobes to facultative
anaerobes have been regarded as a hallmark of dysbiosis of
gastrointestinal microbiota in different species (3, 11, 24–27).
The gastrointestinal tract is characterized by a low oxygen
concentration harboring many obligate anaerobes (107 to

1011 g−1 colonies), however during dysbiosis in diarrheic calves
it is possible that a reduction or disappearance of oxygen-
sensitive bacteria (e.g., Faecalibacterium) occurs (7, 11, 27).
The reduction of taxa (e.g., Blautia) that maintain anaerobic
conditions in the GIT could have led to a higher oxygen
availability in the intestine favoring the proliferation of facultative
anaerobes (e.g., Streptococcus, Enterococcus Gallibacterium, and
Escherichia/Shigella) (28). Thus, in diarrheic calves, the reduction
in Lachnospiraceae, Ruminococcaeceae, Butyricicoccus, Blautia
and Faecalibacterium could have contributed to the shift from
obligate anaerobes to facultative anaerobes. Proliferation of
facultative anaerobes in animal models is associated with
a proinflammatory mucosal immune response and plays a
causative role in gastrointestinal inflammation (3–5, 7, 11, 26–
28). During gastrointestinal inflammation, an increased release
of hemoglobin carrying oxygen and reactive oxygen species into
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TABLE 2 | Taxa enriched in healthy and diarrheic calves identified using the linear

discriminatory analysis (LDA) effect size (LefSe) methodology.

Group Phylum Family Genus

Healthy

n = 20

Bacteroidetes Bacteroidaceae Phocaeicola

Bacteroides

Prevotellaceae Prevotella

Odoribacteraceae Odoribacter

*Bacteroidales_unclassified unclassified

Firmicutes Ruminococcaceae Faecalibacterium

Butyricicoccus

unclassified

Lachnospiraceae Blautia

unclassified

Acidaminococcaceae Phascolarctobacterium

Diarrheic

n =31

Firmicutes Lactobacillaceae Lactobacillus

Ligilactobacillus

Limosilactobacillus

Lachnospiraceae Mediterraneibacter

unclassified

Enterococcaceae Enterococcus

Pasteurellaceae Gallibacterium

Streptococcaceae Streptococcus

Veillonellaceae Veillonella

Clostridiaceae_1 Clostridium_sensu_stricto

Proteobacteria Enterobacteriaceae Escherichia/Shigella

Actinobacteria Atopobiaceae Olsenella

LDA cut-off of 3 and P < 0.05. *Taxa classified as Bacteroidales order.

the lumen of the gastrointestinal tract appear to occur, which
could favor the growth of facultative anaerobes (11). Low oxygen
tension conditions facilitate proliferation of Enterobacteriaceae
and other potentially pathogenic facultative anaerobes (e.g.,
Enterococcus, Pseudomonas), which can elicit an inflammatory
response (28). Changes in the luminal pH of the GIT could
have also contributed to the bacterial alteration observed in the
diarrheic calves, because pH causes selective pressure on bacterial
growth and metabolism (29). In horses with grain overload and
cattle with ruminal acidosis the increase in facultative anaerobes,
especially Enterobacteriaceae along with an acidic luminal
environment is associated with cecal and ruminal mucosal
damage and facilitate translocation of bacteria and their products
into systemic circulation (30–34). This is of interest because
bacteremia (35–37) and endotoxemia (38) has been reported
in diarrheic calves with bacteremia occurring in 10 to 30% of
diarrheic calves with E. coli and other facultative anaerobic
Enterobacteriaceae bacteria (e.g., Salmonella, Enterobacter,
Klebsiella) being the most common bacteria isolated (35–37).
These findings highlight the crucial role of gastrointestinal
bacterial communities in local and systemic inflammatory
responses observed in diarrheic calves.

Diarrheic calves had a lower blood pH and bicarbonate
concentrations and higher AG values than healthy calves.
Increased concentrations of L- and especially D-lactate in the

lumen of the GIT and subsequent absorption into systemic
circulation play an important role in the local and systemic
abnormalities observed in calves with diarrhea (13, 39–41).
In horses with carbohydrate overload (30, 31), cattle with
ruminal acidosis (42, 43) and humans with SBD (42, 43),
luminal concentrations of D- and L-lactate are increased.
These alteration are associated with decrease lactic acid
fermentation from both proliferation of lactate-producing
bacteria and inhibition of lactate fermenting bacteria because
of the availability of carbohydrates (30, 34). In our study,
lactate-producing bacteria including Lactobacillus, Streptococcus,
Veillonella, Ligilactobacillus and Olsenella were enriched in
diarrheic calves. Therefore, the lower blood pH and bicarbonate
concentration and the high AG values identified in diarrheic
compared to healthy calves was likely due to increased absorption
of D- and L-lactate from the lumen of the gastrointestinal
tract. The main source of energy and carbohydrates in cow
milk is lactose, which is hydrolyzed by lactase in the small
intestine to glucose and galactose (44). Lactase is produced and
secreted at the brush border of the small intestine (45). Most
pathogens associated with calf diarrhea destroy the brush border
of the small intestine leading to a decreased activity of lactase
(2, 46). In healthy calves under normal lactase activity, only a
small percent of ingested lactose will reach the colon (47, 48).
When intestinal lactase is low (e.g., during diarrhea) lactose
is not metabolized in the small intestine, thus a large amount
of lactose enters in the colon (45, 47, 48). Lactate-producing
bacteria, such as Lactobacillus, possess β -galactosidase activity
and hydrolyze lactose to glucose and galactose (49, 50). Following
this hydrolyzation reaction, galactose is then fermented into
products such as short chain fatty acids, and D- and L-
lactate (50). In diarrheic calves, impaired lactose metabolism has
been demonstrated (13, 48). Therefore, the increased luminal
concentrations of D- and L-lactate probably resulted from an
increased passage of lactose to the distal small intestine and
colon due to maldigestion and malabsorption of milk (the only
source of food for pre-weaned calves) in the gastrointestinal
tract, which may have caused an overgrowth of lactate-producing
bacteria (13).

In our study, a single time point fecal sample at the onset
of diarrhea was assessed for microbiota analysis, therefore
we could not determine whether the differences in fecal
microbiota between healthy and diarrheic were already pre-
existing and indeed contributed to the susceptibility of the
calves to enteropathogens. This is of importance because
different farm environmental conditions and management
practices such as colostrum administration (51–53), diet (54)
or antimicrobial usage at the farm level (55, 56) contribute to
the development of the immune system and the colonization
and establishment of the bacterial communities in the GIT
microbiota (57, 58). Therefore, a longitudinal study involving a
large number of farms with multiple management practices is
needed to confirm whether the shift from obligated to facultative
anaerobes results from the gastrointestinal inflammation or it
is a predisposing factor for diarrhea associated with certain
management farm practices.

There are some limitations that should be considered when
interpreting the results of our study. First, calves of different ages
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(i.e., 3–7 days) were included in the study. This is of importance
because the fecal microbiota of newborn calves changes rapidly
during the first days of live (0 to 7 days). However, during
sampling, the calf ’s ages ranged from 10 to 14 days. At that
age, the changes of the fecal microbiota are less dramatic than
those observed during the first week of life (59–62). Finally, the
load of unmeasured anions was estimated using the anion gap
which could be affected by changes in blood concentration of
total plasma proteins (i.e., albumin and globulin) and phosphates
(12) of calves, especially in markedly dehydrated diarrheic calves.
Therefore, studies determining the individual concentration of
D- and L-lactate in blood and feces of diarrheic calves and their
relationship with alterations in the microbiota are warranted.
Nonetheless, the results of this study indicate that calf diarrhea
is associated with a shift from obligated to facultative anaerobes
and expansion of lactate-producing bacteria which are related to
acidemia and increased concentrations of unmeasured anions (L-
and D-lactate) estimated using the AG.
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