
molecules

Article

Polyphenols as Potential Inhibitors of SARS-CoV-2 RNA
Dependent RNA Polymerase (RdRp)

Yifei Wu 1 , David Crich 2, Scott D. Pegan 3, Lei Lou 1, Madelyn C. Hansen 4, Carson Booth 4, Ellison Desrochers 4,
Lauren Nicole Mullininx 4, Edward B. Starling 4, Kuan Y. Chang 5,* and Zhong-Ru Xie 1,*

����������
�������

Citation: Wu, Y.; Crich, D.;

Pegan, S.D.; Lou, L.; Hansen, M.C.;

Booth, C.; Desrochers, E.;

Mullininx, L.N.; Starling, E.B.;

Chang, K.Y.; et al. Polyphenols as

Potential Inhibitors of SARS-CoV-2

RNA Dependent RNA Polymerase

(RdRp). Molecules 2021, 26, 7438.

https://doi.org/10.3390/

molecules26247438

Academic Editor: Saverio Bettuzzi

Received: 11 October 2021

Accepted: 2 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical and Computer Engineering, College of Engineering, University of Georgia,
Athens, GA 30602, USA; wuyifei@uga.edu (Y.W.); ll38965@uga.edu (L.L.)

2 Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia,
Athens, GA 30602, USA; David.Crich@uga.edu

3 Division of Biomedical Sciences, School of Medicine, University of California Riverside,
Riverside, CA 92521, USA; scott.pegan@medsch.ucr.edu

4 Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA;
Madelyn.Hansen@uga.edu (M.C.H.); CarsonBooth@uga.edu (C.B.); egd80862@uga.edu (E.D.);
Lauren.Mullininx@uga.edu (L.N.M.); Edward.Starling@uga.edu (E.B.S.)

5 Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan
* Correspondence: kchang@email.ntou.edu.tw (K.Y.C.); paulxie@uga.edu (Z.-R.X.)

Abstract: An increasing number of studies have demonstrated the antiviral nature of polyphenols,
and many polyphenols have been proposed to inhibit SARS-CoV or SARS-CoV-2. Our previous
study revealed the inhibitory mechanisms of polyphenols against DNA polymerase α and HIV
reverse transcriptase to show that polyphenols can block DNA elongation by competing with the
incoming NTPs. Here we applied computational approaches to examine if some polyphenols can
also inhibit RNA polymerase (RdRp) in SARS-CoV-2, and we identified some better candidates than
remdesivir, the FDA-approved drug against RdRp, in terms of estimated binding affinities. The
proposed compounds will be further examined to develop new treatments for COVID-19.

Keywords: COVID-19; polyphenol; natural product; antiviral; molecular docking; MD simulation;
remdesivir; drug discovery; virtual screening

1. Introduction

Polyphenols, commonly found in plants, fruits, and tea, are antioxidants with many
health benefits [1,2]. Previous studies have shown polyphenols hold antiviral properties
against various viruses [3–6], especially those targeting the respiratory tract [7–10]. More-
over, many polyphenols were found to inhibit SARS-CoV or its target proteins [11–26].
The anti-inflammatory properties of polyphenols are strong enough that they have been
suggested as a supplement for obese and elderly COVID-19 patients [1]. Considerations
like these have prompted researchers to investigate polyphenols’ ability to inhibit SARS-
CoV-2 proteins. In an in silico analysis performed by Singh et al., TF3, TF2b, TF1, TF2a, and
hesperidin all had better binding scores compared to remdesivir [27]. Though not better
than remdesivir, gallic acid had a large binding energy when docked to RdRp in a study
of plant polyphenols by Nourhan et al., showing strong inhibitory potential [28]. Despite
the promising results, these studies sampled a very small variety of polyphenols, mainly
tea extracts. Therefore, it is necessary to conduct large-scale virtual screening for a larger
number of polyphenols.

Since it was first identified in late 2019, SARS-CoV-2 has devastated the world, in-
fecting more than 200 million people and killing more than 4.7 million [29]. In December
2020, the FDA approved the Pfizer-BioNTech vaccine for emergency use, resulting in
more than 100 million vaccinations in the U.S. alone [30]. Despite the success of the vac-
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cines, COVID-19 cases continue to increase, making the discovery of safe antiviral drugs a
significant concern.

SARS-CoV-2 is an enveloped, positive-sense RNA virus closely related to SARS-CoV,
the cause of the SARS pandemic in 2002–2003 [31,32]. The virus’ genome consists of
14 ORFs, with ORF 1a and 1b being the most important for RNA replication [33,34]. After
entry into a cell, ORF 1a and 1b are translated into two polyproteins that are further
broken down into 16 non-structural proteins (nsps) [33]. These proteins assemble to form
a replication complex that transcribes and replicates the virus’ RNA [35]. This RNA is
ultimately packaged to make new SARS-CoV-2 viruses.

As the enzyme complex responsible for generating RNA, RNA-dependent RNA
polymerase (RdRp) is central to viral replication [32]. The main protein in the complex
is nsp12 bound by two accessory subunits, nsp 7 and nsp8 [36]. Given that human cells
do not use RdRp and that its role in the viral life cycle is critical, RdRp is a popular drug
target [37,38]. Inhibitors of RdRp fall into two categories: nucleoside inhibitors (NI) and
non-nucleoside inhibitors (NNI). After being incorporated, nucleoside inhibitors block new
nucleotides from entering the RNA chain, so synthesis stops [36]. In an in vitro study using
a newly developed CoV-RdRp-Gluc reporter assay, remdesivir and molupiravir, both NIs,
inhibited RdRp with EC50 values of 11.11 and 0.22 µM, respectively [32]. NNIs inhibit RdRp
by changing its shape after binding to allosteric sites on the protein [36]. In a molecular
docking study by Zijing et al., tegobuvir, an NNI drug in development for hepatitis C,
bonded to the nsp12-7 and nsp12-8 sections of RdRp with docking scores ranging from
−7.8 to −8.4 kcal/mol, showing an inhibitory effect [39]. Compared to NIs, which are
vulnerable to exonuclease (nsp14) cleavage and competition with nucleotides present in
the cell, NNIs have the potential to be highly potent drugs against SARS-CoV-2 [32,36].

Thus, to find potential therapeutic agents against COVID-19, this study screened
480 polyphenols to bind to SARS-CoV-2 RdRp. The structures of the 480 polyphenols
were obtained from the Phenol-Explorer 3.6 database [40–42], and molecular docking was
conducted using Maestro. Molecular mechanics with generalized Born and surface area
solvation (MM-GBSA) scores were collected to quantify the affinity of the molecules for
the proteins, and then absorption, distribution, metabolism, and excretion (ADME) and
drug-likeness properties were analyzed for further screening. This study identifies three
polyphenols with extremely low binding affinities to the SARS-CoV-2 RdRp as potential
natural products for COVID-19 treatment.

2. Results
2.1. Docking Analysis of Polyphenols against SARS-CoV-2 RdRp

To develop effective inhibitors from polyphenols against SARS-CoV-2 RdRp, 480 polyphe-
nols were docked onto SARS-CoV-2 RdRp (PDB ID: 7BV2). Based on docking poses, the
binding energies were calculated using Prime MM-GBSA in Maestro. As a result, the top
three protein–ligand complexes, namely RdRp–cyanidin 3-O-rutinoside (−107.68 kcal/mol),
RdRp–petunidin 3,5-O-diglucoside (−99.18 kcal/mol), and RdRp–delphinidin 3-O-rutinoside
(−90.70 kcal/mol), have better estimated binding energies (Table 1). These three polyphenols
belong to the group of anthocyanins [43–45]. Meanwhile, we selected four compounds—
remdesivir-TP (−55.00 kcal/mol), theaflavin 3,3′-digallate (TF3) (−77.89 kcal/mol), swer-
tiapuniside (−39.42 kcal/mol), and ATP (−57.83 kcal/mol)—as a control group. Here,
remdesivir-TP is the best drug candidate, which was identified in our previous study [46].
TF3 and swertiapuniside were proposed as the top-ranked inhibitors of RdRp in the studies
from Singh et al. [27] and Koulgi et al. [47], respectively. From Table 1, we find that the top
three polyphenols show better binding energies than remdesivir-TP, TF3, and swertiapuniside.
This result indicates that the top three polyphenols possess the potential to inhibit RdRp.
Furthermore, the binding energies of the top three polyphenols are better than that of ATP,
which also suggests that the top three polyphenols might exert strong competitiveness at the
ATP binding site.
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Table 1. The estimated binding energies of the top three polyphenols and the control compounds.

Compound Binding Energy (kcal/mol)

Cyanidin 3-O-rutinoside −107.68
Petunidin 3,5-O-diglucoside −99.18
Delphinidin 3-O-rutinoside −90.70

Remdesivir-TP 1 −55.00
TF3 2 −77.89

Swertiapuniside 3 −39.42
ATP 4 −57.83

1 The original ligand in 7BV2 and the best-scored potential drug identified by our previous study [46]. 2 The
best-scored potential drug identified by a previous study [27]. 3 The best-scored potential drug identified by a
previous study [47]. 4 The substrate of RNA synthesis.

By comparing the 2D ligand–protein interactions of the top three polyphenols bound
to RdRp (Figure 1), we find that they all interact with U20, the terminal nucleotide that
interacts with incoming ATP. Cyanidin 3-O-rutinoside interacts with U20 by forming one
hydrogen bond, two π-π stackings, and one π–cation interaction. By forming two hydro-
gen bonds, two π-π stackings, and one π–cation interaction, petunidin 3,5-O-diglucoside
interacts with U20. Meanwhile, delphinidin 3-O-rutinoside interacts with U20 by forming
one hydrogen bond and one π–cation interaction. These interactions between the top three
polyphenols and U20 suggest that these polyphenols might strongly bind to RNA and
compete with incoming ATP for the binding site so that viral RNA elongation is blocked.
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Figure 1. The docking poses and 2D ligand–protein interaction diagrams of 7BV2 and the top
three ligands: (A), Cyanidin 3-O-rutinoside; (B), Petunidin 3,5-O-diglucoside; (C), Delphinidin 3-O-
rutinoside. The pink spheres represent Mg2+ ions. The purple arrows indicate the hydrogen bonds;
the green line represents π-π stacking; the red line represents π–cation interaction; the blue-red line
represents the salt bridge; the gray line represents metal coordination.
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Additionally, we summarized the number of hydrogen bonds between the top three
polyphenols and the essential residues in Table 2. From Table 2, we find that these three
polyphenols all interact with Arg555 by forming hydrogen bonds: one hydrogen bond
for cyanidin 3-O-rutinoside, one hydrogen bond for petunidin 3,5-O-diglucoside, and
two hydrogen bonds for delphinidin 3-O-rutinoside. Moreover, cyanidin 3-O-rutinoside
interacts with Arg555 by forming a π–cation interaction, and delphinidin 3-O-rutinoside
interacts with Agr555 through a salt bridge (Figure 1A,C). This result suggests that Arg555
is a critical residue in the binding pocket. Furthermore, cyanidin 3-O-rutinoside and
delphinidin 3-O-rutinoside both interact with Arg553 by forming one hydrogen bond
each. In forming one hydrogen bond each, petunidin 3,5-O-diglucoside and delphinidin
3-O-rutinoside both interact with Asn691 and Asp760. Notably, the ligand delphinidin
3-O-rutinoside has a phenoxide ion interacting with Arg555 and Asn691 (Figure 1C).
Accordingly, we propose that cyanidin 3-O-rutinoside, petunidin 3,5-O-diglucoside, and
delphinidin 3-O-rutinoside are the three best inhibitor candidates of RdRp among all 480
polyphenols based on these docking results.

Table 2. The number of hydrogen bonds formed between the top three polyphenols and essential
residues of SARS-CoV-2 RdRp.

Cyanidin
3-O-rutinoside

Petunidin
3,5-O-diglucoside

Delphinidin
3-O-rutinoside

Ile548 1
Arg553 1 1
Arg555 1 1 2
Lys621 2
Asp623 2
Thr680 1
Asn691 1 1
Asp760 1 1
Ser814 1

2.2. Physicochemical Properties Prediction

To explore the physicochemical properties of the top three polyphenols, we predicted
the ADME and drug-likeness properties using Qikprop in Maestro. The results are shown
in Table 3. Meanwhile, the physicochemical properties of three control compounds are also
predicted and listed in Table 3. First, the molecular weight of the top three polyphenols
is within the recommended range of 130.0 to 725.0, whereas the control compound TF3
falls out of the recommended range. QPlogS is another important property to predict
aqueous solubility, and its recommended range is from −6.5 to 0.5. All the compounds in
Table 3 are in that range. In addition, the Lipinski’s rule of five (RO5) and the Jorgensen’s
rule of three (RO3) are essential descriptors for evaluating drug-likeness. The top three
polyphenols all pass the RO5 and RO3, which further suggests the drug-likeness of these
polyphenols. In summary, Qikprop predictions indicate that cyanidin 3-O-rutinoside,
petunidin 3,5-O-diglucoside, and delphinidin 3-O-rutinoside can be considered as viable
drug candidates worthy of further research.
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Table 3. Selected Qikprop descriptors of the top three polyphenols and the control compounds.

Compound mol_MW 1 QPlogS 2 RO5 3 RO3 4

Cyanidin 3-O-rutinoside 596.541 −2.112 3 2
Petunidin 3,5-O-diglucoside 642.566 −1.187 3 2
Delphinidin 3-O-rutinoside 612.540 −2.663 3 2

Remdesivir-TP 531.205 −1.742 3 1
TF3 868.714 −4.852 3 2

Swertiapuniside 531.205 −1.742 3 1
1 mol_MW represents molecular weight of the molecule. The recommended range is 130.0–725.0. 2 QPlogS is the
predicted aqueous solubility. The recommended range is −6.5~0.5. 3 RO5: number of violations of Lipinski’s rule
of five [48]. The recommended range: maximum is 4. 4 RO3: Number of violations of Jorgensen’s rule of three
[49]. The recommended range: maximum is 3.

2.3. Molecular Dynamics (MD) Simulation Analysis

To further analyze the stability of the complexes, we conducted MD simulations to
calculate RMSD and energy for the top three protein–ligand complexes. First, RMSD can
be used to assess the stability of a protein–ligand complex. As shown in Figure 2A–C,
the RMSD for the 7BV2–ligand complexes stabilized at around 0.25 nm after 5 ns, which
suggests that the protein–ligand complexes are stable during the simulation process. More-
over, the total energies of these three complexes are shown in Figure 2D–F. The energies
of 7BV2–ligand complexes stabilized at around −1.98 × 106 kJ/mol after 2 ns, further
revealing the good stabilities of these three systems.
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Figure 2. The RMSD and energy of protein–ligand complexes. (A), the RMSD of 7BV2–cyanidin 3-O-
rutinoside; (B), the RMSD of 7BV2–petunidin 3,5-O-diglucoside; (C), the RMSD of 7BV2–delphinidin
3-O-rutinoside; (D), the energy of 7BV2–cyanidin 3-O-rutinoside; (E), the energy of 7BV2–petunidin
3,5-O-diglucoside; (F), the energy of 7BV2–delphinidin 3-O-rutinoside.
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To compare the stability of RdRp with the three best polyphenols and the control
group, we conducted MD simulations on the control complexes: RdRp–remdesivir-TP
and RdRp–ATP. The RMSD values were then calculated and shown in Figure 3. As a
result, the RMSD values of RdRp–remdesivir-TP and RdRp–ATP were higher than those
of the complexes of RdRp with the three best ligands, which suggests that these three
top-scored polyphenols, bound to RdRp, show better stability. Figure S1 shows that the
RMSD values of 7BV2 before and after docking all stabilize at around 0.25 nm from 5 ns
to 100 ns. Interestingly, the RMSD value of 7BV2 before ligand docking is slightly higher
than the others, which indicates that the protein structure of RdRp becomes more stable
after ligand–protein docking. Therefore, we conclude that the top three polyphenols
bound to RdRp promote the stability of the protein structure. After MD simulations, we
created three 2D interaction diagrams between RdRp and the three top-scored polyphenols
(Figure S2). Compared to the docking results, the number of interactions (hydrogen bonds
and π–π stacking) was reduced (Figure 1 vs. Figure S2A–C) because the fluctuation of
the structures is the nature of MD simulations. However, we also found that the most
significant interactions between the ligands and the protein remained stable (Figure S2).
For example, the hydrogen bond, π–cation, and π–π interactions between the top-scored
polyphenols and Arg555 and U20, the terminal nucleotide, remained stable during the MD
simulations. As the control, the complex of RdRp and remdesivir-TP had fewer interactions
after the MD simulation, while remdesivir-TP still interacted with U20 but not with Arg555
(Figure S3).
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3. Discussion

Polyphenols possess a wide range of health benefits and biological activities, including
antioxidant [50], antitumoral [51], anti-inflammatory [52], and antiviral properties [53],
the latter of which suggests that polyphenols may be useful in the battle against multiple
viruses, even SARS-CoV-2 [27,54–62]. In fact, numerous studies have shown that polyphe-
nols exhibit antiviral effects by inhibiting DNA/RNA synthesis [63–67]. Our previous
study also demonstrated that miquelianin, a flavonol glucuronide, can compete for the
binding site of dATP on HIV-1 reverse transcriptase, inhibiting the viral DNA synthesis
by interacting with the last nucleotide of the RNA chain and the binding residues of DNA
polymerase [68]. Competing for the binding site of the incoming dNTP on the 3′ end
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of the elongating chain of DNA or RNA on the DNA/RNA polymerases is a significant
mechanism through which polyphenols or other artificial compounds such as remdesivir
exert their inhibitory effects. Therefore, to virtually screen potential inhibitors against
DNA/RNA polymerases, the DNA or RNA molecule has to be considered and located
precisely in the docking box. However, compounds were docked onto the empty active
site of RdRp of SARS-CoV-2 without the RNA chain involved in many previous studies.
This should be a reason why many drug candidates identified in in silico experiments are
false positives.

In this study, we found that the binding affinities of the top-ranked polyphenols
all showed much better results than remdesivir in terms of binding affinity. To further
discuss the docking pose of the best drug candidate, we overlapped the docking pose of
7BV2–cyanidin 3-O-rutinoside with the original structure of 7BV2 (Figure 4). We found
that cyanidin 3-O-rutinoside occupies the position of the original ligand remdesivir-MP,
but that it also interacts with Arg555 and the last nucleotide of the RNA chain in addition
to the interactions between RdRp and the original ligand remdesivir-MP. Cyanidin 3-
O-rutinoside interacts with Arg555 by forming one hydrogen bond and one π–cation
interaction; however, remdesivir-MP interacts with Arg555 only through one π–cation
interaction. Cyanidin 3-O-rutinoside interacts with U20, the last nucleotide, through a π–π
interaction as well. These findings indicate that cyanidin 3-O-rutinoside, the polyphenol
with the best scores, should compete for the binding site to block viral RNA synthesis.
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4. Materials and Methods
4.1. Ligand Preparation

The structures of 480 tested polyphenols were retrieved from Phenol-Explorer 3.6
(http://phenol-explorer.eu/) (accessed on 1 December 2020). All the tested compounds
were prepared using Ligprep in Maestro 12.4 (Schrödinger). The process for Ligprep
includes adding hydrogens, computing correct partial charges, and generating possible
conformations. The force field is OPLS3e by default [69].

http://phenol-explorer.eu/
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4.2. Protein Preparation

The protein structures of RNA-dependent RNA polymerase (PDB ID: 7BV2) from
RCSB’s Protein Data Bank (https://www.rcsb.org/) were prepared for use by Maestro in
three steps: preprocessing, optimization, and minimization [70,71]. The OPLS3e force field
was applied in both the optimization and the minimization steps [69].

4.3. Ligand–Protein Docking

To estimate the interactions between target proteins and polyphenols, we conducted
ligand–protein docking by using the Ligand Docking panel in Maestro. Before running
docking jobs, a receptor grid box was generated based on the existing ligand remdesivir in
the protein structure. The size of the receptor grid box was set as default (20 Å). Ligand–
protein docking was performed in extra-precision (XP) mode.

4.4. MM-GBSA Calculation

To predict the binding energies of polyphenols bound to RdRp, we performed Prime
MM-GBSA (molecular mechanics generalized Born surface area) in Maestro. In the MM-
GBSA panel, the pose viewer files of the docked complex were uploaded into the MM-GBSA
panel. The force field was OPLS3e [69].

4.5. ADME and Drug-Likeness Properties Prediction

Qikprop module in Maestro was applied to predict the absorption, distribution,
metabolism, and excretion (ADME) and drug-likeness properties for further screening [72].
For Qikprop, the top-ranked polyphenols were prepared by using Ligprep. Finally, de-
scriptors such as RuleOfFive (RO5) and RuleOfThree (RO3) were applied to analyze
the candidates.

4.6. Molecular Dynamics Simulation

To further investigate the dynamic interactions between RdRp and the top three
polyphenols, we conducted molecular dynamics (MD) simulations by using GROMACS
version 2018.1 and CHARMM36 force field [73]. The starting coordinates of the protein–
ligand complex were obtained from a ligand–protein docking study. Then, we used
CHARMM-GUI to build the MD simulation solution box, a cubic box with a length of
125 Å, which was then filled with water [74–76]. Next, the minimized structures were
equilibrated using an NVT ensemble (constant Number of particles, Volume, and Tempera-
ture) and NPT ensemble (the Number of particles, Pressure, and Temperature). The target
equilibration temperature was 300 K. Finally, MD simulations were performed for 100 ns.
After the MD simulations, we calculated the root-mean-square deviation (RMSD) and the
potential energies.

5. Conclusions

In summary, this study identified three polyphenols out of 480 as the best drug candidates
for COVID-19 treatment. They all showed better estimated binding affinities than control
compounds such as remdesivir. This can offer inspiration for new drug development.

Supplementary Materials: The following are available online, Figure S1: The RMSD of 7BV2 before
and after ligand-protein docking. Figure S2: 2D ligand-protein interaction diagrams of RdRp
and the top three ligands after MD simulations: A, Cyanidin 3-O-rutinoside; B, Petunidin 3,5-O-
diglucoside; C, Delphinidin 3-O-rutinoside. Figure S3: 2D ligand-protein interaction diagrams of
RdRp-remdesivir-TP before (A) and after (B) MD simulation.
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