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Abstract Identifying gene expression programs underlying both cell-type identity and cellular

activities (e.g. life-cycle processes, responses to environmental cues) is crucial for understanding

the organization of cells and tissues. Although single-cell RNA-Seq (scRNA-Seq) can quantify

transcripts in individual cells, each cell’s expression profile may be a mixture of both types of

programs, making them difficult to disentangle. Here, we benchmark and enhance the use of

matrix factorization to solve this problem. We show with simulations that a method we call

consensus non-negative matrix factorization (cNMF) accurately infers identity and activity

programs, including their relative contributions in each cell. To illustrate the insights this approach

enables, we apply it to published brain organoid and visual cortex scRNA-Seq datasets; cNMF

refines cell types and identifies both expected (e.g. cell cycle and hypoxia) and novel activity

programs, including programs that may underlie a neurosecretory phenotype and synaptogenesis.

DOI: https://doi.org/10.7554/eLife.43803.001

Introduction
Genes act in concert to maintain a cell’s identity as a specific cell type, to respond to external sig-

nals, and to carry out complex cellular activities such as replication and metabolism. Coordinating

the necessary genes for these functions is frequently achieved through transcriptional co-regulation,

where genes are induced together as a gene expression program (GEP) in response to the appropri-

ate internal or external signal (Eisen et al., 1998; Segal et al., 2003). By enabling unbiased mea-

surement of the whole transcriptome, profiling technologies such as RNA-Seq are paving the way

for systematically discovering GEPs and shedding light on the biological mechanisms that they

govern (Liberzon et al., 2015).

Single-cell RNA-Seq (scRNA-Seq) has greatly enhanced our potential to resolve GEPs by making

it possible to observe variation in gene expression over many individual cells. Even so, inferring

GEPs remains challenging as scRNA-Seq data is noisy and high-dimensional, requiring computational

approaches to uncover the underlying patterns. In addition, technical artifacts such as doublets

(where two or more distinct cells are mistakenly collapsed into one) can confound analysis. Methodo-

logical advances in dimensionality reduction, clustering, lineage trajectory tracing, and differential

expression analysis have helped overcome some of these issues (Amir et al., 2013;

Kharchenko et al., 2014; Satija et al., 2015; Trapnell et al., 2014).
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Here, we focus on a key challenge of inferring expression programs from scRNA-Seq data: the

fact that individual cells may express multiple GEPs but we only detect cellular expression profiles

that reflect their combination, rather than the GEPs themselves. A cell’s gene expression is shaped

by many factors including its cell type, its state in time-dependent processes such as the cell cycle,

and its response to varied environmental stimuli (Wagner et al., 2016). We group these into two

broad classes of expression programs that can be detectable in scRNA-Seq data: (1) GEPs that cor-

respond to the identity of a specific cell type such as hepatocyte or melanocyte (identity programs)

and (2) GEPs that are expressed independently of cell type, in any cell that is carrying out a specific

activity such as cell division or immune cell activation (activity programs). In this formulation, identity

programs are expressed uniquely in cells of a specific cell type, while activity programs may vary

dynamically in cells of one or multiple types and may be continuous or discrete.

Thus far, the vast majority of scRNA-Seq studies have focused on systematically identifying and

characterizing the expression programs of cell types composing a given tissue, that is identity GEPs.

Substantially less progress has been made in identifying activity GEPs, primarily through direct

manipulation of cells in controlled experiments, for example comparing stimulated and unstimulated

neurons (Hrvatin et al., 2018) or cells pre- and post-viral infection (Steuerman et al., 2018).

If a subset of cells profiled by scRNA-Seq expresses a given activity GEP, there is a potential to

directly infer the program from the data without the need for controlled experiments. However, this

can be significantly more challenging than ascertaining identity GEPs; while some cells may have

expression profiles that are predominantly the output of an identity program, activity programs will

always be expressed alongside the identity programs of one or frequently many cell types. Thus,

while finding the average expression of clusters of similar cells may often be sufficient for finding

reasonably accurate identity GEPs, it will often fail for activity GEPs.

We hypothesized that we could infer activity GEPs directly from variation in single-cell expression

profiles using matrix factorization. In this context, matrix factorization would model the gene expres-

sion data matrix as the product of two lower rank matrices, one encoding the relative contribution

of each gene to each program, and a second specifying the proportions in which the programs are

combined for each cell. We refer to the second matrix as a ‘usage’ matrix as it specifies how much

each GEP is ‘used’ by each cell in the dataset (Stein-O’Brien et al., 2018) (Figure 1A). Unlike hard

clustering, which reduces all cells in a cluster to a single shared GEP, matrix factorization allows cells

to express multiple GEPs. Thus, this computational approach would allow cells to express one or

more activity GEPs in addition to their expected cell-type GEP, and could correctly model doublets

as a combination of the identity GEPs for the combined cell types. To the best of our knowledge, no

previously reported studies have benchmarked the ability of matrix factorization methods to accu-

rately learn identity and activity GEPs from scRNA-Seq profiles.

We see three primary motivations for jointly inferring identity and activity GEPs in scRNA-Seq

data. First, systematic discovery of GEPs could reveal unexpected or novel activity programs reflect-

ing important biological processes (e.g. immune activation or hypoxia) in the context of the native

biological tissue. Second, it could enable characterization of the prevalence of each activity GEP

across cell types in the tissue. Finally, accounting for activity programs could improve inference of

identity programs by avoiding spurious inclusion of activity program genes in the latter. GEPs corre-

sponding to different phases of the cell cycle are examples of widespread activity programs and are

well-known to confound identity (cell type) program inference in scRNA-Seq data (Chen and Zhou,

2017; Scialdone et al., 2015). However, cell-cycle is just one instance of the broader problem of

confounding of identity and activity programs.

While matrix factorization is widely used as a preprocessing step in scRNA-Seq analysis, a priori it

is unclear which, if any, factorization approaches would be most appropriate for inferring biologically

meaningful GEPs. In particular, Principal Component Analysis (PCA), Independent Component Anal-

ysis (ICA), Latent Dirichlet Allocation (LDA) (Blei et al., 2003) and Non-Negative Matrix Factorization

(NMF)(Lee and Seung, 1999) have been used for dimensionality reduction of data prior to down-

stream analysis or as an approach to cell clustering. However, while PCA (Shalek et al., 2014;

Steuerman et al., 2018), NMF (Puram et al., 2017) and ICA (Saunders et al., 2018) components

have been interpreted as activity programs, the dimensions inferred by these or other matrix factori-

zation algorithms may not necessarily align with biologically meaningful gene expression programs

and are frequently ignored in practice. This is because each method makes different simplifying

assumptions that are potentially inappropriate for gene expression data. For example, NMF and
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LDA are non-negative and so cannot directly model repression. ICA components are statistically

independent, PCA components are mutually orthogonal, and both allow gene expression to be neg-

ative. Furthermore, none of these methods, except LDA, explicitly accounts for the count distribu-

tion of expression data in their error models.

In this study, we motivate, validate, and enhance the use of matrix factorization for GEP inference.

Using simulations, we show that despite their simplifying assumptions, ICA, LDA, and NMF—but not

PCA—can accurately discover both activity and identity GEPs. However, due to inherent randomness

in their algorithms, they give substantially varying results when repeated multiple times, which hin-

ders their interpretability. We therefore implemented a meta-analysis approach (Figure 1B), which
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Figure 1. Schematics of matrix factorization for single-cell RNA-Seq analysis and the consensus matrix factorization pipeline. (a) Schematic

representation of how cellular gene expression can be modeled with matrix factorization. The gene expression profiles of individual cells (left bar

charts) are weighted mixtures of a set of global gene expression programs (right bar charts) with distinct weights reflecting the usage of each program

(middle pie chart). Variable usage of the activity programs is represented by the number of blue circles and orange squares in each cell. (b) Schematic

of the consensus matrix factorization pipeline.

DOI: https://doi.org/10.7554/eLife.43803.002
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demonstrably increased robustness and accuracy. Overall, the meta-analysis of NMF, which we call

Consensus NMF (cNMF), gave the best performance in these simulations.

Applied to three real datasets generated by three different scRNA-Seq platforms, cNMF inferred

expected activity programs (cell-cycle programs in a brain organoid dataset and depolarization

induced programs in visual cortex neurons), an unanticipated hypoxia program, and intriguing novel

activity programs. It also enhanced cell type characterization and enabled estimation of rates of

activity across cell types. These findings on real datasets further validate our approach as a useful

analysis tool to understand complex signals within scRNA-Seq data.

Results

Evaluation of matrix factorization for GEP inference in simulated data
We sought to establish whether components inferred by simple matrix factorizations would align

with GEPs in scRNA-seq data. We evaluated this in simulated data of 15,000 cells composed of 13

cell types, one cellular activity program that is active to varying extents in a subset of cells of four

cell types, and a 6% doublet rate (Figure 2A). We generated 20 replicates of this simulation, each at

three different ‘signal to noise’ ratios, in order to determine how matrix factorization accuracy varies

with noise level (Materials and methods).

We first analyzed the performance of ICA, LDA, and NMF and noticed that they yielded different

solutions when run several times on the same input simulated data. We ran each method 200 times

and assigned the components in each run to their most correlated ground-truth program. We saw

that there was significant variability among the components assigned to the same program – particu-

larly for NMF and LDA (Figure 2—figure supplement 1). Unlike PCA, which has an exact solution,

these factorizations use stochastic optimization algorithms to obtain approximate solutions in a solu-

tion space including many local optima. We observed that such local optima frequently corre-

sponded to solutions where a simulated GEP was split into multiple inferred components and/or

multiple GEPs were merged into a single component (Figure 2—figure supplement 2a). This vari-

ability reduces the interpretability of the solutions and may decrease the accuracy as well.

To overcome the issue of variability of solutions, we employed a meta-analysis approach, which

we call consensus matrix factorization, that averages over multiple replicates to increase the robust-

ness of the solution. The method which is adapted from a similar procedure in mutational signature

discovery (Alexandrov et al., 2013) proceeds as follows: we run the factorization multiple times, fil-

ter outlier components (which tend to represent noise or merges/splits of GEPs), cluster the compo-

nents over all replicates combined, and take the cluster medians as our consensus estimates. With

these estimates fixed, we are able to compute a final usage matrix specifying the contribution of

each GEP in each cell and to transform our GEP estimates from normalized units to biologically

meaningful ones such as transcripts per million (TPM). This approach also provides us with a guide

for determining K, the number of components to use, by selecting a value that provides a reason-

able trade-off between error and stability (Figure 2—figure supplement 3a, see Materials and

methods for details). We refer to this approach as consensus matrix factorization based on its anal-

ogy with consensus clustering (Monti et al., 2003) and to its application to LDA, NMF, and ICA, as

cLDA, cNMF, and cICA respectively. While consensus clustering has been previously applied to bulk

gene expression analysis using hard-clustering derived by binarizing NMF factors (Brunet et al.,

2004), our approach does not require any hard cluster assignments.

Consensus matrix factorization inferred components underlying the GEPs as well as which cells

expressed each GEP (Figure 2b–c, Figure 2—figure supplement 4a). By contrast, principal compo-

nents were linear combinations of the true GEPs. Beyond increasing the robustness of the solution,

the consensus approach also increased the ability of factorization to deconvolute the true GEPs -

most dramatically for LDA and NMF which had the most stochastic variability. cNMF successfully

deconvoluted the activity and identity GEPs more frequently than the other matrix factorizations

considered (Figure 2d, Figure 2—figure supplement 2).

We next sought to benchmark the sensitivity and specificity of each matrix factorization method

for inferring which genes are associated with each GEP. We also evaluated the performance of hard

clustering for this task because clustering is the most common way GEPs are identified in practice.

We evaluated the commonly used Louvain community detection clustering algorithm (Blondel et al.,
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Figure 2. cNMF infers identity and activity expression programs in simulated data. (a) t-distributed stochastic neighbor embedding (tSNE) plot of an

example simulation showing different cell types with marker colors, doublets as gray Xs, and cells expressing the activity gene expression program

(GEP) with a black edge. (b) Pearson correlation between the true GEPs and the GEPs inferred by cNMF for the simulation in (a). (c) Same tSNE plot as

(a) but colored by the simulated or the cNMF inferred usage of an example identity program (left) or the activity program (right). (d) Percentage of 20

simulation replicates where an inferred GEP had Pearson correlation greater than 0.80 with the true activity program for each signal to noise ratio

(parameterized by the mean log2 fold-change for a differentially expressed gene). (e) Receiver Operator Characteristic (except with false discovery rate

rather than false positive rate) showing prediction accuracy of genes associated with the activity GEP. (f) Scatter plot comparing the simulated activity

GEP usage and the usage inferred by cNMF for the simulation in (a). For cells with a simulated usage of 0, the inferred usage is shown as a box and

whisker plot with the box corresponding to interquartile range and the whiskers corresponding to 5th and 95th percentiles. (g) Contour plot of the true

GEP usage on the Y-axis and the second true GEP usage for doublets or the second highest GEP usage inferred by cNMF for singletons for the

simulation in (a). 1000 randomly selected cells are overlayed as a scatter plot for each group.

DOI: https://doi.org/10.7554/eLife.43803.003

The following source data and figure supplements are available for figure 2:

Source data 1. Benchmarking of matrix factorizations on simulated data.

DOI: https://doi.org/10.7554/eLife.43803.012

Figure supplement 1. Robustness of matrix factorization methods.

DOI: https://doi.org/10.7554/eLife.43803.004

Figure supplement 2. Deconvolution accuracy of matrix factorization methods.

DOI: https://doi.org/10.7554/eLife.43803.005

Figure supplement 3. Diagnostic plot for cNMF on an example simulated dataset.

DOI: https://doi.org/10.7554/eLife.43803.006

Figure 2 continued on next page
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2008; Levine et al., 2015) but also considered an upper bound on how well any discrete clustering

could perform by using ground-truth to assign cells to a cluster of its cell type or to an activity cluster

if it had >= 40% simulated contribution from the activity GEP (Figure 2—figure supplement 4b).

We evaluated the association between genes and GEPs using linear regression and measured accu-

racy using a receiver operator characteristic (Materials and methods).

We found that cNMF was most accurate at inferring genes in the activity program, with a sensitiv-

ity of 61% at a false discovery rate (FDR) of 5% (Figure 2e). cICA and the ground-truth clustering

were the next most accurate with 57% and 56% sensitivity at a 5% FDR, respectively. cNMF also per-

formed the best at inferring identity GEPs of the 4 cell types that expressed the activity (Figure 2—

figure supplement 5). As expected, the clustering approaches performed worse as they inappropri-

ately assigned activity GEP genes to these identity programs, resulting in an elevated FDR. This illus-

trates how matrix factorization can outperform clustering for inference of the genes associated with

activity and identity GEPs.

We decided to proceed with cNMF to analyze the real datasets due its accuracy, processing

speed, and interpretability. First, it yielded the most accurate inferences in our simulated data. Sec-

ond, NMF was the fastest of the basic factorization algorithms considered, which is especially useful

given the need to run multiple replicates and given the growing sizes of scRNA-Seq datasets (Fig-

ure 2—figure supplement 6). Third, the non-negativity assumption of NMF naturally results in usage

and component matrices that can be normalized and interpreted as probability distributions—

that is, where the usage matrix reflects the probability of each GEP being used in each cell, and the

component matrix reflects the probability of a specific transcript expressed in a GEP being a specific

gene. The other high-performing factorization method, cICA, produced negative values in the com-

ponents and usages which precludes this interpretation.

Beyond identifying the activity program itself, we found that cNMF could also accurately infer

which cells expressed the activity program and what proportion of their expression was derived

from the activity program (Figure 2f). With an expression usage threshold of 10%, cNMF accurately

classified 91% of cells expressing the activity program and 94% of cells that did not express the pro-

gram. Moreover, we observed a high Pearson correlation between the inferred and simulated

usages in cells that expressed the program (R = 0.74 for all simulations combined, R = 0.68 for the

example simulation in Figure 2a). Thus, cNMF can be used both to infer which cells express the

activity program, as well as what proportion of their transcripts derive from that program.

We further demonstrated that cNMF was robust to the presence of doublets—instances where

two cells are mistakenly labeled as a single cell. Due to limitations in the current tissue dissociation

and single-cell sequencing technologies, some number of ‘cells’ in an scRNA-Seq dataset will actu-

ally correspond to doublets. Several computational methods have been developed to identify cells

that correspond to doublets, but this is still an important artifact in scRNA-Seq

data (McGinnis et al., 2018; Wolock et al., 2018). We found that cNMF correctly modeled doublets

as a combination of the GEPs for the two combined cell types (Figure 2g). Moreover, we found that

cNMF could accurately infer the GEPs even in a simulated dataset composed of 50% doublets (Fig-

ure 2—figure supplement 7). This illustrates another benefit of representing cells in scRNA-Seq

data as a mixture of GEPs rather than classifying them into discrete clusters.

In all the simulations described above, the 13 cell-types occurred at uniform frequencies. This

allowed us to treat all identity programs as replicates of each other for evaluating inference

Figure 2 continued

Figure supplement 4. GEP usage inference.

DOI: https://doi.org/10.7554/eLife.43803.007

Figure supplement 5. Accuracy of identifying genes in each GEP.

DOI: https://doi.org/10.7554/eLife.43803.008

Figure supplement 6. Comparison of run-times for different matrix factorization algorithms.

DOI: https://doi.org/10.7554/eLife.43803.009

Figure supplement 7. cNMF demonstration on simulated datasets with 50% doublets.

DOI: https://doi.org/10.7554/eLife.43803.010

Figure supplement 8. Impact of variable cell-type proportions on GEP inference.

DOI: https://doi.org/10.7554/eLife.43803.011
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accuracy, rather than having to separately consider rare GEPs which should, all else equal, be harder

to infer than common ones. However, this is an approximation of reality where cell-type proportions

can vary over multiple orders of magnitude. We therefore also performed simulations containing bio-

logically plausible cell-type proportions derived from the published clustering of a dataset analyzed

later in this manuscript (Hrvatin et al., 2018) (Materials and methods). When we kept all of the other

simulation parameters identical to those of the initial simulations, some identity GEPs from rare cell-

types were missed by cNMF, cICA, and Louvain clustering (Figure 2—figure supplement 8a). How-

ever, when we increased the distinctness of the identity GEPs of the cell types, they could still be

inferred by both cICA and cNMF with similar relative performances to what we saw in the primary

benchmarking analysis (Figure 2—figure supplement 8b). This suggests that the simplification of

uniform cell-type frequencies does not significantly impact our conclusions.

cNMF deconvolutes hypoxia and cell-cycle activity GEPs from identity
GEPs in brain organoid data
Having demonstrated its performance and utility on simulated data, we then used cNMF to re-ana-

lyze a published scRNA-Seq dataset of 52,600 single cells isolated from human brain

organoids (Quadrato et al., 2017). The initial report of this data confirmed that organoids contain

excitatory cell types homologous to those in the cerebral cortex and retina as well as unexpected

cells of mesodermal lineage, but further resolution can be gained on the precise cell types and how

they differentiate over time. As organoids contain many proliferating cell types, we sought to use

this data to confirm that cNMF could detect activity programs—in this case, cell cycles programs—in

real data, and to explore what biological insights could be gained from their identification.

We identified 31 distinct programs in this dataset that could be further parsed into identity and

activity programs (Figure 3—figure supplement 1). We distinguished between identity and activity

programs by using the fact that activity programs can occur in multiple diverse cell types while iden-

tity programs represent a single-cell type. Most cells had high usage of just a single GEP, which is

consistent with expressing just an identity program (Figure 3a). When cells expressed multiple

GEPs, those typically had correlated expression profiles, suggesting that they correspond to identity

programs of closely related cell types or cells transitioning between two developmental states,

rather than activity programs (Figure 3—figure supplement 2). By contrast, three GEPs were co-

expressed with many distinct and uncorrelated programs, suggesting that they represent activity

programs that occur across diverse cell types (Figure 3a–b). Consistent with this, the 28 suspected

identity programs were well separated by the cell-type clusters reported in Quadrato et al. (2017)

while the three suspected activity programs were expressed by cells across multiple clusters (Fig-

ure 3—figure supplements 3–4). Except for a few specific cases discussed below, we used these

published cluster labels to annotate our identity GEPs.

Our 28 identity programs further refined the 10 primary cell-type clusters originally reported for

this dataset. For example, we noticed that cells previously annotated as mesodermal predominantly

expressed one of three GEPs that were significantly enriched for genes in the ‘Muscle Contraction’

Gene Ontology (GO) set (p<1�10�10 vs. p>0.19 for all other GEPs). They therefore likely represent

muscle cells. Inspecting the genes associated with these three GEPs, we noticed that they include

genes characteristic of different classes of skeletal muscle: (1) immature skeletal muscle (e.g. MYOG,

TNNT2, NES), (2) fast-twitch muscle (e.g. TNNT3, TNNC2, MYOZ1), and (3) slow-twitch muscle (e.g.

TNNT1, TNNC1, TPM3) (Figure 3d, Supplementary file 1). This unexpected finding suggests that

distinct populations of skeletal muscle cells – excitatory cell types with many similarities to neurons –

are differentiating in these brain organoids.

Of the three activity programs identified, we found that two were strongly enriched for cell cycle

Gene Ontology (GO) sets, suggesting that they correspond to separate phases of the cell cycle

(Figure 3c). One showed stronger enrichment for genesets involved in DNA replication (e.g. DNA

Replication p=3�10�52 compared to p=2�10�3) while the other showed stronger enrichment for

genesets involved in mitosis (e.g. Mitotic Nuclear Division, p=4�10�61 compared to p=2�10�46).

These enrichments and inspection of the genes most associated with these programs implied that

one represents a G1/S checkpoint program and the other represents a G2/M checkpoint program

(Figure 3e). Thus, cNMF discovered two activity programs corresponding to separate phases of the

cell cycle directly from the data.
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Figure 3. Deconvolution of activity programs from cell identity in brain organoid data. (a) Heatmap showing percent usage of all GEPs (rows) in all cells

(columns). Identity GEPs are shown on top and activity GEPs are shown below. Cells are grouped by their maximum identity GEP and fit into columns

of a fixed width for each identity GEP. (b) tSNE plot of the brain organoid dataset with cells colored by their maximally used identity GEP, and with a

black edge for cells with >10% usage of the G1/S or G2/M activity GEP or a maroon edge for cells with >10% usage of the hypoxia GEP. (c) Table of

P-values for the top six Gene Ontology geneset enrichments for the three activity GEPs. (d) Heatmap of z-scores of top genes associated with three

mesodermal programs, in those programs (top), and in all other programs (bottom). (e) Heatmap of z-scores of top genes associated with three activity

GEPs, in those programs (top), and in all other programs (bottom). (f) Proportion of cells assigned to each identity GEP that express the G1/S or G2/M

program with a percent usage greater than 10%. (g) Proportion of cells assigned to each identity GEP that express the hypoxia program with a percent

usage greater than 10%.

DOI: https://doi.org/10.7554/eLife.43803.013

The following source data and figure supplements are available for figure 3:

Source data 1. Application of cNMF to brain organoid data.

DOI: https://doi.org/10.7554/eLife.43803.018

Figure supplement 1. Diagnostic plot for cNMF on the Quadrato et al. (2017) brain organoid dataset.

DOI: https://doi.org/10.7554/eLife.43803.014

Figure supplement 2. Correlation between GEP spectra pairs and fraction of cells that use both programs.

DOI: https://doi.org/10.7554/eLife.43803.015

Figure supplement 3. t-SNE plots of identity and activity GEPs in the Quadrato et al. (2017) brain organoid dataset.

DOI: https://doi.org/10.7554/eLife.43803.016

Figure 3 continued on next page
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The third activity program is characterized by high levels of hypoxia related genes (e.g. VEGFA,

PGK1, CA9, P4HA1, HILPDA) suggesting it represents a hypoxia program (Figure 3e). This is consis-

tent with the lack of vasculature in organoids which makes hypoxia an important growth

constraint (Kelava and Lancaster, 2016). This GEP is most significantly enriched for genesets related

to protein localization to the endoplasmic reticulum and nonsense mediated decay

(p=3�10�37, p=5�10�31) (Figure 3c), consistent with reports that hypoxia post-transcriptionally

increases expression of genes that are translated in the ER (Staudacher et al., 2015) and modulates

nonsense mediated decay activity (Gardner, 2008). In the initial report of this data, staining for a sin-

gle hypoxia gene, HIF1A, failed to detect significant levels of hypoxia. Indeed, HIF1A is not strongly

associated with this GEP, at least not at the transcriptional level. This highlights the ability of our

unbiased approach to detect unanticipated activity programs in scRNA-Seq data.

Having identified proliferation and hypoxia activity programs, we sought to quantify their relative

rates across cell types in the data. We found that 3079 cells (5.9%) expressed the G1/S program and

2043 cells (3.9%) expressed the G2/M program (with usage >= 10%). Classifying cells into cell types

according to their most used identity program, we found that many distinct populations were repli-

cating. For example, cNMF detected a rare population, included with the forebrain cluster in the

original report, that we label as ‘stem-like’ based on high expression of pluripotency markers (e.g.

LIN28A, L1TD1, MIR302B, DNMT3B) (Supplementary file 1). These cells showed the highest rates

of proliferation with over 38% of them expressing a cell-cycle program in addition to the ‘stem-like’

identity GEP (Figure 3f).

cNMF was further able to refine cell types by disentangling the contributions of identity and activ-

ity programs to the gene expression of cells. For example, we found that a cell cluster labeled in

Quadrato et al. (2017) as ‘proliferative precursors’, based on high expression of cell-cycle genes, is

composed of multiple cell types including immature muscle and dopaminergic neurons (Figure 3—

figure supplement 4). The predominant identity GEP of cells in this cluster is most strongly associ-

ated with the gene PAX7, a marker of self-renewing muscle stem cells (Pawlikowski et al., 2009)

(Supplementary file 1). Indeed, this GEP has high (>10%) usage in 41% of cells who’s most used

GEP is the immature muscle program, suggesting it may be a precursor of muscle cells. This relation-

ship was not readily identifiable by clustering because the majority of genes associated with the clus-

ter were cell cycle related.

We also saw a wide range of cell types expressing the hypoxia program, with the highest rates in

C6-1, neuroepithelial-1, type 2 muscle, and dopaminergic-2 cell types. The lowest levels of hypoxia

program usage occurred in forebrain, astroglial, retinal, and type 1 muscle cell types (Figure 3g).

The hypoxia response program is widespread in this dataset with 5788 cells (11%) of all cells

expressing it (usage >10%). This illustrates how inferring activity programs in scRNA-Seq data using

cNMF makes it possible to compare the rates of cellular activities across cell types.

cNMF identifies depolarization induced and novel activity programs in
scRNA-Seq of mouse visual cortex neurons
Next we turned to another published dataset to further validate cNMF and to illustrate how it can

be combined with scRNA-Seq of experimentally manipulated cells to uncover more subtle activity

programs. We re-analyzed scRNA-Seq data from 15,011 excitatory pyramidal neurons or inhibitory

interneurons from the visual cortex of dark-reared mice that were suddenly exposed to 0 hr, 1 hr, or

4 hr of light (Hrvatin et al., 2018). This allowed the authors to identify transcriptional changes

induced by repeated depolarization, a phenomenon believed to be critical for proper cortical func-

tion. To increase our resolution to identify neuronal activity programs, we used the published cluster-

ing to exclude any non-neuronal cells that were also captured by the experiment from our dataset.

We sought to determine whether cNMF would identify the relatively modest activity programs (~60

genes with fold-change >= 2 and FDR < 0.05) elicited by the experiment without knowledge of the

experimental design labels. Furthermore, since the authors identified heterogeneity in stimulus-

Figure 3 continued

Figure supplement 4. Comparison of cNMF usages with the cell-type clusters from Quadrato et al. (2017).

DOI: https://doi.org/10.7554/eLife.43803.017
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responsive genes between neuronal subtypes, we wondered if cNMF would identify a common activ-

ity program and whether it could tease out patterns in what is shared or divergent across neuron

subtypes.

We ran cNMF on neurons combined from all three exposure conditions and identified 20 GEPs,

interpreting 14 as identity and six as activity programs (Figure 4—figure supplement 1). As we saw

in the organoid data, the activity programs were co-expressed with many distinct and uncorrelated

GEPs while the identity programs only overlapped in related cell types (Figure 4a–b). In addition,

the identity programs were well separated by the published clusters while the activity programs

were spread across multiple clusters (Figure 4—figure supplement 2). We thus used the published

cluster annotations to label the identity GEPs.

Three activity programs were correlated with the stimulus, which indicates that they are induced

by repeated depolarization (Figure 4c). One of these was induced at 1h and thus corresponds to an

early response program (ERP). The others were primarily induced at 4h and thus correspond to late

response programs (LRPs). These programs overlapped significantly with the sets of differentially

expressed genes reported in Hrvatin et al. (2018) (p=8�10�34 for the ERP and genes induced at

1h; p=4�10�22, p=4�10�14 for the LRPs and genes induced at 4hs, one-sided Mann Whitney test).

Intriguingly, one LRP was more induced in superficial cortical layers, while the other was more

induced in deeper layers. This supports a recently proposed model where the ERP is predominantly

shared across excitatory neurons, while LRPs vary more substantially across neuron

subtypes (Hrvatin et al., 2018). It also illustrates cNMF’s sensitivity: in the initial report, only 64 and

53 genes were identified as differentially expressed in at least one excitatory cell type at 1h and 4hs

(FC �2, FDR < 0.05). Nevertheless, cNMF was able to find this program in an unsupervised manner,

without knowledge of the experimental design. cNMF was also able to identify a depolarization

induced program in visual cortex neurons that were not experimentally manipulated to elicit them.

We analyzed an additional scRNA-Seq dataset of 1573 neurons from the visual cortex of adult mice

that, unlike in the primary dataset, were not reared in darkness or treated with a specific light

stimulus (Tasic et al., 2016). In this dataset, cNMF identified a matching GEP for all visual cortex cell

types found in the primary dataset except for a single subtype of excitatory layer 5 (Figure 4—fig-

ure supplement 3a). Moreover, it identified a GEP that showed striking concordance with the super-

ficial LRP found in the primary dataset (Fisher Exact Test of genes with association z-score >0.0015,

OR = 127, p=1�10�118, Pearson Correlation = 0.645) (Figure 4d). This program was predominantly

expressed in excitatory cells of the more superficial layers of the cortex as would be expected based

on the results in the primary dataset. For example, over 40% of the excitatory layer 2 (Exc. L2) type

neurons expressed this activity program (Figure 4—figure supplement 3b). This demonstrates that

cNMF could also find the depolarization induced activity program in scRNA-Seq of cells that had not

been experimentally manipulated to elicit it.

Finally, cNMF identified three additional activity programs in the primary visual cortex dataset

that were not well correlated with the light stimulus but were expressed broadly across multiple neu-

ronal cell types (Figure 4b–c). We labeled one of these, that was specific to excitatory neurons, as

Neurosecretory (NS) because it is characterized by high expression of several secreted neuropepti-

des including Vgf, Adcyap1, Scg2, Cck, Scg3, and Dkk3, and has high expression of genes that facili-

tate protein secretion such as Cpe, Cadps2, and Scamp5 (Supplementary file 2). The top expressed

gene—Vgf (VGF nerve growth factor inducible) is induced by nerve growth factor (Salton et al.,

1991), suggesting that this program may be regulated by external growth factor signals. Notably,

we found a matching program in the Tasic Et, Al. dataset (Fisher Exact Test of genes with association

z-score >0.0015, OR = 53.8, p=8�10�21, Pearson Correlation = 0.356) (Figure 4e). Thus, this neuro-

secretory activity program is reproducible across multiple single-cell datasets.

An additional activity program which we labeled Synaptogenesis (Syn) was characterized by

expression of genes that play a crucial role in synapse formation, including the transcriptional regula-

tor Mef2c (Barbosa et al., 2008; Flavell et al., 2008; Harrington et al., 2016), synaptic adhesion

molecules Ncam1 (Hata et al., 2018) and Cadm1 (Biederer et al., 2002; Robbins et al., 2010),

membrane vesicle traffickers Syt1 and Syt4, Actb which constitutes the predominant synapse cyto-

skeletal protein, and others with a strong connection to synapse biology such as

Ywhaz (Foote et al., 2015; Ramser et al., 2010; Xu et al., 2015), Bicd1 (Aguirre-Chen et al., 2011;

Li et al., 2010). It was also significantly enriched for relevant Gene Ontology sets including postsy-

napse, glutamatergic synapse, postsynaptic density, and dendrite morphogenesis (p<=3.25�10�6,
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Figure 4. Identification of activity programs in neurons of the visual cortex. (a) Heatmap showing percent usage of all GEPs (rows) in all cells (columns).

Identity GEPs are shown on top and activity GEPs are shown below. Cells are grouped by their maximum identity GEP and fit into columns of a fixed

width for each identity GEP. (b) t-SNE plots of cells colored by maximum identity GEP usage (left) or by absolute usage of each activity GEP (right). (c)

Box and whisker plot showing the percent usage of activity programs (rows) in cells classified according to their maximum identity GEP (columns) and

stratified by the stimulus condition of the cells (hue). The central line represents the median, boxes represent the interquartile range, and whiskers

represent the 5th and 95th quantile. (d) Scatter plot of z-scores of the superficial late response GEP in the primary dataset against the corresponding

GEP in the Tasic et al. (2016) dataset. (e) Same as (d) but for the neurosecretory activity program.

DOI: https://doi.org/10.7554/eLife.43803.019

The following source data and figure supplements are available for figure 4:

Source data 1. Application of cNMF to mouse visual cortex data.

DOI: https://doi.org/10.7554/eLife.43803.023

Figure supplement 1. Diagnostic plot for cNMF on the Hrvatin et al. (2018) visual cortex dataset.

DOI: https://doi.org/10.7554/eLife.43803.020

Figure supplement 2. Comparison of cNMF usages with the visual cortex cell-type clusters from Hrvatin et al. (2018).

DOI: https://doi.org/10.7554/eLife.43803.021

Figure 4 continued on next page
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Supplementary file 3) which further suggests its interpretation as a program involved in the forma-

tion or regulation of synapses. The last activity program (labeled Other) was characterized by high

expression of the maternally expressed long non-coding RNA Meg3 (Yan et al., 2016) and other

genes that are associated with cerebral ischemic injury (e.g. Glg1 [Zhang et al., 1996],

Rtn1 [Gong et al., 2017]). Our functional interpretations of the novel activity programs are specula-

tive, but they highlight the ability of cNMF to identify intriguing GEPs in an unbiased fashion.

Discussion
In this study, we distinguished between cell type (identity) and cell type independent (activity) gene

expression programs (GEPs) to motivate our use of matrix factorization, which represents cells as lin-

ear combinations of multiple GEPs. However, we note that some biological programs are not neatly

classified as either identity or activity GEPs. For example, cell states reflecting oncogenic transforma-

tion, or a cell’s position along a morphological gradient blur the distinction between identity and

activity. In addition, stochastic fluctuations in individual transcription factors could result in coordi-

nated gene expression changes (Thattai and van Oudenaarden, 2001) and might be better

described as a third program category, rather than as an identity or activity GEP. While the identity/

activity distinction might not be appropriate in every case, matrix factorization should, in principle,

be appropriate for representing all gene expression states that can be reasonably approximated as

a linear mixture of programs.

Furthermore, in this study, we have provided an empirical foundation for the use of matrix factori-

zation to simultaneously infer identity and activity programs from scRNA-Seq data. We first show

with simulations that despite their simplifying assumptions, ICA, LDA, and NMF (but not PCA) can

infer components that align well with GEPs. However, due to the stochastic nature of these algo-

rithms, the interpretability and accuracy of individual solutions can be low. This led us to develop a

consensus approach that empirically increased the accuracy and robustness of the solutions. cNMF

inferred the most accurate identity and activity programs of all the methods we tested. Moreover, it

yielded results in interpretable units of gene expression (transcripts per million) and could accurately

infer the percentage of each cell’s expression that was derived from each GEP. These properties

made it the most promising approach for GEP inference on real datasets.

We then explored the utility of cNMF on real data, recapitulating known GEPs, identifying novel

ones, and further characterizing their usage. We first validated cNMF with several expected activity

programs serving as positive controls. We then identified several unexpected but highly plausible

programs, a hypoxia program in brain organoids and a depolarization-induced activity program in

untreated neurons. Finally, we identified three novel programs in visual cortex neurons that we spec-

ulate may correspond to a neurosecratory phenotype, new synapse formation, and a stress response

program. Beyond simply discovering activity programs, cNMF clarified the underlying cell types in

these datasets by disentangling activity and identity programs from the mixed single-cell profiles.

For example, we found that a brain organoid subpopulation that was initially annotated as prolifer-

ative precursors actually includes replicating cells of several cell types such as an immature skeletal

muscle cell that is differentiating into slow-twitch and fast-twitch muscle populations. Furthermore,

joint analysis of identity and activity GEPs allowed us to quantify the relative prevalence of activities

across cell types. For example, we found in the visual cortex data that one depolarization-induced

late response program was predominantly expressed in neurons of superficial cortical layers, while

the other was mainly expressed in deeper layers. This suggests that an anatomical or developmental

factor may underlie variability in the response. While commonly used approaches based on cluster-

ing or pseudotemporal ordering of cells are poorly suited to achieve such insights from single-cell

data, these findings emerge naturally from our matrix factorization approach.

We have made our tools and analyses easily accessible so that researchers can readily use cNMF

and further develop on the approach. We have deposited all the cNMF code on Github https://

github.com/dylkot/cNMF/ (Kotliar, 2019; copy archived at https://github.com/elifesciences-

Figure 4 continued

Figure supplement 3. Comparison of GEPs identified in the Hrvatin et al. (2018) and Tasic et al. (2016) visual cortex datasets.

DOI: https://doi.org/10.7554/eLife.43803.022
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publications/cNMF) and have made available all of the analysis scripts for figures contained in this

manuscript on Code Ocean (https://doi.org/10.24433/CO.9044782e-cb96-4733-8a4f-bf42c21399e6)

for easy exploration and re-execution.

As others apply this approach, one key consideration will be the choice of the three input param-

eters required by cNMF: the number of components to be found (K), the percentage of replicates to

use as nearest neighbors for outlier-detection, and a distance threshold for defining outliers. While

the choice of K must ultimately reflect the resolution desired by the analyst, we propose two simple

decision aids based on (1) considering the trade-off between factorization stability and reconstruc-

tion error and (2) looking at the proportion of variance explained by K principal components to esti-

mate the dimensionality of the data (Figure 2—figure supplement 3, Figure 3—figure supplement

1, Figure 4—figure supplement 1). In addition, we noticed that choosing consecutive values of K

primarily influenced individual components at the margin, suggesting that cNMF may be robust to

this choice within a reasonable range of options (Figure 5 and ‘Choosing the number of compo-

nents’ section of the Materials and methods).

The additional two parameters allow users to optionally identify outlier replicates to filter before

averaging across replicates. This improves overall accuracy by removing infrequent solutions that

often represent merges or splits of the true GEPs. Using 30% of the number of replicates as nearest

neighbors worked well for all datasets we analyzed, and an appropriate outlier distance threshold
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components (K)

Figure 5. Robustness of cNMF to the number of components (K). Line plots of the maximum Pearson correlation between each of the cNMF

components presented in the main analysis, and the cNMF components that result from multiple choices of K. For the simulated data, for which we

have access to ground truth, we plot the correlation between the inferred components for each choice of K and the ground truth 14 components. We

highlight components corresponding to activity GEPs with distinct colors and denote the number of identity GEPs contained on the same plot in

parenthesis in the legend. A dashed line indicates the K choice that was presented in the main analysis. Pearson correlations are computed considering

only the 2000 most over-dispersed genes and on vectors normalized by the computed sample standard deviation of each gene.

DOI: https://doi.org/10.7554/eLife.43803.024

The following source data and figure supplements are available for figure 5:

Source data 1. Application of cNMF to pancreas data and analysis of robusness to the choice of K.

DOI: https://doi.org/10.7554/eLife.43803.027

Figure supplement 1. Characterization of GEP usage across biological replicates.

DOI: https://doi.org/10.7554/eLife.43803.025

Figure supplement 2. Comparison of cNMF usages with the published cell-type clusters from Baron et al. (2016).

DOI: https://doi.org/10.7554/eLife.43803.026
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was clear in our applications based on the long tail in the distance distribution (Figure 2—figure

supplement 3, Figure 3—figure supplement 1, Figure 4—figure supplement 1).

Our approach is an initial step toward disentangling identity and activity GEPs, and will benefit

from subsequent development. For example, cNMF does not specifically address the count nature

of gene expression. Recently developed statistical frameworks that address these aspects of scRNA-

Seq data such as Hierarchical Poisson Factorization (Levitin et al., 2018) may therefore increase the

accuracy of GEP inference. In addition, NMF often yields low but non-zero usages for many GEPs

even though we expect most cells to express a small number of identity and activity GEPs. This lack

of sparsity is likely due to over-fitting and could be addressed by adding regularization to the

model (Taslaman and Nilsson, 2012). Such refinements and any new matrix factorization that relies

on stochastic optimization can be readily combined with our consensus approach to potentially

improve accuracy and interpretability.

A more fundamental limitation of matrix factorizations, including cNMF, is the built-in assumption

that cells can be modeled as linear combinations of GEPs. Notably, this precludes modeling of tran-

scriptional repression, where one or more genes that would be induced by one GEP are significantly

reduced in expression when a second repressing GEP is active in the same cell. To our knowledge,

such relationships have not been represented in a matrix factorization framework, but they may be

easier to incorporate in new classes of latent variable models such as variational autoencoders

(VAEs) (Ding et al., 2018; Grønbech et al., 2018). VAEs represent cells in a highly flexible latent

space that can capture non-linearities and interactions between latent variables. However, while the

latent variables are designed to facilitate accurate reconstruction of the input gene expression data,

it remains to be shown whether they can be directly or indirectly interpreted as distinct GEPs and

GEP usages. For the foreseeable future, there may be a trade-off between the flexibility of these

models and the difficulty in training them and interpreting their output.

With ongoing technological progress in RNA capture efficiency and throughput, scRNA-Seq data

is likely to become richer and more expansive. This will make it possible to detect increasingly subtle

GEPs, reflecting biological variability in cell types, cell states, and activities. Here, we have demon-

strated a computational framework that can be used to infer such GEPs directly from the scRNA-Seq

data without the need for experimental manipulations, providing key insights into the behavior of

cells and tissues.

Materials and methods

Simulations
Our simulation framework is based on Splatter (Zappia et al., 2017) but is re-implemented in Python

and adapted to allow simulation of doublets and activity programs. 14 gene-expression programs

Z 2 NM (13 identity programs Z1 ::: Z13 and 1 activity program Za, each a vector of M genes) were

simulated as in Splatter. Cells were then randomly assigned to an identity program with equal prob-

ability for each class. 30% of cells of four cell types were randomly selected to express the activity

program at a usage fi, uniformly distributed between 10% and 70%. In the Splatter notation, the

pre-trended mean gene-expression profile l
0

i for each cell i=1. . . 15,000 was computed as the

weighted sum of the identity and the activity program:

l
0

i ¼ Li fiZa þ 1�fið ÞZI ið Þ

� �

where Li is the simulated library size for a cell, I ið Þ is the identity program assignment for cell i, and

fi ¼ 0 for cells that do not express the activity GEP and fi ~Uniform 0:1;0:7ð Þ for cells that do.

Doublets were constructed by randomly sampling pairs of cells, summing their simulated count

vectors, and randomly down-sampling the counts until the total number of counts equaled the maxi-

mum of the library sizes of the original two cells. We simulated 25,000 genes, 1000 of which were

associated with the activity program. The probability of a gene being differentially expressed in a

cell identity program was set to 2.5%. The differential expression scale parameter was 1.0 for all sim-

ulations and the location parameter was either 1.0, 0.75, or 0.5 to simulate different signal to noise

levels. Other splatter parameters were: lib.loc = 7.64, libscale = 0.78, mean_rate = 7.68, mean_-

shape = 0.34, expoutprob = 0.00286, expoutloc = 6.15, expoutscale = 0.49, diffexpdownprob = 0,
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bcv_dispersion = 0.448, bcv_dof = 22.087. These values were inferred from 8000 randomly sampled

cells of the Quadrato et al. (2017) organoid dataset using Splatter. A differential expression loca-

tion parameter of 1.0 were used for the 50% doublet simulation and all other parameters were kept

the same (Figure 2—figure supplement 7). Differential expression location parameters of 1.0 and

2.0 were used for the two variable cell-type proportion simulations, and cell-type assignments were

sampled from a multinomial with parameters (0.215, 0.210, 0.195, 0.130, 0.0924, 0.0328, 0.028,

0.0269, 0.0149, 0.0119, 0.0114, 0.009, 0.009, 0.008, 0.006) based on the proportions of neuronal

cell-type clusters in Hrvatin et al. (2018) (Figure 2—figure supplement 8). All other parameters

were as described above.

Data preprocessing
For each dataset, we removed cells with fewer than 1000 unique molecular identifiers (UMIs)

detected. We also filtered out genes that were not detected in at least 1 out of 500 cells. We

denote this filtered count matrix as Cij (i=1 . . . N cells, j=1 . . . M genes). We denote matrices in

bold.

We then selected the H most over-dispersed genes as determined by the v-score (Klein et al.,

2015) for input to cNMF. H was set to 2000 for all datasets analyzed in this manuscript. It is essential

to select a subset of over-dispersed genes prior to normalization because afterwards, variation in

lower-variance genes due to noise will be on the same scale as biologically meaningful variation.

2000 reflects a trade-off between including enough genes to detect subtle biological signals, and

speeding up computation by not including too many extraneous genes.

Each of the H over-dispersed genes was then scaled to unit variance before running cNMF result-

ing in a normalized matrix:

~C¼ �� �
Cj

s C jð Þ
� � �

2

4

3

5 for genes j 2 H overdispersed genesf g

where Cj denotes the jth column of C, s C j

� �

denotes the sample standard deviation of Cj, and

H overdispersed genesf g denotes the previously selected set of over-dispersed genes. This variance-

scaling is similar to the log transformation that is commonly applied to scRNA-Seq data in that it

ensures genes on different expression scales contribute comparable amounts of information to the

GEP inference. However, we prefer variance scaling because log transformation requires addition of

an arbitrary pseudo-count which can substantially impact downstream analysis (William Townes

et al., 2019). In addition log-transformation renders fold-changes of 0.1 to 1, and 100 to 1000 equiv-

alent in absolute terms. This is undesirable given the current resolution of scRNA-Seq data because

the former change can frequently be attributable to noise while we have much greater confidence in

the biological significance of the latter. Variance scaling the data avoids the need for any modulation

to the shape of a gene’s distribution and avoids the need for addition of an arbitrary

pseudocount. Finally, addition of components in log expression space corresponds to multiplication

in raw expression space. We believe additivity to be a more appropriate model than multiplicativity

for most GEPs, and therefore do not log-transform the data prior to running cNMF. We do not

mean center the genes so as to preserve the non-negativity of the expression data which is a

requirement for NMF.

Note that we do not perform any cell count normalization (I.e. normalization of the rows of C

prior to cNMF). This is because cells with more counts can contribute more information to the

model. Technical variation in transcript abundances across cells are captured in the usage matrix

rather than the component matrix. However, for the Tasic et al. (2016) dataset, which is based on

full-transcript sequencing rather than digital UMI counting, we variance-normalized high-variance

genes from the TPM matrix directly rather than from the raw count matrix as in the other datasets.

As a final step in cNMF, the consensus programs can be re-fit in physically meaningful (non-nor-

malized) biological units of the user’s choice, such as transcripts per million and including all genes

(not just the H over-dispersed ones). See below for details.
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Consensus non-negative matrix factorization (cNMF)
We use non-negative matrix factorization implemented in scikit-learn version 20.0 (RRID:SCR_

002577) with the default parameters except for random initialization, tolerance for the stopping con-

dition of 10�4, and a maximum number of iterations of 400.

R replicates of NMF are run on the same normalized dataset with the same number of compo-

nents K but with different randomly selected seeds, resulting in R instances of usage matrices U rð Þ (N

cells x K programs) and program matrices G rð Þ (K programs x H genes):

U rð Þx G rð Þ »C
~

for r ¼ 1 ::: R

For each replicate r, the rows of Gr are normalized to have l2 norm of 1:

G
~ rð Þ

¼

G
rð Þ
1

jjG
rð Þ
1
jj
2

.

.

.

G
rð Þ
k

jjG
rð Þ

k
jj
2

.

.

.

G
rð Þ
K

jjG
rð Þ
K
jj
2

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

where G
rð Þ
k is the kth row of the programs matrix for the rth NMF replicate G rð Þ and jj jj

2
denotes the

l2 norm.

The component matrices from each replicate are then concatenated vertically into a single RK x H

dimensional matrix, G, where each row is a component from one replicate:

G¼

G
~ 1ð Þ

.

.

.

G
~ rð Þ

.

.

.

G
~ Rð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

Components with high mean Euclidean distance from their L nearest neighbors are then filtered

out as below:

L¼ �R

D Gl; Lð Þ ¼
1

LGn2NL Glð Þ

X

jjGl �Gnjj2

G fð Þ ¼
�� �
Gl

� � �

2

4

3

5 for l¼ 1 ::: Rk if D Gl; Lð Þ <t

where Gl is the lth row of G, NL Glð Þ is the set of L nearest neighbors of Gl and G fð Þ is the matrix of

rows that passed the L nearest neighbors distance threshold filter.

Two user-specified parameters, r and t, determine which replicate components are filtered out

and which are kept. r denotes the fraction of NMF replicates to be used as nearest neighbors. Intui-

tively, r can be thought of as the fraction of replicates that must yield a component approximately

matching a program in order for that program to be kept by cNMF. t is a distance threshold that

determines how close a component must be to its nearest neighbors in Euclidean space to be con-

sidered ‘approximately matching’.

Our choice of r and t were guided by inspection of the clustergram and histogram output

by cNMF with the goal of filtering out outlier components and yielding clean correlation blocks

on the clustergrams (Figure 2—figure supplement 3, Figure 3—figure supplement 1, Fig-

ure 4—figure supplement 1). We set r=0.3 for all datasets analyzed in this manuscript which
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reflects a tolerance to identify components that occur approximately in 30% or more replicates.

We find this to be an appropriate default setting. We set t = 0.03, 0.10, 0.08, 0.10, and 0.04

for the simulation, organoid, main visual cortex (Hrvatin et al., 2018), secondary visual cortex

(Tasic et al., 2016), and the Pancreatic islets datasets (discussed in the supplementary note on

between-sample variability) based on truncating the long tail of the distance to KNN histogram.

Next, the rows of G fð Þ are clustered using KMeans with the Euclidean distance metric and the

same number of clusters (K) as the number of components for the NMF runs. This defines sets

Ak ¼ rows l assigned to cluster kf g containing the indices of the rows of G fð Þ that are assigned to the

kth cluster.

Each cluster of replicate components is then collapsed down to a single consensus vector by tak-

ing the median value for each gene across components in a cluster:

Gkj
ðcÞ ¼median G

ðf Þ
lj for l 2 Ak

n o� �

for l indexing over rows of G fð Þ and j indexing over columns (genes), and with the median taken sepa-

rately for each gene j. This defines a KxH consensus programs matrix G cð Þ where the (c) superscript

denotes consensus. The merged GEP components are then l1 normalized:

G
~ ðÞ

¼

G
cð Þ
1

jjG
cð Þ
1
jj
1

.

.

.

G
cð Þ
k

jjG
cð Þ

k
jj
1

.

.

.

G
cð Þ
K

jjG
cð Þ
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where G
cð Þ
k is the kth row of G cð Þ and jj jj

1
denotes the l1 norm. A consensus usage matrix is then fit

by running one last iteration of NMF with the component matrix fixed to G
~ cð Þ

. This amounts to fitting

non-negative least squares regressions of each cell’s normalized expression profile C
~

i against G
~ cð Þ

by

solving the following optimization:

Ui1...UiK�0

min jj C
~

i�
X

K

k¼1

Uik G
~ cð Þ

k jj
2

where G
~ cð Þ

k is the H-dimensional normalized consensus program vector for the kth GEP, i indexes

over cells, and we are maximizing with respect to GEP usage values Ui1 . . .UiK which are con-

strained to be non-negative. We concatenate all these coefficients into a consensus usage

matrix U cð Þ:

U cð Þ ¼

U11 � � � U1K

.

.

.
.
.

.
.
.
.

UN1 � � � UNK

2

6

4

3

7

5

and normalize it so that the usage values for each cell sum to 1:

U
~ ðÞ

¼

U
cð Þ
1

jjU
cð Þ
1
jj
1

.

.

.

U
cð Þ
i
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7

5

where U
cð Þ
i is the ith row of the consensus usage matrix. With this normalized, consensus usage
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matrix fixed, final program estimates can be computed in desired units, and for all genes—including

genes that were not initially included among the over-dispersed set. This is done by running a last

iteration of NMF with the usage matrix fixed as U
~ cð Þ

and the input data reflecting the desired final

units. To convert the estimated programs to TPM units and to obtain program vectors spanning the

full set of input genes, we refit against the matrix of TPM values, T:

T ¼

10
6C1

jjC1jj1

.

.

.

10
6Ci

jjCijj1

.

.

.

10
6CN

jjCN jj1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

G
TPMð Þ
j1

...G
TPMð Þ
jK

�0

min jj Tj�
X

K

k¼1

U
~ cð Þ

:;k G
TPMð Þ
jk jj

2

where Tj is the N-dimensional TPM profile for the jth gene, U
~ cð Þ

:;k is the N-dimensional normalized con-

sensus profile for the kth GEP over all cells, and G
TPMð Þ
jk is an estimated coefficient reflecting how

much the TPM of gene j is expected to increase per a unit increase in usage of GEP k, if all other

usages were held constant. Note that the TPM matrix T is calculated using a raw count matrix C that

includes all genes, even those that were filtered out for falling below the count threshold. We repeat

this for all M genes in the filtered count matrix and combine allthese coefficients into a consensus

program matrix:

G TPMð Þ ¼

G
TPMð Þ
11

� � � G
TPMð Þ
1M

.

.

.
.
.

.
.
.
.

G
TPMð Þ
K1 � � � G

TPMð Þ
KM

2

6

4

3

7

5

Identification of marker genes
We identify marker genes (genes that are statistically associated with each GEP) using multiple least

squares regression of normalized (z-scored) gene expression against the consensus GEP usage

matrix. This amounts to finding the genes that have higher than average expression for cells that use

a specific GEP. We compute the z-score of the TPM profile like so:

Zj ¼
Tj��j

sj

where Tj is the TPM profile of the jth gene, �j is the sample mean, and sj is the sample standard

deviation of Tj. Then we fit b1j::: bkj :::bKj, coefficients reflecting the association between GEP k and

gene j using ordinary least squares regression by solving the minimization:

b1j::: ...bKj

min jj Zj �
X

K

k¼1

U
cð Þ
k b1k jj

2

where U
cð Þ
k is the kth column of the un-normalized consensus usage matrix. The regression coeffi-

cients bkj can then be interpreted as by how many standard deviations the expression of gene j

should increase for an additional count of usage being attributed to GEP k. We regress against

z-scored expression values rather than the un-normalized expression values so that the coefficients

will be comparable between genes expressed on different scales. For discrete clustering methods,

the usage matrix is a binary indicator matrix containing a 1 for the cluster (column) each cell is

assigned to, and a 0 for all other columns. In the discrete clustering context, bkj can be interpreted

as the average expression of gene j in cells assigned to cluster k. Identifying marker genes through

multivariate regression in this fashion, rather than through separate tests for each GEP, reduces the

risk of confounding that can occur when GEPs tend to be expressed in the same cells. For example,
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if an activity GEP is predominantly expressed in cells of a specific cell-type, it avoids misattributing

activity genes to the identity program of that cell-type and vice versa.

We note that because gene-expression data is not normally distributed, the residuals of the

regression will not be normal, which violates an assumption of OLS regression. However, the

coefficient estimates will still be unbiased even if normality is violated. In practice, we do not

use the p-values of the regressions at an any point in our analysis as those can be inaccurate

due to non-normality. We recommend testing for gene-set enrichment on regression coefficients

directly (as we discuss below) rather than setting thresholds on regression P-values.

Choosing the number of components
Determining the number of components (K) to use for cNMF is an important but challenging

step without a simple approach that can work for all datasets and applications. We use two

diagnostic plots to help guide this decision. The first plot shows the stability of the solution (as

captured by the silhouette score) and the Frobenius reconstruction error as a function of K as

described previously in Alexandrov et al. (2013). However, unlike in Alexandrov et al. (2013),

we run NMF on normalized data matrices rather than count matrices and therefore do not

resample counts but simply repeat NMF with different randomly selected seeds. We compute

the Frobenius error using the consensus NMF solution but without any outlier filtering. We also

use the Euclidean distance on l2 normalized components as the metric for the silhouette score

rather than Cosine distance. Silhouette score is calculated using the Scikit-learn version 20.0 sil-

houette_score function. We parallelized the individual factorization steps over cores on a multi-

core virtual machine using GNU Parallel (Tange, 2011).

As another approach to confirm the appropriateness of our choice of K, we use scree plots which

depict the proportion of variance explained per principal component (Figure 2—figure supplement

3, Figure 3—figure supplement 1, Figure 4—figure supplement 1). This is motivated by the fact

that choosing the optimal number of principal components and choosing the number of NMF com-

ponents can both be framed as estimating the rank for a low-dimensional representation of the input

data. As a consequence of the Eckart Young Mirsky theorem, PCA necessarily provides the matrix

factorization with minimum Frobenius reconstruction error for any choice of K (Eckart and Young,

1936) and we also use the Frobenius error in our NMF model. Because principal components are

orthogonal to each other, and loadings of NMF components can never be negative, K principal com-

ponents will always span a larger sub-space than K NMF components. This suggests that the optimal

number of NMF components will likely not be smaller than the optimal number of PCs. The scree

plot is a commonly used tool to estimate the number of principal components and we use it to help

guide the number of NMF components as well.

We note that these two plots merely provide a general aid for the choice of K and we considered

the biological interpretability of factors found from several choices of K before proceeding. We do

not recommend necessarily using the maximum stability solution of the error vs. stability plot as this

can frequently miss true biological signal and, indeed would have led to the incorrect choice for the

simulated data (Figure 2—figure supplement 3).

Given the uncertainty of the choice of K, we confirmed that the conclusions of this manuscript are

robust to this decision. When we varied K within a range of ±four around the choice used in the man-

uscript, we found approximately the same core set of GEPs with a single new GEP being discerned

with each consecutive step in K. For each step below the selected K, approximately a single GEP

was lost, but for choices above the selected K, components approximately matching the original K

programs (I.e. with Pearson correlation >0.7) were found (Figure 5). This suggests that cNMF yields

relatively stable solutions for a moderate range of K values.

Comparison of cNMF with other methods
We compared cNMF with consensus and standard versions of LDA and ICA as well as with PCA, Lou-

vain clustering and a hard clustering based on assignment of cells to their ground-truth labels. We

used the implementations of LDA, ICA, and PCA in scikit-learn and the implementation of Louvain

clustering in scanpy (Wolf et al., 2018). For ICA, we used the FastICA implementation with default

options for all the parameters. For LDA, we used the batch algorithm and all other parameters as

defaults. We defined the consensus estimates across 200 replicates in the same way as for cNMF but
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with a slight modification for ICA. Because ICA is under-determined with respect to the signs of the

solutions, some iterations will yield a given component pointed in one direction while others pro-

duce approximately the same component but pointed in the opposite direction (multiplied by �1).

Therefore, we aligned the orientation of components from across replicates by identifying any com-

ponents whose median usage across all cells was positive and scaled those and the corresponding

usages by �1.

For Louvain clustering, we used 14 principal components to compute distances between cells and

used 200 nearest neighbors to define the KNN graph. We chose 14 principal components based on

the fact that the data was simulated based on a 14-dimensional basis and, therefore, the biological

variation in the data can be captured by 14 PCs and subsequent components correspond to noise.

This choice is also justified by choosing the elbow on scree plot in Figure 2—figure supplement 3.

We used 200 nearest neighbors for the clustering as this is a relatively large number to minimize var-

iance but it is still smaller than the smallest discrete population (0.3*15,000*(1/13)=346 cells from a

specific cell-type that expresses the activity program).

For ground-truth assignment clustering, we assigned each cell to a cluster defined by its true

identity program, except for cells which had greater that 40% usage of the activity program, which

we assigned to an activity program cluster. Then we determined a GEP corresponding to each clus-

ter as the mean TPM value for each gene over cells in the cluster.

To evaluate the accuracy of these various methods, we first calculated the z-score coefficient for

associating each gene with each program as described above. We then calculated sensitivity and

false discovery rate (FDR) for each threshold on those coefficients and plotted those as an ROC-

curve, except with FDR on the X-axis instead of false positive rate. For this evaluation, we considered

a gene as truly associated with a GEP if it had a ground-truth fold-change of >= 2 and truly unassoci-

ated with a GEP if the ground-truth fold-change was 1. Genes with a fold-change between 1 and 2

were ignored for this evaluation.

Testing enrichment of genesets in programs
We used the z-score regression coefficients identified as above as input for a one-sided Mann Whit-

ney U Test (with tie correction) comparing the median of genes in each geneset to those of genes

not in the geneset. We first floored all negative coefficients to equal zero prior to the test. Coeffi-

cients less than 0 indicate genes that are expressed at higher levels in cells that do not use the GEP

(all other things equal) than in cells that do. We floor these values so that variation in genes that are

not directly part of a GEP (which can make up the majority of genes) do not substantially impact the

Mann-Whitney statistic for that GEP.

Data availability
The organoid data described in the manuscript is accessible at NCBI GEO accession number

GSE86153. However, we obtained the clustering and unnormalized data by request from the

authors. The visual cortex datasets used for Figure 3 are accessible at NCBI GEO, accession num-

bers GSE102827 and GSE71585.

Code availability
Code for running cNMF is available on Github https://github.com/dylkot/cNMF, as is code for simu-

lating data with doublets and activity programs https://github.com/dylkot/scsim (Kotliar and Era-

slan, 2019; copy archived at https://github.com/elifesciences-publications/scsim).

All datasets and analysis used in this manuscript are available for download, exploration and re-

execution on Code Ocean: https://doi.org/10.24433/CO.9044782e-cb96-4733-8a4f-bf42c21399e6.

Supplementary note - Analysis of between-sample variability
We sought to understand how variability between sample replicates and batches would impact the

results of cNMF. We therefore considered how GEP usage varies across replicates in the primary

datasets analyzed in this manuscript, as well as in a previously published scRNA-Seq dataset of

human pancreatic islets with noted batch-effect (Baron et al., 2016).

First, we analyzed the aggregate GEP usage of cells in organoid replicates in the Quadrato et al.

(2017) data, and mouse replicates in the Hrvatin et al. (2018) visual cortex data. For this purpose,
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we defined the aggregate GEP profile of a replicate as the sum of the GEP usage of all cells derived

from that replicate. The visual cortex data showed relative uniformity of GEP usage across mouse

replicates, with the only clear pattern being the expected association between depolarization-

induced GEPs and mice treated with the stimulus (Figure 5—figure supplement 1a - left). By con-

trast, there was significant variability between organoids in the Quadrato et al. (2017) data that was

primarily associated with the bioreactors in which the organoids were grown (Figure 5—figure sup-

plement 1b - left). This variability was discussed in the original manuscript and validated using

immunohistochemistry, and thus represents true biological signal that we would hope for cNMF to

discern.

We also considered whether any GEPs could be attributed to just one or a small number of repli-

cates which could suggest that they are not reproducible within the experiment. We therefore

looked at what percentage of the aggregate usage of a GEP derived from cells in each replicate.

We found that each GEP contributed to cells from multiple independent replicates in both datasets

(Figure 5—figure supplement 1, right panels). No GEP derived more than 15% of its usage from a

single replicate in the visual cortex data or more than 45% of its usage from a single replicate in the

organoid data. Furthermore, each organoid GEP was the maximum contributing GEP for a cell in at

least six distinct organoid replicates, and each visual cortex GEP was the maximum contributor for a

cell in at least 10 distinct mouse replicates. This supports our conclusion that the inferred GEPs rep-

resent reproducible signals within the primary organoid and visual cortex datasets.

We also analyzed a human pancreatic islet scRNA-Seq dataset where variability between four

donors resulted in more substantial batch-effects to see how that would impact the behavior of

cNMF (Baron et al., 2016). Applied to this dataset of 10,939 cells, cNMF identified 16 GEPs that

corresponded well with the cell-type clusters described in the initial publication (Figure 5—figure

supplement 2). Our application of cNMF failed to identify GEPs corresponding to a few cell-types

described in Baron et al. (2016) (e.g. cells distinguished as delta and gamma cell-types were

assigned the same GEP). However, many of the cell types that were missed by cNMF were only dis-

tinguished through iterative sub-clustering in the initial publication, which we did not attempt.

Notably, we identified multiple GEPs for many cell-type clusters that corresponded to ‘donor of

origin.’ For example, we identified separate GEPs corresponding to acinar cells derived from donors

1 and 3, and acinar cells derived from donors 2 and 4, and similarly for alpha, ductal, and stellate

cells. One potential contributor to the batch-effect could be that donors 1 and 3 were male and

donors 2 and 4 were female. Consistent with this, we noticed that among the genes that were most

differentially expressed between donors 1 and 3 compared to donors 2 and 4 in alpha, beta, and aci-

nar cells were XIST on the X chromosome and RPSY1 on the Y chromosome (linear regression F-test

p-values<5�10�243 for for XIST and p-values<4�10�145 for RPSY1 for all 3 cell-types tested). But in

general, the fact that cNMF is discerning multiple GEPs for the same cell-types suggests that techni-

cal sources of variation such as batch-effect can confound the identification of identity and activity

GEPs.

In this instance, cNMF did not learn a single GEP for each donor (I.e. batch) but rather identified

multiple hybrid identity-donor GEPs corresponding to individual cell-types derived from distinct sets

of donors. This is likely due to the fact that the batch effect modulated the expression of different

sets of genes in different cell-types, and therefore, no single shared ‘batch-effect’ GEP could capture

the impact on each cell-type. To avoid incorporating variation between batches into the inferred

GEPs for datasets containing significant batch-effect, batch-effect correction can be performed prior

to running cNMF.
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