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Abstract: In this study, the preparation of graphene oxide@chitosan (GO@CS) composite beads
was investigated via continuous dropping techniques to remove methylene blue (MB)-dye from
an aqueous media. The prepared beads were characterized using various techniques before and
after the adsorption of MB. The experimental results showed that the adsorption processes fit the
kinetic pseudo-second-order and Langmuir isotherm models. Moreover, the GO@CS beads achieve
maximum adsorption capacities of 23.26 mg g−1, which was comparable with other adsorbents in
the literature. An important advantage of our adsorbent is that the GO@CS can remove 82.1% of the
real sample color within 135 min.

Keywords: graphene oxide@chitosan composite beads; removal; eco-friendly; cationic dye; wastewater

1. Introduction

Several industries such as textile, pigment, paper, food, leather, etc., require dyes in
their processes. These industries release a huge amount of wastewater polluted with dyes.
This pollutant contains various toxic chemicals that are hazardous to the environment,
animals, and humans. Moreover, these contaminants can gather in soil and cause long-term
danger. Hence, proper management of these hazardous materials is required [1]. Therefore,
the removal of such contaminants from wastewater is highly necessary before discharging
the treated water into the environment [2]. Several techniques such as chemical oxidation,
flocculation, ozonation, adsorption, reverse osmosis, etc., have been investigated to elim-
inate these contaminates from wastewater. However, most of these treatment processes
have many disadvantages and limitations, such as cost and the generation of undesirable
wastes [3]. Therefore, the adsorption technique appears to be the most promising due
to its easy operation, efficiency, low-sludge production, cost-effectiveness, and simplic-
ity of setup [3,4]. During this decade, various adsorbent materials were investigated as
effective adsorbents to remove Methylene blue (MB)-dye from wastewater [5–9]. How-
ever, many types of these adsorbent materials have some restrictions to use in wastewater
purification [7], and therefore several efforts were made to develop excellent adsorption
materials with economic and eco-friendly properties derived from natural resources [7,10].
Chitosan (CS), a natural biopolymer, is an example of promising adsorbent material derived
from natural resources; therefore, it has gained great attention due to its properties. The
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chemical structure of chitosan (CS) contains several active groups, such as amino- (-NH2)
and hydroxyl- (-OH) groups, which serve as coordination sites for various pollutants;
therefore, it is considered as an efficient adsorbent material for wastewater treatment [10].
Recently, many works have been investigated to modify the chitosan to enhance its effi-
ciency in removing dyes and other pollutants from wastewater [2,3,7,10–21]. Modification
of CS with carboxymethyl to synthesize a novel cross-linked O-CM-chitosan hydrogel ad-
sorbent materials to remove the MB dye [2]. A novel adsorbent material, such as activated
carbon@CS microbead and sponge material of karaya gum and CS, was prepared to adsorb
the MB dye from wastewaters [3,7]. Also, novel polyacrylamide (PAAM)/CS) adsorbent
materials were investigated as low-cost and eco-friendly bio adsorbent decolorization
materials for MB dye [11]. At the current time, graphene oxide (GO) is used as adsor-
bent material for different pollutants from wastewater [14], with considerable amounts
of oxygen-containing functional groups [14]. To enhance the adsorption capacity of CS to
bind cationic dyes, which negatively charged materials could adsorb, the introduction of
GO onto CS to incorporate additional carboxylic groups as active anionic sites improves
its adsorption capacities to dyes from aqueous media [3,7]. As reported in the literature,
GO was cross-linked with CS to prepare a composite material to adsorb MB-dye [20].
GO-CS composite aerogel aerogels was fabricated using postponed crosslinking to adsorb
MB-dye [19]. Also, CS-GO composite hydrogels was investigated as an efficient adsorbent
to remove MB-dye [12]. In addition, GO-CS composite was synthesized by artificial neural
network-particle swarm optimization to remove MB-dye [1]. GO-lignosulfonate aerogel
cross-linked with CS was investigated to enhance adsorption of MB-dye from water [21].
On the other hand, the bead forms of adsorbent materials suggested better adsorption
performance compared to the other form of the composites [13].

Therefore, our goal was to prepare GO@CS beads using a simple continuous dropping
technique using a peristatic pump to remove methylene blue (MB)-dye from an aqueous
media. Subsequently, the obtained beads were characterized with SEM, FTIR, and TGA
before and after the adsorption process. Finally, the GO@CS was applied to the treatment
of the real sample.

2. Materials and Methods
2.1. Materials and Instrumentation

All chemicals used were of analytical grade and used without any purification. H2SO4
(95–97%, Riedel deHaen), H2O2 (36%, Pharaohs Trading and Import, Cairo, Egypt), HCl
(30%, El Salam for Chemical Industries, Midland, MC, USA), KMnO4 (99%, Long live),
and graphite (200 mesh, 99.99%, Alpha Aesar, Ward Hill, MA, USA), Methylene blue
(Sigma-Aldrich, St. Louis, MI, USA)

Analytical balance (CP 2245, Sartorius, Göttingen, Germany), Hot plate stirrer (IKA,
C-MAG HS7, IKA®-Werke GmbH & Co. KG, Breisgau, Germany), pH meter (3510, Genway),
Hot plate stirrer (SB 162, Stuart, UK.), Centrifuge, (Mikro 220R, Hettich, Salford, UK).

2.2. Characterization

The synthesized GO@CS composite beads were characterized by Scanning Electron
Microscope (SEM) (JEOL GSM-6610LV. Tokyo, Japan) Thermo-Gravimetric Analysis (TGA,
Shimadzu Thermal Gravimetric Analysis (TGA)—50, Tokyo, Japan). Fourier Transmis-
sion Infra-Red Spectroscopy (FT-IR) (8400s, Shimadzu, Kyoto, Japan) covered the range
400–4000 cm−1 and Raman Spectroscopy (Bruker, Senterra II, Bremen, Germany).

2.3. Preparation of GO@CS Composite

Graphene oxide (GO) was prepared according to our previous work [22]. To prepare
GO@CS beads, 300 mg of previously prepared GO was added to an aqueous solution of
(2% CS/2% acetic acid) and stirred for 24 h to give a homogenous suspension. A peristaltic
pump was employed to continuously drop homogenous suspension in 3% NaOH aqueous
solution to form GO@CS beads structure. Figure 1 shows the photographic image of the
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continuous dropping system. The formed GO@CS beads were left for 24 h in the NaOH
solution for complete cross-linking. After that, it was separated by a strainer, washed
several times with distilled water, and air dried for further use. Figure 2 represents the
photographic image for (a) prepared GO@CS beads, (b) GO@CS beads after air drying,
(c) GO@CS beads after the treatment process, and (d) the dye solution before and after the
decontamination process.
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Figure 2. Photographic images of (a) as prepared GO@CS beads, (b) GO@CS beads after air drying,
(c) GO@CS beads after use in the treatment process, and (d) the dye solution before and after the
decontamination process.

2.4. Batch Adsorption

In this experiment the initial MB-dye concentration of 10–50 mg/L were employed.
The pH of the MB-dye solution varied from 1.7 to 12. Various doses of adsorbents
(0.025–0.125 mg). A temperature in the range of 35–80 ◦C was applied. The Effect of
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the NaCl dose was in range (0.0–1.0 g). Finally, 0.5 mL of the dye solution was isolated
and centrifuged. After phase separation 0.1 mL of the centrifuged solution was diluted to
10.0 mL with distilled water and MB-dye concentrations were measured at 662 nm.

The dye removal percent (%R) is defined as:

%R = (Co − Ct)/Co × 100 (1)

where, Co and Ct are the initial concentrations and the concentrations of dye at
time t, respectively.

2.5. Kinetic Models

Adsorption Kinetic models investigated in this work were represented in the
Supplementary Material file (Tables S1 and S2).

3. Results and Discussion
3.1. Characterization
3.1.1. SEM

The SEM images in Figure 3a–c show that the dripping technique produces semi-
spherical gel beads after falling the GO@CS solution in NaOH solution, Figure 3b. The
surface of the beads was shown to be a non-homogenous structure. This rough surface
increases the surface area, enhancing adsorption efficiency, as in Figure 3c. After the first
reusing process, the roughness degree of the GO@CS surface beads reduced, which may be
due to treating with HCl for desorbing the adsorbed species, as represented in Figure 3h.
The beads’ surface becomes highly smooth after five reuse runs, as shown in Figure 3i–m.

3.1.2. FTIR

The FTIR is considered an efficient tool for assessing different functional groups in the
analyzed materials. Figure 4 shows the FTIR spectra of GO, GO@CS, MB, and GO@CS-MB
complexes. The GO shows a characteristic peak at 3433 cm−1 corresponding to surface
adsorbed water, 1730 cm−1 related to the carboxylic group, 1629 cm−1 referring to the
bending motion of water molecule, 1394 cm−1 corresponding to the deformation of the
carbonyl group and finally, peak at 1064 cm−1 attributed to C-O bond stretching [22].
Accordingly, the FTIR spectrum highly differs in mixing GO and CS to form the beads.
The GO/CS shows peaks at 2931 cm−1 related to C-H stretching motion, 1669 cm−1 due
to water bending motion, and 1535 cm−1 due to chitosan N-H bond stretching [23]. After
adsorption of MB over the GO@CS beads, the peaks’ GO@CS-MB complex shows a red
shift compared with the GO@CS spectrum, which suggests a successful adsorption MB dye
process [24].

3.1.3. TGA

The thermogravimetric analysis (TGA) is a device required to determine the thermal
stability of the materials. The GO shows five decomposition stages related to the surface
moisture (19.6%, 28–89 ◦C), interlayer water (4%, 89–158 ◦C), hydroxyl groups (20.5%,
158–214 ◦C), carboxyl groups (8%, 214–320 ◦C), and pyrolysis of carbon backbone (5%,
320–600 ◦C). With the mixing of GO and CS in beads, the amount of adsorbed moisture was
highly reduced (6%, 32–92 ◦C), and the amount of interlayer water was enhanced due to
gel formation and released at higher temperature (14%, 92–23 ◦C) [25]. After that, the main
decomposition stage is reached at (22%, 235–288 ◦C) due to pyrolysis of glycosidic units of
chitosan. This thermal stability achieved for the GO@CS beads may be due to the electro-
static interaction among the -NH3

+ in CS and COO− in graphene [25,26]. After adsorption
of the MB dye species, the thermal stability of the beads collapsed and recorded two main
thermal decomposition stages (35%, 235–357 ◦C) and (36%, 561–700 ◦C), as represented
in Figure 5. This phenomenon may be due to consuming different function groups in the
adsorption process, weakening the electrostatic attraction between the bead’s precursors.
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3.2. Adsorption Study
3.2.1. Effect of Contact Time

A graph percent vs. stirring time at a stable of the other condition is plotted in
Figure 6a. The plots show an increase in the removal percent (%R) over the contact time,
and the highest adsorption efficiency is 99.9% at 35 min. After that, the removal percent
becomes stable until 120 min. This behavior is attributed to the occupation of the active
sites with the MB-dye molecule, and the adsorbent appearing to be saturated with the
pollutant [27].
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pH = 7, T = 25 ◦C).

To understand the kinetic mechanism of the adsorption of MB-dye using GO@CS
beads, different adsorption kinetic models (Pseudo-first- and second-order) are investigated
and represented in Figure 6b,c. Different parameters and correlation coefficients related to
the kinetic models are calculated from the slopes and intercepts from the linear relations in
Figure 6b,c and summarized in Table 1, since R2 is the most utilized metric to determine the
suitable fit kinetic models [1]. The relation coefficient related to the pseudo-second-order
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kinetic model (R2 = 0.992) is greater than the pseudo-first-order kinetic model, indicating
that the pseudo-second-order kinetic model better fits the adsorption of MB-dye over
GO@CS composite beads.

Table 1. Calculated parameters of the pseudo-first-order and pseudo-second-order kinetic models for
adsorption of MB-dye over GO@CS composite beads.

Dye qe exp (mg/g)
Pseudo-First-Order Kinetic Parameter Pseudo-Second-Order Kinetic Parameter

K1 (min−1) qe cal (mg/g) R2 K2 (g mg−1 min−1) qe cal (mg/g) R2

MB 9.99 −0.06 9.46 0.990 0.008 11.23 0.992

3.2.2. Effect of initial MB-Dye Concentrations

The initial MB-dye concentrations induced were studied in range 10–50 mg/L, as
investigated in Figure 7a. The results shows that the %R of MB over GO@CS composite
beads was reduced from 99.99–39.3% with a further increase in the MB-dye concentrations
from 10 to 50 mg/L. This observation is attributed to the supposition that, at low MB-
dye concentration, the number of MB-dye species will be equivalent to the number of
the binding sites on the surface of GO@CS composite beads [28]. With increased dye
concentration, the number of dye species in the aqueous solution increase compared with
the number of the binding site, leading to reduced adsorption performance [29]. To explain
how the dye species interact with the GO@CS beads binding sites, various adsorption
isotherm models are validated (Table 2). The linear relations of the studied models are
plotted in Figure 7b–d. The slopes and intercept of the fitted lines were used to calculate
different isotherm parameters and listed in Table 2 as well as the relation coefficient. Based
on the obtained data, the R2 related to Langmuir isotherm is greater than Freundlich
isotherm. It is indicated that the MB-dye prefers to adsorb on an equally energetic binding
site as a monolayer on the GO@CS beads surface with a maximum adsorption capacity of
23.26 mg g−1.

Table 2. Constants of Langmuir and Freundlich models for adsorption of MB-dye onto GO@CS
composite beads.

Dye
Langmuir Isotherm Model Freundlich Isotherm Model

qe (mg/g) b (L/mg) RL R2 n Kf (mg/g) R2

MB 23.26 0.14 0.42 0.950 2.06 4.45 0.868

3.2.3. Effect of GO@CS Composite Beads Dose, NaCl Dose, and Temperature on %R of
MB-Dye

Figure 8a represents the influence of GO@CS composite beads dose on the removal
efficiency of MB-dye. It is noted that the adsorption performance of MB-dye was enhanced
with further increase in the GO@CS composite beads dose. This is attributed to the further
increase in the adsorbent dose, providing different binding sites for successful interaction
with more MB-dye species [30]. The NaCl dose induced on %R of MB-dye was investigated
in the range of 0.0–1.0 g, as shown in Figure 8b. The experimental data shows a reduction
in the adsorption percentage of MB-dye from 61.29 to 5.80%, with a further increase in
the NaCl dose from 0.0 to 1.0 g. This may be because the presence of Na+ ions in the
aqueous medium will compete with the MB dye on the binding sites, leading to decreased
adsorption efficiency [31].
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(d) Freundlich isotherm plot of MB dye. (t = 35 min, [GO@CS] = 50 mg/10 mL, pH = 7, T = 25 ◦C).

The effect of temperature shows a very slight influence on the adsorption efficiency of
MB dye, as noted in Figure 8c, that a further increase in the temperature from 25 to 80 ◦C
leads to a decrease in the removal percentage from 61.9 to 58%. This indicated that the
adsorption process was an endothermic process.
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Figure 8. Effect of (a) GO@CS beads dose/50 mL dye solution (t = 35 min, [MB] = 20 mg/L, pH = 7,
T = 25 ◦C, (b) NaCl dose (t = 35 min, [GO@CS] = 50 mg/50 mL, [MB] = 20 ppm, pH = 7, T = 25 ◦C),
and (c) temperature (t = 35 min, [GO@CS] = 50 mg/50 mL, [MB] = 20 ppm, pH = 7) on removal
percentage of MB-dye onto GO@CS composite beads.

3.2.4. Effect of pH on the Removal Percent of MB-Dye

The pH is a significant parameter to study adsorption processes. This is due to the
pH of the aqueous medium highly affected on the ionization of GO@CS composite beads
binding sites. Here, the influence of initial solution pH on the adsorption efficiency of MB-
dye from aqueous media was investigated and represented in Figure 9a. It is interestingly
observed that the increase in the pH of the solution in range 1.7–12 is accompanied with a
linear increase in the adsorption efficiency from 18.1 to 74.8%. This is because, in acidic
environment, the binding site will be protonated, and thus considered unavailable for
adsorption of cationic MB-species [32]. With an increase in the solution pH value, the
concentration of H+ will be reduced and the binding sites become more ionized, which
provides a suitable environment for efficient removal of cationic MB-dye.

The final pH (pHf) of the adsorption solution was assessed for calculation of ∆pH
(pHf—pHi). Thereafter, a relation was plotted between ∆pH vs. pHi to determine the point
of zero charge related to the GO@CS, as seen in Figure 9b. The graph showed that the
adsorbent was negatively charged, even if it located in a highly acidic environment.
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Figure 9. (a) Effect of pH on adsorption percentage of MB-dye (t = 35 min, [GO@CS] = 50 mg/50 mL,
[MB] = 20 ppm, T = 25 ◦C), (b) point of zero charge of GO@CS beads.

3.3. Reusability Study

The reusability of the GO@CS beads was investigated for economic applications. Here,
the optimum adsorption conditions extracted from the batch investigation were employed
to study the adsorbent’s recyclability, as shown in Figure 10. First, the adsorbent was
stirred with the aqueous dye solution for a definite time, separated by decantation, and the
residual concentration of the dye was assessed. Finally, the GO@CS beads were washed
with (5 mL, 1.0%) HCl solution. A decrease in the adsorption efficiency from 61.3 to 22.4%
after 5 reused runs was noted. This may be blocking some binding sites by highly interacted
dye species leading to occupying these binding sites and making them unavailable for
further adsorption.
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3.4. Application on the Real Dye Sample

For practical application, a real sample was collected from dye factory and the dye
concentration in the real sample was followed as function of the time, as illustrated in
Figure 11. It was observed that the removal efficiency of the factory dye increase with the
contact time and the GO@CS beads can remove 82.1% of the factory dye within 135 min.
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3.5. Comparison Study

Table 3 represents the comparison study of the maximum adsorption capacities of
MB-dye over GO@CS beads with other different adsorbents materials according to the
Langmuir isotherm model published recently [1,12,13,33–41]. It can be observed that the
GO@CS composite beads have resulted in higher MB-dye adsorption capacity compared to
other adsorbents.

Table 3. Langmuir based maximum adsorption capacity of several adsorbents for MB-dye adsorption.

Adsorbent Adsorption Capacity (mg/g) Reference

GO-CS composite 7.53 [1]

CS-GO hydrogel 14.31 [12]

CS-CNT hydrogel 21.74 [12]

Chitosan-Clay Biocomposite Beads 2.385 [13]

alginate graft-polyacrylonitrile beads 3.79 [33]

H2SO4 crosslinked magnetic chitosan nanocomposite beads 20.40 [34]

(CMC)/k-carrageenan (kC)/activated montmorillonite
(AMMT) beads 12.5 [35]

Magnetic Biochar 22.88 [36]

Desmodesmus sp. Immobilized Alginate beads 20 [37]

Alginate-grafted-poly (methyl
Methacrylate) 5.25 [38]

P-N-LDHs hydrogel 6.03 [39]

Silsesquioxane-based disulfide-linked polymer (DLP) 12.90 [40]

Chitosan/laterite/iron oxide 16 [41]

GO@CS beads 23.26 This work
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4. Conclusions

This work synthesized graphene oxide@chitosan (GO@CS) composite beads using
continuous dropping techniques to adsorb methylene blue (MB) dye from wastewater.
The fabricated (GO@CS) composite beads were characterized using different techniques
such as SEM, TGA, FTIR, and XRD to investigate the physical and chemical properties of
the prepared (GO@CS) composite beads. Under the optimum conditions, the maximum
adsorption capacity was 23.26 mg g−1. The investigated adsorption processes obey pseudo-
2nd-order and Langmuir isotherm models. A regeneration and application study on a real
sample of (GO@CS) composite beads showed that it has significant adsorption efficiencies
for MB-dye. Therefore, it is considered an eco-friendly adsorbent material with promising
properties to use in wastewater’s decontamination processes.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym14194236/s1, Table S1. Kinetic model, Table S2. Linear
forms of adsorption isotherm models. References [42,43] are cited in the supplementary materials.
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