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Asthma is among the most common chronic diseases worldwide, creating a substantial
healthcare burden. In late-onset asthma, there arewide global differences in asthma prevalence
and low genetic heritability. It has been suggested as evidence for genetic susceptibility to
asthma triggered by exposure to multiple environmental factors. Very few genome-wide
interaction studies have identified gene-environment (G×E) interaction loci for asthma in
adults. We evaluated genetic loci for late-onset asthma showing G×E interactions with
multiple environmental factors, including alcohol intake, body mass index, insomnia,
physical activity, mental status, sedentary behavior, and socioeconomic status. In gene-by-
single environment interactions, we found no genome-wide significant single-nucleotide
polymorphisms. However, in the gene-by-multi-environment interaction study, we identified
three novel and genome-wide significant single-nucleotide polymorphisms: rs117996675,
rs345749, and rs17704680. Bayes factor analysis suggested that for rs117996675 and
rs17704680, body mass index is the most relevant environmental factor; for rs345749,
insomnia and alcohol intake frequency are the most relevant factors in the G×E interactions
of late-onset asthma. Functional annotations implicate the role of these three novel loci in
regulating the immune system. In addition, the annotation for rs117996675 supports the body
mass index as the most relevant environmental factor, as evidenced by the Bayes factor value.
Our findings help to understand the role of the immune system in asthma and the role of
environmental factors in late-onset asthma through G×E interactions. Ultimately, the enhanced
understanding of asthmawould contribute to better precision treatment depending on personal
genetic and environmental information.
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INTRODUCTION

Asthma is one of the most common chronic diseases worldwide
(Beasley et al., 2015). The global prevalence of asthma in adults is
estimated as 4.3%, with wide variation by as much as 21-fold among
countries (Bhandaru et al., 2009; Akinbami et al., 2012). Despite the
42% reduction in asthma-related death rates worldwide between 1990
and 2013, no therapeutic regimen is known, and public health efforts
to assess and manage asthma remain limited (Ahn et al., 2015).
Therefore, it is critical to better understand risk factors such as genes
or the environment that are implicated in asthma.

Asthma is a heterogeneous disease in both children and adults.
Dissecting the heterogeneity of asthma could reveal the subtype-
specific phenotypes and pathogenesis and lead to the
development of new therapeutic strategies. In the classification
of asthma based on the age of onset, late-onset asthma refers to
onset as early as 12 years of age or as late as over 65 years
(Amelink et al., 2013) and differs from early-onset asthma in
many characteristics. Late-onset asthma is more heterogeneous
and severe, often non-atopic, and frequently associated with a
faster decline in lung function, partially because of
underdiagnosis compared to early-onset asthma, suggesting
more accelerated disease or prolonged asymptomatic periods
without treatment (Amelink et al., 2013; Papi et al., 2018;
Kaur and Chupp, 2019). Several twin studies suggested a low
genetic contribution to late-onset asthma predisposition, with
heritability estimates of as much as 57–73% in adults, compared
to 82% in children (Thomsen et al., 2010; Ullemar et al., 2016).
Genetic heritability explained by common variants is also lower
for late-onset asthma (onset at ages between 20 and 60 years; h2g =
10.6%) than for early-onset asthma (onset at ages between 0 and
19 years; h2g = 25.6%), and the genetic correlation (rg) between
late-onset and early-onset asthma is 0.67 (Ferreira et al., 2019).
The lower heritability estimated by variants (h2g) than that by twin
studies indicates that hypothesis-free approaches, such as
genome-wide association studies of previously unknown
genetic loci associated with asthma, should be used.

Studies of the association between the migration status and
asthma prevalence provide insight into the importance of
environmental factors in the development of asthma (Cabieses
et al., 2014). The prevalence of asthma is lower in immigrants
from countries with low prevalence than in natives of the host
country with a high prevalence, although these values reach
similar proportions with an increasing time of residence
(Cabieses et al., 2014). Early-onset asthma is likely attributable
to atopy and potentially genetic factors, whereas late-onset
asthma appears to be related to environmental risk factors,
including physical inactivity, alcohol consumption, sleep
disorder, sedentary behavior, mental health, and
socioeconomic status (Vally et al., 2000; Hedlund et al., 2006;
Eijkemans et al., 2012; Meltzer et al., 2014; Tan et al., 2015;
Vancampfort et al., 2017; Kavanagh et al., 2018; Najjab et al.,
2020). In late-onset asthma, global differences in asthma

prevalence may be attributed to interactions of an individuals’
genetic susceptibility with multiple environmental exposures
(von Mutius, 2009). Most G×E interaction studies of asthma
have applied a candidate gene approach, preventing identification
of unknown G×E interactions (Morales and Duffy, 2019). G×E
interactions for late-onset asthma have been studied to determine
whether previously known loci interact with smoking, NO2, gas
cooking, or endotoxin exposures (Blomstrom-Lundqvist et al.,
2003; Cesarovic et al., 2011; Amaral et al., 2014; Miyake et al.,
2014; Bowatte et al., 2017).

Very few genome-wide interaction studies have focused on G×E
interaction loci for asthma susceptibility in adults (Turner, 2017;
Hernandez-Pacheco et al., 2019; Morales and Duffy, 2019). A
genome-wide interaction analysis of active tobacco smoking in
4,057 patients with adulthood-onset asthma of European ancestry
was performed using data from theGABRIEL consortium (Demenais
et al., 2018). Intergenic single-nucleotide polymorphisms (SNPs)
(rs9969775 in MPDZ-NFIB, odds ratio, OR = 0.50, p = 7.63 ×
10–5; rs5011804 in KRAS-IFLTD1, OR = 1.50, p = 1.21 × 10–4) were
suggested to interact with active tobacco smoking for late-onset
asthma with potential regulatory functions linked to gene
expression regulation in the lung tissue (Demenais et al., 2018).
Another study examined the interaction of genetic variants with age
on the response to inhaled corticosteroids (measured by the
occurrence of exacerbations) in 1,321 adult and child patients who
had asthma and were of European ancestry (Dahlin et al., 2020). Two
SNPs (rs34631960 inTHSD4, OR = 2.3, p = 3.64 × 10–8; rs2328386 in
HIVEP2, OR = 0.5, p = 4.98 × 10–8) were identified as significant
pharmacogenomics loci on asthma by joint analysis of genome-wide
interaction results from discovery and replication populations
(Dahlin et al., 2020).

This study was conducted to identify loci of late-onset asthma
susceptibility showing G×E interactions with multiple
environments. We conducted gene-by-single environment
(G×singleE) interaction analyses using a fixed effect logistic
regression model, PLINK (Purcell et al., 2007) and gene-by-
multi-environment (G×multiE) interaction analysis using a
structured linear mixed model, StructLMM (Moore et al.,
2019). Of the various environmental factors associated with
asthma, seven factors were selected for G×E interaction
analyses based on relatedness, including alcohol intake
frequency, body mass index (BMI), insomnia, metabolic
equivalent of task (MET) score, neuroticism score, time spent
watching TV, and the Townsend deprivation index (TDI) (Vally
et al., 2000; Hedlund et al., 2006; Eijkemans et al., 2012; Meltzer
et al., 2014; Vancampfort et al., 2017; Najjab et al., 2020).

MATERIALS AND METHODS

Study Population and Design
The United Kingdom Biobank (UKB) resource was used for the
discovery set of G×singleE and G×multiE interaction analyses,
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and for one replication set of G×multiE interaction analysis. The
UKB is a population-based cohort that recruited over 487,409
individuals aged 40–69 years in the United Kingdom during
2006–2010 (Collins, 2012). The initial assessment visit was
finished during 2006–2010 (baseline instance 0) and the repeat
assessment (or supplemental assessment) visits were followed by
the periods 2012–2013 (instance 1), 2014–2018 (instance 2), and
2019+ (instance 3) (Bycroft et al., 2018) The largest subset of
participants attended the initial assessment (instance 0) and the
other subset completed repeat assessments (instance 1–3)
following the initial assessment, and the another subset
attended only the supplemental assessments (instance 1–3)
without the initial assessment visit. For quality control of the
samples, we used the following filter parameters of the Neale lab
(https://github.com/Nealelab/UK_Biobank_GWAS): principal
component (PC) analysis calculation filter for selecting
unrelated samples; sex chromosome filter for removing
aneuploidy; filtering of PCs for European sample selection for
determining British ancestry; and filters for selecting self-reported

‘white British,’ “Irish,” and “White”. The total unrelated
European participants amounted to 356,536.

All participants provided signed consent to participate in the
UKB (Biobank, 2007). The UKB has been granted ethical
approval to collect participant data by the North West
Multicentre Research Ethics Committee, which covers the
United Kingdom; National Information Governance Board for
Health and Social Care, which covers England and Wales; and
Community Health Index Advisory Group, which covers
Scotland. The UKB possesses a generic Research Tissue Bank
approval granted by the National Research Ethics Service (http://
www.hra.nhs.uk/), which allows applicants conduct research on
UKB data without obtaining separate ethical approvals. Access to
UKB data was granted under application no. 56987:
“Classification of asthma patients and identification of group-
specific genetic variants”.

For the discovery analysis, we used unrelated Europeans
338,271 with the health information that were collected during
the initial assessment period (2006–2010; instance 0). Cases with

FIGURE 1 | Study design for G×E interaction analysis in the UKB. This diagram includes exclusion criteria for quality control of SNPs and samples. The lower box in
the left indicates sample numbers for G×singleE interactions with individual environmental factor on late-onset asthma, whereas the lower box in the right indicates those
for G×multiE interactions with seven factors.
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late-onset asthma (N = 20,817) were determined as those that had
been diagnosed with asthma by a doctor and had checked for age
of onset (≥16 years). Participants who had been diagnosed with
chronic obstructive pulmonary disease (COPD) were excluded
from the study. Controls (N = 210,328) had not been diagnosed
with asthma, rhinitis, eczema, hay fever, allergy, emphysema/
chronic bronchitis, and COPD (Figure 1). To determine the
difference between the case and control groups, those with
missing values for forced expiratory volume in 1-s (FEV1) and
forced vital capacity were excluded. Participants with missing
values for smoking status as covariance were also excluded.

Environmental Factors
Environmental factors were collected via self-reported touchscreen
questionnaires or physical measurements taken manually or index-
based on the preceding national census output areas in the UKB. Of
the various environmental factors, seven factors were included for
G×E interaction analyses based on their relatedness with asthma,
including alcohol intake frequency, BMI, insomnia, MET score,
neuroticism score, time spent watching TV, and TDI (Vally et al.,
2000; Hedlund et al., 2006; Eijkemans et al., 2012; Meltzer et al., 2014;
Vancampfort et al., 2017; Najjab et al., 2020).

To confirm the relatedness between environmental factors and
asthma, we used a logistic regression model. “Prefer not to
answer” and “I don’t know” were set to “missing” in our
analysis. Alcohol intake frequency was encoded as: 1 = “daily
or almost daily”, 2 = “three or four times a week”, 3 = “once or
twice a week”, 4 = “one to three times a month”, 5 = “special
occasions only”, or 6 = “never”. BMI was calculated in units of kg/
m2 from the height and weight measured during the initial
assessment center visit (Rask-Andersen et al., 2017).
Sleeplessness or insomnia complaints were encoded as: 1 =
“never/rarely”, 2 = “sometimes”, or 3 = “usually”. The MET
value, a measure of physical activity, was derived from the work
undertaken during the International Physical Activity
Questionnaire which covers the frequency, intensity, and
duration of vigorous, moderate, and walking activities (Craig
et al., 2003). Time spent in vigorous, moderate, and walking
activities was weighted by the energy expended for these
categories of physical activities, which are referred to as “total
physical activity”. The rules for data processing published by the
IPAQ were followed (Committee, 2005). The neuroticism score, a
measure of the mental status, reported in UKB was based on 12
neurotic domains from Eysenck Personality questionnaire and
was externally derived by Smith et al. (2013) (Smith et al., 2013).
Time spent watching TV, a measure of sedentary behavior,
represented hours per day; less than 0.5 h was recorded as 0.5.
TDI is a composite score for socioeconomic status that is
generated for each national census output area and
incorporates area inhabitants’ unemployment rates, car- and
house-ownership, and the number of people in a household. A
higher TDI corresponds to a larger degree of social deprivation.
For analysis, individual environmental factors were transformed
to a normal distribution using a Gaussian function in
StructLMM. The distributions of raw (pre-gaussianized)
phenotypes and processed (post-gaussianized) phenotypes are
shown in Supplementary Figure S1.

Genotype Data
At baseline, imputation data of 93, 095, 623 SNPs were available
for 487,409 participants using the UKB Axiom Array and the
United Kingdom BiLEVE Axiom Array from Affymetrix (Santa
Clara, CA, United States ) (Sudlow et al., 2015). Genotyping
imputation was performed using the United Kingdom10K
Project and 1,000 Genome Project Phase 3 reference panels
(Consortium et al., 2015; Genomes Project et al., 2015).
Quality control was performed based on the following
exclusion criteria using PLINK v.1.90: SNPs with missing
genotype call rates >0.05, minor allele frequency < 0.01, and P
for Hardy-Weinberg equilibrium test <1.00 × 10–6). A total of
5,664,578 SNPs was retained for further analysis.

Statistical Analysis
We performed association analysis, correlogram, Manhattan, bar,
and violin plottings, one-way analysis of variance, and correlation
analysis (Spearman’s rank correlation) using the R stats package
(version 4.0.2; www.r-project.org). To draw the Manhattan plots,
the “qqman” package was used; “corrplot” and “ggplot2” were
used to prepare correlogram and violin plots, respectively.
Analysis of variance and association analysis were performed
using the R stats package.

We used PLINK v.1.90 (Purcell et al., 2007) for SNP quality
control. The effects of G×singleE interactions on late-onset
asthma for seven individual environmental factors were also
analyzed using PLINK v.1.90, adjusted for age, sex, genotyping
array, smoking status, and PC1-10. For G×multiE interactions
and to calculate the Bayes factor (BF) for individual
environmental factors, a structured linear mixed model,
StructLMM was performed using the python 3 language
(Moore et al., 2019). The classical logistic regression model
considers the effect of an environmental factor on genetic
interaction as fixed effect while the StructLMM calculates the
effect of multiple environments through their combinatory action
on genetic interaction as random effect. StructLMM has several
strengths: the robustness of power and simultaneous
incorporation of multiple environmental factors. Moreover, the
BF in StructLMM can be used to assess which environmental
factor contributes to its genetic interaction. The BF in StructLMM
is a statistical method that compares two models, one with
environmental factors and the other without environmental
factors, to assess which model is better and to quantify its power.

Of SNPs that were identified in the discovery analysis,
independent SNPs were selected through linkage
disequilibrium clumping (p < 5.00 × 10–8 for genome-wide
significant regions; p < 1.00 × 10–6 for genome-wide
suggestive regions; r2 > 0.01, 1-Mbp boundary distance;
PLINK v.1.90).

Replication
We used two different cohorts for replication of the G×multiE test
with three novel SNPs; the first cohort is the European samples of
UKB that were not used in the discovery analysis and the second
one is the Korean samples from the Health Examinees (HEXA)
population-based cohort obtained from the Korean Genome and
Epidemiology Study (KoGES)) (Kim et al., 2017).
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For the first set of replication in the Europeans of UKB that
were unused in the discovery analysis, we excluded 164,969 used
participants from the unrelated samples 356,536 with European-
British background. Among the remaining samples (N =
191,567), cases with late-onset asthma (N = 513) were
determined as those that had been diagnosed with asthma by
a doctor and had checked for age of onset (≥16 years).
Participants who had been diagnosed with chronic obstructive
pulmonary disease (COPD) were excluded from the study.
Controls (N = 104,188) had not been diagnosed with asthma,
rhinitis, eczema, hay fever, allergy, emphysema/chronic
bronchitis, and COPD (Supplementary Figure S2).

In addition, for the replication test, we excluded
environmental factors that showed low BF (< 1) at the
discovery test for three novel SNPs to spare samples per SNP.
Among seven, the following environmental factors for each SNP
were included in the replication as follows: for rs117996675, four
factors (alcohol intake frequency, BMI, MET score, and time
spent watching TV); for rs345749, five factors (alcohol intake
frequency, BMI, insomnia, neuroticism, and time spent watching
TV); and for rs17704680, four factors (alcohol intake frequency,
BMI, TDI, and time spent watching TV). Following exclusion of
samples with missing information of environmental factors, the
final sample size for rs117996675 was 57,921 (asthma case:
control = 379: 57,542); for rs345749 was 57,817 (asthma case:
control = 395: 57,422); and for rs17704680 was 101,791 (asthma
case: control = 507 : 101,284).

For the second set of replication, we used the Health Examinees
(HEXA) population-based cohort obtained from the Korean
Genome and Epidemiology Study (KoGES) (Kim et al., 2017).
The KoGESHEXA study included participants aged ≥40 years who
visited the institutions. Data were collected from 39 sites from 2004
to 2013, and follow-up data were obtained from 2012 to 2016. This
study was conducted with bioresources from the National Biobank
of Korea and the Center for disease Control and Prevention,
Republic of Korea (KBN-2020–017). Among the 58,700
participants, we excluded missing data on the history of asthma,
onset age of asthma, COPD, chronic bronchitis, and allergic
disease. For the control group, we excluded patients with a
history of asthma, onset age of asthma, COPD, chronic
bronchitis, and allergic diseases. We excluded patients with
COPD and patients who developed asthma before 16 years of
age from the case group. For consistency with the UKB samples, we
also excluded samples with <40 or >69 years of age when assessed
from KoGES HEXA participants and samples with missing
information for height, weight, total alcohol intake frequency,
psychological well-being index (PWI) short form, and total
household income. Finally, 603 patients with late-onset asthma
and 36,587 controls were included in the analysis. We used 4
environmental factors: total alcohol intake frequency
(preprocessed from soju, beer, makgeolli, jeongjong, wine,
liquor, fruit wine, and other alcoholic beverages), BMI, PWI
short form, and total household income (Goldberg and Hillier,
1979; Choi et al., 2019; Kim et al., 2019). A detailed schematic
illustration of the participant selection process and the
characteristics of the selected participants are summarized in
Supplementary Figure S3.

Functional Annotation Tools
We used several approaches to evaluate the functional relevance
of the identified SNPs. Haploreg (v.4.1) was used to search for the
effect of the identified SNPs on the transcription factor-binding
site motif and to perform enhancer enrichment analysis (Ward
and Kellis, 2012). Combined Annotation-Dependent Depletion
(CADD) was used to evaluate the deleteriousness of SNPs
(Rentzsch et al., 2019). The GTEx (v8) database was used to
evaluate the association of genetic variation with the expression of
genes (Consortium, 2020). PhenoScanner (v2) was further used
to search for an association of genetic variants with a broad range
of phenotypes (Kamat et al., 2019). Data available from the
United States National Institutes of Health Roadmap
Epigenomics Program were used to study epigenetic marks
such as DNA methylation, histone modifications, and
chromatin accessibility and ultimately to understand the role
of genetic variation in modulating transcriptional enhancers and
promoters (Roadmap Epigenomics et al., 2015).

RESULTS

Associations Between Late-Onset Asthma
and Environmental Factors
The basic characteristics of UKB participants in this study are
described for G×singleE interaction (N = 231,145) and for
G×multiE interaction analyses (N = 153,795), respectively in
Table 1 and Supplementary Table S1, (Figure 1). Cases with
late-onset asthma had been doctor-diagnosed at ≥16 years old.
Female frequency and smoking status differed significantly
between asthma cases and controls, and FEV1 and the FEV1
per forced vital capacity ratio were significantly higher in late-
onset asthma cases than in controls (Table 1).

Of the numerous factors associated with asthma, seven
factors were selected for G×E interaction analyses based on
relatedness, including alcohol intake frequency, BMI,
insomnia, MET score, neuroticism score, time spent
watching TV, and TDI (Vally et al., 2000; Hedlund et al.,
2006; Eijkemans et al., 2012; Meltzer et al., 2014; Vancampfort
et al., 2017; Najjab et al., 2020). We examined the interaction
between environmental factors and genetic variants on late-
onset asthma. A logistic regression model for association
between individual factors and late-onset asthma was used,
adjusted for age, sex, and smoking status (Supplementary
Table S1). All seven environmental factors were significantly
associated with late-onset asthma (p < 0.05/7 = 7.14 × 10–3) in
the following order: BMI (p = 1.55 × 10–124), neuroticism
score (p = 8.60 × 10–62), insomnia (p = 5.30 × 10–48), TDI (p =
8.79 × 10–21), alcohol intake frequency (p = 4.74 × 10–18), time
spent watching TV (p = 2.01 × 10–14), and MET score (p = 3.37
× 10–5) (Supplementary Table S2). Categorical variables such
as alcohol intake frequency and insomnia showed significant
imbalances, whereas quantitative variables including BMI,
MET score, neuroticism score, time spent watching TV,
and TDI differed significantly between asthma cases and
controls (Table 1). Additionally, correlation analyses
between pairs of seven environmental factors and late-
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onset asthma showed that most environmental factors were
positively correlated with an individual environmental factor
except for the MET score (Supplementary Table S3,
Supplementary Figure S3). The MET score was negatively
correlated with BMI (p = 1.41 × 10–228), insomnia (p = 8.17 ×
10–32), neuroticism score (p = 1.77 × 10–67), and time spent
watching TV (p = 5.75 × 10–18), whereas it was positively
correlated with alcohol intake frequency (p = 3.31 × 13–10) and
TDI (p = 2.05 × 10–35).

G×singleE Interaction Analysis for
Late-Onset Asthma
We performed G×singleE interaction analyses for late-onset
asthma using seven environmental factors: alcohol intake
frequency, BMI, insomnia, MET score, neuroticism score, time
spent watching TV, and TDI in 231,145 individuals of European
ancestry. These analyses were conducted using PLINK after
adjusting for age, sex, genotyping array, smoking status, and
1–10 PCs. As a result of seven genome-wide G×singleE
interaction analyses, 26 SNPs satisfied the genome-wide
suggestive level (p < 1.00 × 10–6), with no SNP satisfying the
threshold of genome-wide significance (p < 5.00 × 10–8/7 = 7.14 ×
10–9) (Supplementary Table S4). Manhattan plots for each
interaction result are depicted in Supplementary Table S4,
and the information on the asthma-related genome-wide
association study regarding the 26 SNPs is summarized in
Supplementary Table S4.

G×multiE Interaction Analysis for
Late-Onset Asthma
For the discovery set of G×multiE interaction study, we used
StructLMM, a structured linear mixed model, for late-onset
asthma using seven environmental factors included as
multivariate environmental components, adjusted for age, sex,
genotyping array, smoking status, and 1–10 PCs, in 153,795
individuals of European ancestry. We identified three
independent genome-wide significant SNPs (rs117996675, p =
4.25 × 10–8; rs345749, p = 4.41 × 10–10; rs17704680, p = 1.26 ×
10–8) (Table 2) and 17 suggestive SNPs, as shown in the
Manhattan plot and regional association plots (Figures 2, 3;
Supplementary Table S5). The three genome-wide significant
SNPs have not been previously reported as loci associated with
asthma or asthma-related traits, such as allergy, eczema, hay
fever, and whizzing. We calculated the per-individual effects of
the total genetic effect (G + G×E), G×E interaction (G×E), and the
main effect (G) of each of the three SNPs, indicating a wider
variation of G×E interaction effects than the total genetic effect
(Figure 4; Supplementary Table S6) (Purcell et al., 2007; Moore
et al., 2019).

Relevance of Environments in G×multiE
Interaction Study for Late-Onset Asthma
To explore which environmental factors are the most relevant to
individual G×E interaction signals, we estimated the BF values for

TABLE 1 | Characteristics of late-onset asthma cases and controls for StructLMM analysis from the UKB.

Asthma
case (N = 14,089)

Control (N = 139,706)

Age (years) * 55.80 ± 8.08 56.68 ± 7.94
Sex (%)† Female 8,597 (61.02%) 70,112 (50.19%)

Male 5,492 (38.98%) 69,594 (49.81%)
Onset age (years) 39.8 ± 12.84 -
Smoking status (%)† Current smoker 1,083 (7.31%) 13,909 (9.56%)

Previous smoker 5,336 (36.03%) 49,281 (35.27%)
Never smoker 7,670 (51.79%) 76,516 (54.77%)

FEV1% predicted * 83.73 ± 17.54 90.42 ± 16.38
FEV1/FVC ratio * 0.74 ± 0.08 0.76 ± 0.07
Alcohol intake frequency (%)† Daily or almost daily 1,048 (7.08%) 8,119 (5.81%)

Three or four times a week 1,618 (10.93%) 12,886 (3.22%)
Once or twice a week 1,634 (11.03%) 14,740 (10.55%)
One to three times a month 3,514 (23.73%) 37,428 (26.79%)
Special occasions only 3,320 (22.42%) 35,044 (25.08%)
Never 2,955 (19.95%) 31,489 (22.54%)

BMI (kg/m2) * 28.05 ± 5.16 27.18 ± 4.50
Insomnia (%)† Never/rarely 3,110 (22.07%) 66,135 (47.34%)

Sometimes 6,517 (46.26%) 36,041 (25.80%)
Usually 4,462 (31.67%) 37,530 (26.86%)

MET score (min/week) * 2,600.27 ± 2,670.44 2,743.63 ± 2,752.71
Neuroticism score * 4.48 ± 3.32 3.88 ± 3.19
Time spent watching TV (hours/day) * 2.77 ± 1.67 2.71 ± 1.57
TDI * -1.49 ± 2.97 -1.73 ± 2.83

Data, mean ± standard deviation (SD) or n (%), unless otherwise stated; FEV1, forced expiratory volume in 1s; FVC, forced vital capacity.
Student’s t-test is used to compare mean differences of quantitative variables between cases and controls; * denotes a significant difference in mean between cases and controls.
Chi-squared test is used to check for imbalances of categorical variables between cases and controls. † denotes a significant imbalance between cases and controls.
BMI, body mass index; MET, metabolic equivalent of task; TDI, townsend deprivation index.
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each environmental factor using a statistical method that assesses
the comparative power of each model comparing between the full
model and model without an individual environmental factor
(Moore et al., 2019). A BF value less than 1 indicates that the
environmental factors do not improve the test power of
StructLMM through the G×E interaction.

The analyses of BF values suggested that for rs117996675 and
rs17704680, BMI was the most relevant among the seven
environmental factors; for rs345749, insomnia and alcohol
intake frequency were the most relevant (Figure 5A;
Supplementary Table S7). In addition, the BF values of
StructLMM and p-values of G×singleE interaction were ranked
in the same order or similarly as follows: for rs117996675, BMI >
time spent watching TV > alcohol intake frequency >MET score
> insomnia, neuroticism score, and TDI; for rs345749, insomnia
and alcohol intake frequency > time spent watching TV > BMI,
neuroticism score, TDI, and MET score; lastly for rs17704680,
BMI > alcohol intake frequency > time spent watching TV > TDI
> neuroticism score > MET score, and insomnia (Figure 5A;
Supplementary Table S7). The similarity between orders of BF
values and p-values of G×singleE interaction supports the validity
of the interaction power in StructLMM.

To confirm the relevance of environmental factors, we tested
whether asthma prevalence differed between alleles of variants
within an individual category of the relevant environment. The
asthma prevalence differed significantly between alleles of
rs117996675 in participants with BMI < 25 and between
alleles of rs17704680 in participants with BMI >30, indicating
the interacting effects of variants with a specific subset with
certain BMI range on asthma (Figure 5B; Supplementary
Table S8). For rs345749, its allelic difference in asthma
prevalence was significant in participants with usual insomnia,

suggesting insomnia as the most relevant environment
(Figure 5B; Supplementary Table S8).

Functional Annotation
Among the three variants, rs117996675 was within the intron of
PC (11q13.2 of Chr11), rs345749 was within the intron of FMN1
(15q13.3 of Chr15), and rs17704680 was in an intergenic region
near HS3ST4 (16p12.1 of Chr16) (Supplementary Table S9).
Because noncoding variants may influence gene expression, we
examined the sentinel SNPs or proxies in high linkage
disequilibrium (r2 ≥ 0.8) with three loci from publicly
available eQTL data sets (GTEx v8) and the pQTL resource
(Sun et al., 2018; Consortium, 2020).

Two sentinel SNPs (rs117996675 and rs345749) and their
proxies were associated with variable expression of nine genes in
one or more tissues (Supplementary Table S9 and
Supplementary Table S10). A sentinel SNP (rs117996675 in
the 11q13.2) was associated with expression of multiple genes in
various tissues including RIN1, BRMS1, ACTN3, CTD-3074O7.5,
RP11-867G23.8, and C11orf80, and its proxies (r2 ≥ 0.8) were
associated with genes such as B4GAT1 and RP11-867G23.8 in the
whole blood, stomach, skeletal muscle, fat, testis, nerve, and
pancreas. The other lead SNP, rs345749, was associated with
FMN1 expression in the thyroid, pituitary, and esophagus
mucosa, and its proxy (r2 ≥ 0.8) was associated with
GOLGA8O in the skeletal muscle (Supplementary Table S10).
The last SNP, rs17704680, and its proxies showed no eQTL signal
but had a weak pQTL with thymic stromal lymphopoietin (TSLP)
in the blood (Sun et al., 2018).

Because genetic variation may affect the modulation of
transcriptional enhancers and promoters, we examined data
available from the United States National Institutes of Health
Roadmap Epigenomics Program (Arking et al., 2014)
(Supplementary Table S9). We focused on the integrative
data of 5 asthma-related reference human epigenomes (lung,
lung fibroblast, primary T helper cells, and lymphoblastoid
cells) that were profiled for histone modification patterns,
DNA accessibility, DNA methylation, and RNA expression.
The sentinel SNPs, rs117996675 and rs345749, and their
proxies (r2 ≥ 0.8) were enriched in transcriptional
enhancers and promoters with slightly different patterns in
5 epigenomes (Supplementary Table S9), indicating that
these variants in noncoding regulatory regions affect gene
expression. To assess the deleteriousness of the variants, we
obtained the CADD scores (Roadmap Epigenomics et al.,
2015; Rentzsch et al., 2019). Notably, 16 SNPs in high

TABLE 2 | G×multiE interaction between SNPs and seven environmental factors on late-onset asthma. We used the italics for human gene names and P-values.

SNP Chromosome Positiona Nearby gene Minor allele European MAF
(%)

P-valueb

rs117996675 11 66,689,820 PC T 5.219 4.25E-08
rs345749 15 33,343,682 FMN1 A 41.44 5.03E-10
rs17704680 16 26,304,247 HS3ST4 A 17.54 1.26E-08

aChromosomal positions are based on the 1,000 Genomes Project’s haplotype phase 1 in NCBI, build 37 (hg19).
bp-values for G×multiE interaction were assessed using a StructLMM, adjusted for age, sex, batch size, smoking status, and PC1-10.
SNP, single nucleotide polymorphism; MAF, minor allele frequency.

FIGURE 2 | Manhattan plot of G×multiE interaction analysis on late-
onset asthma. The red line indicates the threshold of genome-wide
significance (p = 5.00 × 10–8), whereas the blue line indicates a genome-wide
suggestive level (p = 1.00 × 10–6).
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FIGURE 3 | Regional association plots for three novel loci across a 0.5-Mb window. Interaction (p-values) of individual SNPs in G×multiE interaction analysis was
plotted as −log10(P) against the chromosomal base pair position (hg19). The y-axis on the right shows the recombination rate, estimated from the 1,000 Genomes EUR
population. The purple diamonds indicate individual lead SNPs. Regional plots around (A) rs117996675 (B) rs345749, and (C) rs17704680.
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linkage disequilibrium (r2 ≥ 0.8) with rs345749 exhibited high
CADD scores (>5) and 2 SNPs, rs345862 and rs345867, scored
10.06 and 14.64, respectively, suggesting that they are likely
pathogenic.

Replication in European Samples
For the first set of replication in another European samples,
we used Europeans of UKB that were not used in the discovery
analysis as explained in the Methods. We performed a
replication test of 3 novel SNPs (rs117996675, rs345749,
and rs17704680) in 104,701 European participants (late-

onset asthma case = 513/control = 104,188). Since the
sample size was very small, we excluded environmental
factors that showed low BF (<1) at the discovery test for
each of three novel SNPs (Supplementary Table S7). For
rs117996675, four factors (alcohol intake frequency, BMI,
MET score, and time spent watching TV) were included in
the replication test; for rs345749, included five factors
(alcohol intake frequency, BMI, insomnia, neuroticism, and
time spent watching TV); and for rs17704680, included four
factors (alcohol intake frequency, BMI, TDI, and time spent
watching TV) (Supplementary Table S11).

We performed StructLMM using the set of environmental
factors for each of three SNPs. Consequently, rs17704680
showed a significant G×multiE interaction signal (p = 3.93
× 10–3) that passed the threshold of significance (p = 1.67 ×
10–2 = 0.05/3). However, rs117996675 and rs345749 did not
showed any significant interaction (p = 4.10 × 10–1 for
rs117996675; p = 7.28 × 10–1 for rs345749)
(Supplementary Table S12). We summarized the results of
BF and G×singleE interaction effects of the 3 SNPs in the
replication set of UKB (Supplementary Table S13). Among 4
factors, the best BF factor for rs17704680 was attributed to
BMI (BF = 3.43), supporting the discovery result using UKB
samples with the BF of BMI showing the highest BF value
(9.60) (Supplementary Table S13). For rs117996675 and
rs345749, BF values were much less than 1for all
environmental factors tested.

Replication in East-Asian Samples
We performed a replication test of 2 SNPs (rs345749 and
rs17704680) in 37,460 East-Asian samples (36,857 controls
and 603 late-onset asthma cases from the HEXA study) using
StructLMM. Female frequency and smoking status differed
significantly between cases with late-onset asthma and
controls (Supplementary Table S14). For replication in
East-Asian individuals, because of the limited availability of
the factors surveyed, only four environmental factors were
used, including total alcohol intake frequency, BMI, PWI, and
income. Total alcohol intake frequency and income differed
significantly between asthma cases and controls, whereas BMI
and PWI were significantly higher in cases with late-onset
asthma than in controls (Supplementary Table S14). The last
variant (rs117996675) had a rare allele frequency in East
Asians and was not included for further testing. As a
result, rs17704680 showed a G×multiE interaction (p =
3.01 × 10–3), that satisfied the threshold of significance (p =
1.67 × 10–2 = 0.05/3), whereas rs345749 showed no significant
interaction (p = 1.45 × 10–1) (Supplementary Table S15). We
also summarized the results of BF and G×singleE interaction
effects of the 2 SNPs in HEXA (Supplementary Table S16).
Among 4 factors, the best BF factor for rs17704680 was
attributed to PWI (BF = 2.04) which differed from the
result using the UKB samples with the BF of BMI showing
the highest BF value. This may be related to differences in
factors such as the ethnicity and environmental factors
between the first G×multiE interaction analysis and
replication test.

FIGURE 4 | Distributions of G×E interaction and total genetic effects of
three genetic alleles. G×E interaction and total genetic (G×E + G) effects are
depicted by violin plots. The green line indicates the top and bottom 5%
quantiles.
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DISCUSSION

In this study, we performed two types of genome-wide G×E
interaction studies of late-onset asthma in European individuals.
The environmental factors used in this study included alcohol intake
frequency, BMI, insomnia, MET score, neuroticism score, time
spent watching TV, and TDI. For G×singleE interactions, we did
not detect any genome-wide significant SNPs (p < 5.00 × 10–8/7 =
7.14 × 10–9). However, in the G×multiE interaction study, we found
three independent genome-wide significant SNPs: rs117996675,
rs345749, and rs17704680. We further identified the most
relevant environmental factor per individual variant via BF values.

A recent study estimated the significance of G×E interactions
using the polygenic risk score for obesity-related traits from the
UKB and found that the G×E effect of GWAS SNPs significantly
contributed to the phenotype variance of BMI by 1.9% in addition
to the 15% of polygenic risk score effect (Sulc et al., 2020). Another
report proposed a Bayesian whole-genome regression model for
joint modeling of the main genetic effects and G×E interactions in
large-scale datasets, known as Linear Environment Mixed Model
Analysis (Kerin and Marchini, 2020). This analysis estimates a
linear combination of environmental variables, known as an
environment score, which interacts with genetic variants and

can be used to estimate phenotypic variance attributable to G×E
interaction effects. Using the UKB data, they estimated that for
traits such as BMI, systolic blood pressure, and diastolic blood
pressure, 9.3, 3.9, and 1.6%, respectively, of phenotypic variance is
explained by G×E interactions and 27.4, 25.1, and 25.4% is
explained by the main genetic effects (Kerin and Marchini,
2020). Despite some differences in the proportions of
phenotypic variance, the reports mentioned above consistently
suggested that the G×E interaction effects are proportionately
smaller than the main genetic effects but were significant.
Notably, Kerin and Marchini. (2020) suggested that low-
frequency variants explain most of this phenotypic variance
explained by G×E interactions (Kerin and Marchini, 2020). For
asthma or related traits, such as hay fever and eczema, the
phenotypic variance explained byG×E interaction effects is unclear.

The development of childhood-onset (or early-onset) asthma
is often attributable to perinatal factors, atopy, viral respiratory-
tract infections, and the microbiome (Ortqvist et al., 2009;
Tedner et al., 2012; Arking et al., 2014; Lynch et al., 2017),
whereas adult-onset (or late-onset) asthma is more strongly
associated with obesity, smoking, and other environmental
and occupational exposures (Amelink et al., 2013; Ilmarinen
et al., 2015). Despite the lower genetic heritability of adult-onset

FIGURE 5 | Relevance of environmental factors in G×E interaction effects of three SNPs. (A) Graphs in the left show BF values per an environmental factor via
G×multiE interaction (StructLMM), whereas those in the right show p-values [−log10(P)] by G×singleE interaction analysis for 3SNPs. (B) Asthma prevalence was
visualized by heat maps, differentiated by alleles of three SNPs. p-values are the result of chi-squared test with p-values (*) of < 0.05 indicating significance.
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asthma (h2g = 10.6%) than of childhood-onset asthma (h2g =
25.6%) (Ferreira et al., 2019), the high prevalence of adult-onset
asthma suggests that environmental factors make a greater
contribution to the development of asthma in adults than in
childhood.

Functional annotations for the three novel loci suggest that
variations in these SNPs are involved in immunological pathways.
The SNP (rs117996675) near PC contains eQTLs such as RIN1
(whole blood), BRMS1 (stomach), and ACTN3 (skeletal muscle and
thyroid), which are all involved in immune system regulation. RIN1
(Ras and Rab interactor 1) is an RAS effector that binds to ABL1 and
BCR-ABL1, promoting the cytoskeletal remodeling properties of
ABL proteins and serves in part to regulate epithelial cell functions,
including adhesion andmigration (Hu et al., 2005). Interestingly, the
expression of ABL was upregulated in the airway tissues of a mouse
model of asthma and was associated with airway hyper-
responsiveness in patients with severe asthma (Hu et al., 2005;
Cleary et al., 2013). Our findings and previous studies indicate
that allelic variations in rs117996675 affect airway remodeling by
ABL through different expression of RIN1 in late-onset asthma.
BRMS1 (breast cancer metastasis suppressor 1) is associated with
nuclear factor kappa light chain enhancer of activated B cells (NF-
κB) that is highly related to inflammation and allergic diseases and
promotes immunity by controlling the expression of genes involved
in inflammation (Liu et al., 2006; Baker et al., 2011). The results from
patients with severe and moderate asthma suggest that NF-κB
protein is increased in several cell types of patients with asthma
compared to in healthy subjects (Gagliardo et al., 2003; Edwards
et al., 2009). This information supports that the regulation of RIN1
and BRMS1 is involved in the disease progression of asthma via
allelic variations in rs117996675.

Meanwhile, the ACTN3 locus (index SNP: rs540874, r2 = 0.03
for rs117996675) was reported as a significantly shared locus
(Pmeta = 4.09 × 10–9) by meta-analysis for cross-trait associations
between non-atopic asthma and BMI, indicating that our SNP
(rs117996675) interacts with BMI to affect asthma, likely through
ACTN3 (Zhu et al., 2020). Although no information was available
in the eQTL resource, PC (pyruvate carboxylase), containing
rs117996675 in its intron, has been established as an
important regulator of hepatic gluconeogenesis and
tricarboxylic acid cycle function (Kumashiro et al., 2013;
Cappel et al., 2019). Studies of animal models with loss-of-
function for PC demonstrated that the loss of hepatic PC
prevented insulin resistance and glucose intolerance, as well as
reduced plasma lipid concentrations during feeding of a high-fat
diet, suggesting an important contribution of hepatic PC to
hyperglycemia during obesity (Kumashiro et al., 2013; Cappel
et al., 2019). This information for the locus (rs117996675 in the
11q13.2) supports that BMI is a relevant effector on asthma, as
evidenced by the BF values.

For rs345749, we found its eQTL signal in the FMN1 locus in
the thyroid, pituitary, and esophageal mucosa. FMN1 has been
reported to play a role in forming the adherens junction and in the
polymerization of linear actin cables (Kobielak et al., 2004). FMN1
expression is often dysregulated in the immune system such as in
CD8 T-cells from pediatric patients with influenza-like illness or
monocytes from patients with tuberculosis-associated immune

reconstitution inflammatory syndrome, indicating its role in the
immunological pathway (Tran et al., 2014; Henrickson et al., 2018).
The polymorphism of rs345749 may be associated with the
immune system via regulation of FMN1 expression. The
findings from BF values of rs345749 suggest that insomnia and
alcohol intake frequency are the most relevant environments to
asthma. Insomnia (or sleep deprivation) and asthma are associated,
as 58% of patients with asthma reported impaired sleep quality
(Braido et al., 2021). A study of an allergic mouse model showed
that airway inflammation is more severe in allergic mice with sleep
deprivation than in mice with healthy sleep, and inflammation in
allergic mice with sleep deprivation is marked by an influx of
neutrophils (mainly) and eosinophils and secretion of IL-6, TNF-α,
and IL-17 compared to the eosinophilic inflammation and IL-4
production observed in allergic mice with healthy sleep (Nunes
et al., 2018). These reports support insomnia as a relevant
environmental interactor in asthma, although it remains
unknown how our SNP, rs345749, participates in this interaction.

The rs17704680 in the 16p12.1 has a weak pQTL signal with
TSLP (Sun et al., 2018). TSLP is a cytokine primarily expressed by
the airway epithelium and released in response to environmental
insults, inducing a range of downstream inflammatory processes
(Varricchi et al., 2018; Gauvreau et al., 2020). The expression of
TSLP is increased in the airways of patients with asthma
compared to in healthy individuals, and is correlated with
disease severity and lung function; polymorphisms in TSLP
are associated with asthma (Gauvreau et al., 2020). This data
indicates that regulation of TSLP via rs17704680 is involved in the
development or/and process of asthma.

In the interaction study, we found that for 2 SNPs (rs117996675
and rs17704680), BMI was the most relevant environment. Previous
association studies of obesity with asthma suggested that obesity-
associated asthma consists of two forms of severe asthma, one form
(late-onset) with a non-type 2 phenotype and the other form (early-
onset) with a variation of type 2 asthma, complicated by the
development of obesity (Dixon et al., 2010; Umetsu, 2017). These
reports suggest that different types of asthma develop depending on
the obesity status, supporting BMI as a possible interactor in asthma.

The strengths of the present interaction study are as follows: a
moderately large-sized sample, the robust power of StructLMM,
simultaneous incorporation of multiple factors, and prioritization
of relevant factors. Genome-wide interaction studies require a large
sample size to avoid false-positive findings and to detect small effect
sizes (Turner, 2017). For asthma or asthma-related traits, many
studies were underpowered in the sample size. Our current
interaction study includes the largest number of cases (N =
14,089) of late-onset asthma and controls (N = 139,706) evaluated
to date (Turner, 2017; Morales and Duffy, 2019). Despite this sample
size, G×singleE interaction analyses did not produce a genome-wide
significant signal, indicating that the power threshold for detecting
interactions was not reached. However, StructLMM yielded three
genome-wide significant loci for asthma that interact with up to seven
environmental factors, indicating a superior detection power of this
model compared with conventional genome-wide interaction
analysis via PLINK. Moore et al. (2019) proposed this structured
linear mixedmodel StructLMM to identify loci that interact with one
or more environments and demonstrated successful application of
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StructLMM to BMI in the UKB (252,188 individuals), where this
model validated previously known G×E interaction signals and
moreover produced genome-wide significance (p < 5.00 × 10–8)
for detecting novel interaction loci (Moore et al., 2019). Polimanti
et al. (2021) reported a strong association of lifetime polysubstance
dependence with lifetime suicidality and using StructLMM, identified
multivariate G×E interaction loci (LCAT, p = 1.82 × 10–7;TSNAXIP1,
p = 2.13 × 10–7;CENPT, p = 2.32 × 10–7; PARD6A, p = 5.57 × 10–7) of
suicidality that interact with 4 substance dependences such as opioid,
cocaine, nicotine, and polysubstance dependences (15,557 American
participants in the Yale-Penn cohort) (Polimanti et al., 2021). We
previously applied this StructLMM to BMI in 8,155 Korean samples
from the Korea Association Resource to evaluate interactions with
seven factors including alcohol consumption, education, income,
total calorie intake, protein intake, carbohydrate intake, and
smoking status (Jung et al., 2021). This previous study using
StructLMM identified genome-wide significant interaction loci
(rs2391331 in the EFNB2; p = 5.03 × 10–10) with BMI, and BF
analyses showed that six environmental factors, except for
carbohydrate intake, contributed to the interaction with this SNP
on BMI (Jung et al., 2021).

An advantage of this StructLMM is that it incorporates multiple
environments as additive, random effect components into an
interaction test. Therefore, StructLMM accounts for simultaneous
interactions between various environments and a trait. In this study,
we employed seven environmental factors previously shown to be
associated with asthma and were associated with asthma in the UKB
samples. By estimating the BF values, we prioritized environmental
factors for individual variants. For rs117996675, BMI was the most
relevant environment as evidenced by BF values of StructLMM and
by p-values of the G×singleE interaction. These results were partially
supported by functional and regional annotations such as its
associations with ACTN3 by eQTL and its location in the PC locus.

This study also had some limitations. First, the study was
based on a cross-sectional dataset, presenting the possibility of
reverse causality. To limit this design bias, we focused on late-
onset asthma (onset age of ≥16 years; mean onset age of
39.8 years) rather than on early-onset or total asthma. The
individuals included in this study were limited to 40–69 years
old. Moreover, the association directions between asthma and six
factors (BMI, insomnia, MET score, neuroticism score, time spent
watching TV, and TDI) correspond to the findings of previous
studies (Hedlund et al., 2006; Eijkemans et al., 2012; Meltzer et al.,
2014; Vancampfort et al., 2017; Kavanagh et al., 2018; Najjab
et al., 2020), suggesting reasonably acceptable associations.
Several studies have used disease outcomes from a cross-
sectional dataset for interaction analysis and derived important
results (Eze et al., 2016; Jia et al., 2021). Next, some environmental
data in the present study are from self-reported questionnaires
(e.g., alcohol intake frequency, insomnia, MET score, neuroticism
score, time spent watching TV, and TDI) that are prone to
responder bias (Rask-Andersen et al., 2017). Thus, the
presence of an interviewer is recommended to reduce the
likelihood of responder bias when obtaining self-reported
questionnaire data.

Next, the StructLMM is based on linear mixed models (LMM)
which are not designed to analyze binary traits and can have inflated

type I error rates, especially in the presence of unbalanced case-
control ratios. A score test called the generalized linear mixed model
(GLMM) has been developed to fit logistic regression of binary
traits.(Chen et al., 2016; Zhou et al., 2018). Unfortunately, we could
not adapt the StructLMMmethods into such GLMM-basedmethods
and are not aware of such reports yet. However, we found that there is
an acceptable common practice when using LMM-basedmethods for
binary traits. To avoid the type I error inflation, a recommended
practice is to remove rare variants (for example, MAF <0.01) and
phenotypes with highly unbalanced case-control ratios (for example,
<1:100).(Chen et al., 2016; Loh et al., 2018; Zhou et al., 2018; Jiang
et al., 2019; Jiang et al., 2021). For our study, the case-control ratio for
asthma was 1:10 that is considered a balanced binary trait and we
tested common variants withMAF >0.01 in white British individuals
of the UKB. Therefore, we suggest that StructLMM is still applicable
for binary traits such as asthma with some limitations.

Finally, we attempted two sets of replications using Europeans
that were unused in the discovery set and East Asian samples.
Interestingly, rs17704680 showed a nominally significant
G×multiE interaction in both replication samples. Moreover,
in the replication set of European samples, the best BF factor
for rs17704680 was attributed to BMI, consistently supporting the
discovery result of European samples. However, because of the
limited availability of the factors surveyed in East Asian samples,
we used only 4 environmental factors and replaced 2 of these
factors with similar factors (neuroticism score by PWI; TDI by
total household income). Thus, the results obtained for East Asian
samples may not strongly support these interactions. Therefore,
our findings imply that the replication for G×multiE interactions
may require the homogeneity between the replication sample and
the discovery sample regarding environmental factors and allele
frequencies. Hence, further validation is warranted using another
asthma cohort.

In conclusion, we identified three novel, genome-wide
interaction signals in late-onset asthma that interact with up
to seven environmental factors. These three loci are associated
with immune system regulation; additionally, rs117996675 may
primarily interact with BMI to affect late-onset asthma. Although
further confirmation is needed, our findings improve the
understanding of the role of the immune system and genetic
interactions with environmental exposures in late-onset asthma
and may be applied in precision treatment of asthma.
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