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Abstract: Aroma and other physicochemical parameters are important attributes influencing con-
sumer perception and acceptance of rice. However, current methods using multiple instruments
and laboratory analysis make these assessments costly and time-consuming. Therefore, this study
aimed to assess rice quality traits of 17 commercial rice types using a low-cost electronic nose and
portable near-infrared spectrometer coupled with machine learning (ML). Specifically, artificial neural
networks (ANN) were used to classify the type of rice and predict rice quality traits (aromas, color,
texture, and pH of cooked rice) as targets. The ML models developed showed that the chemometrics
obtained from both sensor technologies successfully classified the rice (Model 1: 98.7%; Model 2:
98.6%) and predicted the peak area of aromas obtained by gas chromatography-mass spectroscopy
found in raw (Model 3: R = 0.95; Model 6: R = 0.95) and cooked rice (Model 4: R = 0.98; Model 7:
R = 0.96). Furthermore, a high R = 0.98 was obtained for Model 5 to estimate the color, texture, and
pH of cooked rice. The proposed method is rapid, low-cost, reliable, and may help the rice industry
increase high-quality rice production and accelerate the adoption of digital technologies and artificial
intelligence to support the rice value chain.

Keywords: rice aroma; near-infrared; electronic nose; artificial neural networks; machine learning

1. Introduction

Rice is one of the primary energy sources with a high nutritional value from fiber, min-
erals, proteins, vitamins, and antioxidants. It has been consumed as a staple food for more
than half of the world’s population. According to Shahbandeh [1], Asian countries are the
major rice consumers, China being the highest (154.9 million metric tons; MMT), followed
by India (103.5 MMT), Vietnam (73.3 MMT), Bangladesh (36.7 MMT), and Indonesia (35.6
MMT). In recent years, it was observed that the growth in socioeconomic status in Asia and
developing countries caused an increasing demand for rice associated with high-quality
traits defined by the consumers [2–4]. Therefore, improving rice quality traits is vital to
ensure high acceptability among consumers.

There are diverse types of rice available in the market, mainly produced to suit
consumer preferences and intended cooking dishes. The diversity in rice quality may be
related to the rice cultivar, cultivation practices, postharvest and milling process, storage
condition, and cooking method. Aroma and texture are two important quality traits, as they
may influence the market value and become the driving factors in consumer preferences
for rice [5,6]. Maleki et al. [6] showed that the liking factor among regular rice consumers
for cooked rice using different rice-to-water ratios was divided by their preference for fluffy
or sticky texture. Besides the cooking method, amylose content in rice may also influence
the rice texture, shown by the significant positive correlations between apparent amylose
content and rapid visco-analyzer (RVA) pasting viscosity properties [7]. A detailed study
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conducted by Li et al. [8] showed that the hardness of cooked rice increased in rice cultivars
that had intermediate to high amylose content. The authors suggested that it was due to
the small size of amylose molecules and higher proportions of amylose branches found in
the cultivars.

The aromatic rice cultivars such as Basmati and Jasmine rice have a higher market
value and preference among rice consumers than nonaromatic rice [9,10]. More than
300 volatile compounds have been found in aromatic rice cultivars [11]. Among them,
2-acetyl-1-pyrroline (2AP) is well-known as one of the key volatile aromatic compounds
associated with popcorn or nutty aroma [9,12]. Besides 2-AP, Setyaningsih et al. [13]
reported pentanal, hexanal, 2-pentyl-furan, 2,4-nonadienal, pyridine, 1-octen-3-ol, and (E)-
2-octenal as the key markers for volatile aromatic compounds that are able to discriminate
between aromatic and nonaromatic rice. Sansenya et al. [14] found that although major
volatile aromatic compounds were detected in both aromatic and nonaromatic rice, higher
concentration levels were observed in the aromatic rice. Likewise, the volatiles in raw
and cooked rice with different degrees of milling were significantly different [15]. The
latter study showed that the abundance of volatile aromatic compounds found at various
concentrations forms the aroma fingerprinting, which has great potential for developing a
rapid analysis method to assess rice quality traits.

Different techniques have been used to assess rice quality traits. For example, for
the aroma profile of rice, the gas chromatography-mass spectrometry (GC-MS) technique
and descriptive sensory analysis have been used [12,16–18]. The rice texture profile is
usually analyzed using the RVA and texture analyzer [7,19]. Additionally, most quality
traits related to the physicochemical properties of rice are measured separately using
different instruments and analysis techniques, as shown by Xia et al. [20]. However, these
approaches are costly, time-consuming, and tedious. Therefore, the development of a
simplified method that is robust, portable, rapid, low-cost, and appropriate to analyze
different types of rice simultaneously could be very important for potential application in
the rice industry.

Electric noses (e-noses) are devices consisting of sensor arrays that are sensitive to
volatile compounds, which can mimic the human olfactory system [21]. The sensors
are exposed to detect the aroma profile, yielding specific volatile organic compounds
(VOC) [22]. Several studies have developed or utilized commercial e-nose sensors in
food and beverages, showing their potential as a promising tool for quality assessment
to distinguish VOC and aroma profiles. For example, the application of e-noses has been
recently reported, such as in rice [23,24], coffee [25], beer and wine [26,27], broccoli [28],
apples [29], beef and pork [30,31], rapeseed [32,33], wheat bread [34], cucumbers [35], and
basil [36]. On the other hand, near-infrared (NIR) spectroscopy is a rapid screening tool
used to evaluate chemical and physical substances based on the interaction between the
organic material and the lights ranging, for example, between 750 and 2500 nm in the
electromagnetic region [37,38]. The technique offers feature information on the C-H, N-H,
and O-H vibration bonds that determine the NIR spectra fingerprinting of the organic
substances and VOC [39], for which the absorbance values are further correlated with
the concentration of the sample [40]. This technique has been used in different studies of
the food, beverage, and grain industry, including rice [41], tea [42], sugar [43], beer [27],
wine [26], coffee [25], and cassava [44]. However, a limited number of studies are available
on the application of e-nose and NIR spectroscopy techniques focused on developing rapid
methods using low-cost and portable sensing tools, especially for the rice industry.

Machine learning is a reliable and promising modeling tool that has been used for
the prediction and automation of tasks in many industries, including medical [45], oil and
gas [46], manufacturing [47], automotive [48], agriculture [49], and food [50]. Some specific
applications of machine learning in the agriculture and food industries are on grapes [51],
wine [52,53], beer [54,55], honey [56], and coffee [25], among others. According to previ-
ous studies, the application of sensors technology combined with machine learning has
demonstrated that this technique efficiently produces high accuracy and robust prediction
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models [26,57–59]. Moreover, compared to other supervised machine learning algorithms,
ANNs have been commonly used in agriculture and food studies due to their ability to
predict non-linear relationships between inputs and targets [49,60].

This study aimed to evaluate the use of a handheld NIR spectrometer and a low-cost e-
nose device designed and developed by the Digital Agriculture, Food and Wine group from
The University of Melbourne (DAFW-UoM) [61] paired with machine learning modeling
to classify 17 types of commercial rice (Models 1 and 2) and predict the peak area of rice
aromas (Models 3, 4, 6 and 7) and other physicochemical parameters (Model 5). The study
provided new insight into measuring the VOC from cooked and uncooked rice samples
obtained using a low-cost e-nose for simultaneous qualitative and quantitative analysis of
rice quality traits. This approach may benefit the rice industry to perform on-site quality
screening, monitoring, inspection, and authentication using the reliable, non-destructive,
low-cost, and rapid method.

2. Materials and Methods
2.1. Samples Preparation

In this study, 17 types of commercial rice consisting of polished and unpolished rice
were purchased from local markets in Australia (Table 1). The rice was stored in its original
packaging at room temperature until used for experiments. Before cooking, the rice samples
were washed and strained with tap water three times. The amount of water was added
to the rice according to the recommended ratio provided on the packaging with slight
modification after pre-cook testing (Table 1). The rice was cooked using the steam cooking
mode in a combi steamer oven (Convotherm 4 easyDial 6.10 GS, Welbilt Deutschland
GmbH, Eglfing, Germany). After cooking, six cooked rice kernels were drawn from the
samples to test the cooked rice. Two transparent plastic plates were used to press the rice
kernels between the plates, and the rice was considered fully cooked if no white core was
observed. This step is important to ensure the rice samples were thoroughly cooked before
fluffing the rice with a fork and cooling it to room temperature.

Table 1. Details of commercial rice samples used in the study, including class ID, product category,
type, brandabbreviation, rice-to-water ratio, and cooking time. Abbreviations: v: volume.

Class ID Product
Category Type Brands Abbreviation Rice-to-Water

Ratio (v/v)
Cooking Time

(min)

1

White rice
(Polished rice)

Khoshihikari a SunRice KHO 1:1 1/2 25

2 Sushi rice a SunRice SRS 1:1 1/2 25

3 Bomba a La Perla BMB 1:2 25

4 Calasparra a Cooperativa del
Campo CLP 1:2 25

5 Arborio b Woolworths ARB 1:2 25

6 Calrose b SunRice CLS 1:1 1/2 25

7 Long grain c Woolworths LGW 1:1 1/2 25

8 Jasmine c SunRice JSR 1:1 1/2 25

9 Jasmine-organic c Macro JOM 1:1 1/2 25

10 Basmati c Riviana BSR 1:1 1/3 25

11 Basmati c SunRice BSS 1:1 1/3 25
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Table 1. Cont.

Class ID Product
Category Type Brands Abbreviation Rice-to-Water

Ratio (v/v)
Cooking Time

(min)

12

Whole grain rice
(Unpolished rice)

Biodynamic rice b Honest to
Goodness BDM 1:1 2/3 55

13 Medium grain b SunRice MGB 1:1 2/3 55

14 Medium
grain—organic b Macro MOB 1:1 2/3 55

15 Doongara c SunRice DGR 1:1 2/3 55

16 Black rice c SunRice BKR 1:1 1/2 60

17 Wild
rice—organic c

Honest to
Goodness WRO 1:1 1/3 60

a short grain; b medium grain; c long grain.

2.2. Near-Infrared Spectroscopy and Electronic Nose Measurements

Triplicate samples of raw rice were used to obtain the NIR absorbance value (1596–2396 nm)
at every 7 to 9 nm interval using the microPHAZIR™ RX Analyzer (Thermo Fisher Scientific,
Waltham, MA, USA). Calibration was conducted before the first scanning and repeated
after about 10–15 scans using a standard white reference provided by the manufacturer.
The measurement was obtained using a sample holder attached to the top of the scanning
area to avoid environmental noise, and the samples were poured into the holder. The NIR
measurements were obtained three times per replicate for each sample. The NIR absorbance
values were transformed using the first derivative of the Savitsky–Golay method with
polynomial order two in The Unscrambler X version 10.3 (CAMO Software, Oslo, Norway).

A total of 60 g of raw rice samples was transferred into a 500 mL glass beaker to
obtain the e-nose sensor readings (Supplementary Materials Figure S1) in triplicates. The
e-nose sensor used in the study is portable and was developed by the DAFW-UoM using
low-cost materials [61]. It consists of nine sensors (Henan Hanwei Electronics Co., Ltd.,
China) sensitive to different gases (Table 2). This e-nose has holes between each gas sensor
to avoid any oversaturation from volatiles and avoid moisture accumulation. Calibration
procedures were performed between each measurement for about 20 s to let the sensors
reach the baseline reading before taking the new measurement. The sensors were exposed
to the rice samples for one minute to obtain a stable sensor reading from the peak values.
The outputs are given in volts and were analyzed using a supervised code in Matlab 2021a
(Mathworks Inc., Natick, MA, USA) to detect the stable signals from the sensor readings,
followed by ten equidistant subdivisions to obtain ten mean value readings per sensor [25].
The same procedure was repeated for cooked rice samples to obtain the e-nose sensor
readings for the 17 rice samples.

Table 2. Gas sensors integrated into the electronic nose and gases they are most sensitive.

Sensor Name Gases

MQ3 Alcohol

MQ4 Methene

MQ7 Carbon monoxide

MQ8 Hydrogen

MQ135 Ammonia, alcohol, benzene

MQ136 Hydrogen sulfide

MQ137 Ammonia

MQ138 Benzene, alcohol, ammonia

MG811 Carbon dioxide
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2.3. Gas Chromatography-Mass Selective Detector Analysis

A gas-chromatography with mass-selective detector 5977B (GC-MSD; Agilent Tech-
nologies, Inc., Santa Clara, CA, USA) equipped with an autosampler system PAL3 (CTC
Analytics AG, Zwingen, Switzerland) was used to analyze the volatile aromatic compounds
of the rice in duplicate samples. Helium was used as the gas carrier at a 1 mL min−1 flow
rate. The raw (4 g) and cooked (3 g) rice samples were weighed and put into 20 mL
screw-top vials with magnetic caps. The headspace method was used for extraction, and
the samples were heated with agitation at 80 ◦C for 30 min to allow the rice to release
the volatile aromatic compounds in the headspace of the vials, followed by the extraction
using divinylbenzene–carboxen–polydimethylsiloxane (DVB–CAR–PDMS) 1.1 mm grey
solid-phase microextraction (SPME) fiber [62,63] to penetrate the headspace of the vial to
absorb the volatiles for 60 min under 80 ◦C with agitation.

An HP-5MS (Agilent Technologies, Inc.; 30 m × 0.25 mm × 0.25 µm) column was
used in the analysis; this column was selected considering other studies of rice and rice
bran [64–66]. The SPME fiber was desorbed in the injector at 250 ◦C for 5 min using the
splitless mode. The inlet temperature was set at 250 ◦C. The GC oven temperature was
programmed as follows: initial temperature of 40 ◦C for 3 min; then increased to 100 ◦C
at 5 ◦C min−1 and held for 3 min; and ramping to 250 ◦C at 10 ◦C min−1 and held for
4 min. A blank sample was placed at the start and between raw and cooked rice samples
to prevent the carryover effect. The volatile aromatic compounds were matched with the
National Institute of Standards and Technology (NIST; National Institute of Standards and
Technology, Gaithersburg, MD, USA) library. Only identified compounds greater than
80% certainty are reported in this study. Additionally, compounds with a low relative
abundance identified in less than three rice samples were omitted.

2.4. Colour, pH, and Texture Measurement

The physicochemical quality of the cooked rice was measured to obtain the color,
texture, and pH of samples in triplicates. The Nix Pro color sensor (illuminant: D65,
observer angle: 10◦; Nix Sensor Ltd., Hamilton, ON, Canada) was used to determine the L
(lightness), a (red/green), and b (blue/yellow) color components of the cooked rice samples.
Additionally, a pH meter, CT-6021A (Shenzhen Ke Dida Electronics Co., Ltd., Shenzhen,
China), was used to determine the pH of the cooked rice samples. An amount of water
was added to the sample (4 g) and mashed to form a slurry solution before measuring the
pH. Ten grams of cooked rice samples were used to determine the rice texture (T) using a
digital penetrometer (GY-4, China) equipped with an 8 mm diameter cylindrical probe to
obtain the hardness of the rice.

2.5. Statistical Analysis and Machine Learning Modelling

Two matrices were developed using only the significant correlations (p < 0.05) between
(i) the peak area of volatile aromatic compounds using GC-MS and e-nose sensor outputs
for raw rice and (ii) the volatile aromatic compounds using GC-MS and e-nose, color,
texture, and pH of cooked rice.

Seven machine learning models were developed by testing 17 algorithms of artificial
neural network (ANN) pattern recognition in Matlab 2021a using a code developed by
the DAFW-UoM [67] to find the algorithm with the best accuracy and performance with
no signs of under- and overfitting, followed by a neuron trimming test (ten, seven, five,
and three neurons). Pattern recognition models of ANN were developed to classify the
17 commercial rice types according to their specific types, as described in Table 1. Figure 1
shows the diagram of the models used in the study to classify the rice using as inputs the
first derivative of raw rice NIR absorbance values (Model 1) and the e-nose outputs of raw
rice (Model 2). The Bayesian regularization (BR) algorithm was selected for these models.
It had the highest accuracy with the lowest mean squared error (MSE) using 70% training
and 30% testing with random data division.
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Figure 1. Classification models developed using (a) the first derivative of NIR absorbance values as
inputs (Model 1) and (b) electronic nose sensors’ data as inputs (Model 2) to classify the 17 types of
commercial rice. A description of the electronic nose sensors can be found in Table 2.

On the other hand, ANN regression models were used to predict the aromas and
other physicochemical parameters (color, texture, and pH) of the rice, as shown in Figure 2.
Models 3 and 4 were developed using the first derivative of NIR spectra obtained from
the raw rice as inputs to predict the abundance of volatile aromatic compounds in raw
and cooked rice samples, whereas Model 5 was constructed using the raw rice NIR inputs
to predict the color, texture, and pH of the cooked rice. Based on the optimization, the
BR algorithm was used to develop Models 3 and 4 using random data division with
70% for training and 30% for testing, whereas Model 5 was developed using a conjugate
gradient with the Powell–Beale restarts (CGB) algorithm with a random data division
of 60% training, 20% validation, and 20% testing. The e-nose readings of raw rice were
used as inputs to predict the peak area of volatile aromatic compounds in raw (Model
6) and cooked (Model 7) rice samples. The BR (random data division: 70% training and
30% testing) and Levenberg–Marquardt (LM; random data division: 70% training, 15%
validation, and 15% testing) algorithms were used to develop Models 6 and 7, respectively.

The time required to train these ANN models depends on the characteristics of the
specific computer used and the number of cores. The development of models from parame-
ter engineering and testing of different machine learning algorithms, once all of the data
are collected, can be around 2–4 h, depending on the number of models and the amount of
data used. However, this process is not relevant for the deployment of the models, which
can be in near-real-time. The process of the practical application of the proposed methods
consists of (i) obtaining the sample, (ii) measuring with the e-nose or NIR device, and (iii)
automated analysis with the machine learning model deployment. The time for this process
is less than a second per sample.
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Figure 2. Regression models developed using the (a) first derivative of NIR absorbance values
to estimate the aromas (Models 3 and 4) and (b) physicochemical quality (Model 5) of rice, and
(c) electronic nose sensors’ data as inputs to estimate rice aromas (Models 6 and 7). A description of
the electronic nose sensors can be found in Table 2.

3. Results and Discussion

Figure 3a shows the significant correlations (p < 0.05) between e-nose outputs and
volatile aromatic compounds found in raw rice samples. Among all e-nose sensors, MQ3
had the highest incidence of significant correlations with other variables. There were
significant positive correlations between MQ3 and MQ7 (r = 0.58), MQ8 (r = 0.56), MQ135
(r = 0.71), MQ137 (r = 0.88), MQ138 (r = 0.78), MG118 (r = 0.51), and volatile aromatic com-
pounds such as hexanoic acid (C5, r = 0.57), valeric anhydride (C8, r = 0.62), nonanal (C10,
r = 0.49), octanoic acid (C16, r = 0.62), and benzene, 1,4-diethoxy (C23, r = 0.51). Addition-
ally, it can be observed that MQ137 was positively correlated with valeric anhydride (C8,
nonanal (C10, r = 0.49), and octanoic acid (C16, r = 0.62). Both nonanal and octanoic acid are
associated with a waxy and fatty aroma [68]. Interestingly, positive correlations that have
been reported between gas sensors and volatile aromatic compounds related to rice aging
and yellowing processes, such as hexanoic acid, octanoic acid, and nonanal [18,69–71],
were identified in the present study. This shows that the outputs obtained from the e-nose
used in this study have great potential as a low-cost alternative tool for rice quality traits
assessment and monitoring applications.
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Figure 3. Significant correlations (p < 0.05) between the (a) electronic nose sensors’ outputs obtained
from raw rice samples with volatile aromatic compounds detected in the raw rice and (b) electronic
nose sensors’ outputs obtained from cooked rice samples with volatile aromatic compounds, color,
texture, and pH of the cooked rice.
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Figure 3b shows the significant correlations (p < 0.05) between the e-nose outputs
obtained from cooked rice samples with the volatile aromatic compounds, color, texture,
and pH of the cooked rice samples. It was observed that the volatile compounds that
belong to the esters group had a significant positive correlation with some of the e-nose
sensors’ outputs. Dodecanoic acid, ethyl ester (C38) was positively correlated with MQ3
(r = 0.93), MQ4 (r = 0.87), MQ7 (r = 0.94), MQ8 (r = 0.74), MQ136 (r = 0.73), and MG811
(r = 0.87). Meanwhile, hexadecanoic acid, methyl ester (C39) was positively correlated with
MQ135 (r = 0.83), MQ137 (r = 0.69), and MQ138 (r = 0.65). Dodecanoic acid, ethyl ester, is
associated with sweet, waxy, floral, soapy, and clean aromas, whereas waxy and creamy
are used to describe the aromas of hexadecanoic acid and methyl ester [68]. Additionally,
it was observed that the lightness (L) of the cooked rice was negatively correlated with
benzaldehyde (C2, r = −0.66), furan, 2-pentyl- (C4, r = −0.50), and 2,4-decadienal,(E,E) (C37,
r = −0.95). This could be associated with the high abundance of the aforementioned volatile
aromatic compounds detected in pigmented rice samples, such as the wild rice (WRO),
which had lower L values than the other types of rice [16,72]. Even though some significant
correlations were observed between e-nose outputs of cooked rice and volatile compounds
detected in cooked rice samples, it will be convenient to develop a method to assess cooked
rice quality traits using the raw rice samples to avoid tedious sample preparation and
destructive analysis. Additionally, previous studies showed promising potential through
emerging trends of using sensor technology combined with the chemometrics technique to
indirectly assess cooked rice quality traits using raw rice samples [73–75].

Table 3 shows the statistical results of the pattern recognition models developed to
classify 17 types of commercial rice using the ANN algorithms based on the first derivative
of NIR absorbances (Model 1) and e-nose readings (Model 2) as inputs. All of the classi-
fication models had high accuracy in all three stages of training, validation, and testing.
The accuracies for Models 1 and 2 were high and similar (98.7% and 98.6%, respectively).
Additionally, the MSE values were low, and the training had lower MSE than the testing
stage, showing that the models had no sign of under- or overfitting. Figure 4 shows the
overall receiver operating characteristics (ROC) curves of the classification models. From
the figure, it can be observed that all of the 17 types of rice were close to the true positive
rate on the vertical axis, showing that the models have high sensitivity to classify the rice
samples with respect to the 17 types of rice.

Table 3. Statistical results of Model 1 and Model 2 developed based on artificial neural network
pattern recognition. Abbreviations: BR: Bayesian regularization; MSE: mean squared error; e-nose:
electronic nose; NIR: near-infrared.

Algorithm Stages Samples Accuracy (%) Error (%) Performance
(MSE)

Model 1 (Inputs: NIR absorbance of raw rice; targets: 17 types of rice)

BR
7 neurons

Training 107 100 0.0 <0.001
Testing 46 95.7 4.3 0.003
Overall 153 98.7 1.3 −

Model 2 (Inputs: E-nose outputs of raw rice; targets: 17 types of rice)

BR
10 neurons

Training 357 100 0.0 <0.001
Testing 153 95.4 4.6 0.005
Overall 510 98.6 1.4 −
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positive rates for (a) Model 1 and (b) Model 2 to classify 17 types of rice samples.

The statistical results of the regression models developed using the ANN algorithm to
predict the aroma and physicochemical qualities of the rice based on the first derivative
of NIR absorbance values (Model 3–Model 5) and e-nose outputs (Model 6 and Model 7)
are shown in Table 4. Overall, all models had high accuracy, denoted by the correlation
coefficient (R) values presented in the table. Model 3 and Model 4 developed using the BR
algorithm showed high overall accuracy (Model 3: R = 0.95; Model 4: R = 0.98). Moreover,
the MSE values for both models at the training stage (Model 3: MSE = 1.47 × 108; Model 4:
MSE = 2.22 × 107) were lower than at the testing stage (Model 3: MSE = 1.23 × 1010;
Model 4: MSE = 2.54 × 109), showing the best fit models. Model 5, when predicting the
color, texture, and pH of the cooked rice, showed high overall accuracy, at R = 0.96. Lower
MSE values for training (MSE = 0.01) compared with the validation (MSE = 0.07) and
testing (MSE = 0.08) stages and the latter two being similar confirm no signs of under- or
overfitting.

Table 4. Statistical results of the artificial neural network regression models developed using the
first derivative of near-infrared absorbances (Model 3–Model 5) and electronic nose measurements
(Model 6 and Model 7) as inputs to predict rice quality. Abbreviations: BR: Bayesian regularization;
CGB: conjugate gradient with Powell–Beale restarts; LM: Levenberg–Marquardt; R: correlation
coefficient; MSE: mean squared error; e-nose: electronic nose; NIR: near-infrared.

Algorithm Stages Samples Observations
(Samples × Targets) R Slope Performance

(MSE)

Model 3 (Inputs: raw rice NIR; targets: raw rice aroma)

BR Training 107 3531 1.00 1.00 1.47 × 108

10 neurons Testing 46 1518 0.85 0.91 1.23 × 1010

Overall 153 5049 0.95 0.97 −
Model 4 (Inputs: raw rice NIR; targets: cooked rice aroma)

BR Training 107 1070 0.99 1.00 2.22 × 107

7 neurons Testing 46 460 0.92 0.98 2.54 × 109

Overall 153 1530 0.98 0.99 −
Model 5 (Inputs: raw rice NIR; targets: cooked rice physicochemical quality)

Training 91 455 0.99 0.98 0.01
CGB Validation 31 155 0.93 0.89 0.07

10 neurons Testing 31 155 0.90 0.88 0.08
Overall 153 765 0.96 0.94 −
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Table 4. Cont.

Algorithm Stages Samples Observations
(Samples × Targets) R Slope Performance

(MSE)

Model 6 (Inputs: raw rice e-nose; targets: raw rice aroma)

Training 356 11,748 0.95 0.90 3.37 × 109

LM Validation 77 2541 0.95 0.92 3.47 × 109

10 neurons Testing 77 2541 0.93 0.87 5.15 × 109

Overall 510 16,830 0.95 0.90 −
Model 7 (Inputs: raw rice e-nose; targets: cooked rice aroma)

BR Training 357 3570 0.98 0.97 5.77 × 108

10 neurons Testing 153 1530 0.92 0.95 3.43 × 109

Overall 510 5100 0.96 0.96 −

The ANN regression Models 6 and 7 were developed using e-nose measurements
to predict the raw and cooked rice aromas, respectively. Model 6 showed high overall
accuracy (R = 0.95) and showed no overfitting signs, having a lower MSE value for training
(3.37 × 109) compared to validation (MSE = 3.47 × 109) and testing (MSE = 5.15 × 109).
Additionally, Model 7 had high overall accuracy (R = 0.96) with training and testing MSE
values of 5.77 × 108 and 3.43 × 109, respectively, showing that the MSE value for training
was lower than the testing stage.

Figure 5 shows the overall regression models used to predict the aroma (Models 3 and
4; Models 6 and 7) and color, texture, and pH (Model 5) of the rice. The accuracy for the
regression models developed using the first derivatives of NIR absorbance values (Model
3–5) and e-nose readings (Models 6 and 7) as inputs were high, with the R values of the
models ranging between 0.95 and 0.98. These results are in agreement with previous studies,
which obtained high accuracy predictions using ANN algorithms in food and beverages
research areas, such as in coffee aroma assessment [25], mold growth prediction [76], and
mulberry fruit grading [77]. It should be noted that Model 4, Model 5, and Model 7 are valid
to predict the cooked rice quality traits using the standard method specified in Section 2. It
is because different cooking procedures may affect the cooked rice quality, as suggested in
previous studies by Maleki et al. [6], Fracassetti et al. [78], and Krongworakul et al. [79].

Following the present results, previous studies have shown that the chemometrics of
rice obtained from low-cost sensors have been successfully applied to monitor rice quality.
For example, Arjharn et al. [80] used the e-nose developed by the research team from the
Agricultural Engineering Laboratory of Chiang Mai University to detect rancidity and
insect infestation in brown rice during storage. The authors used the e-nose readings
coupled with partial least square-discriminant analysis (PLS-DA) to classify the brown rice
samples according to the normal, rancid, and infested rice groups. However, the study
would have been more complete if it had included different levels of rancidity and severity
of insect infestation over time to assess the sensitivity of the e-nose system. Furthermore,
findings from this study supported previous studies that applied chemical and aroma
fingerprinting for food authentication to detect food fraud [81–83].

The application of NIR absorbance values obtained in this study showed superior
accuracy in predicting the physicochemical quality of the rice using the ANN modeling than
those reported by Onmankhong and Sirisomboon [74]. The authors used the absorbance
values measured using a Fourier transform NIR (FT-NIR) spectrometer coupled with the
PSLR model to predict the hardness (coefficient of determination, R2 = 0.70) and toughness
(R2 = 0.66) of cooked parboiled rice. However, the moderate accuracy of PLSR models
indicated a weak predictive ability to estimate the rice quality adequately [84]. In another
study, Sampaio et al. [60] compared the ability of multiple linear regression (MLP) and ANN
to predict the biochemical composition and pasting parameters of rice. The authors found
that the ANN (R2 = 0.97–0.99) presented a higher determination coefficient than the MLP
(R2 = 0.27–0.96), showing the ability of ANN to produce a higher accuracy model. Moreover,
one of the advantages of using ANN is that the model can perform multi-target prediction,
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while other machine learning methods are single-target [85,86]. Since NIR spectra can be
used to predict multiple quality traits, the ANN model may provide a greater advantage to
obtain simultaneous predictions of rice quality traits. The fact that 17 types of rice were
included in this study helps generate a more general machine learning model that can be
applied to classify various types of rice available in the market. This includes the types of
rice from similar cultivars, subspecies (e.g., japonica and indica), and origin.
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Figure 5. The overall correlation of the regression ANN models developed to predict rice aroma
and physicochemical quality for (a) Model 3; inputs: first derivative of NIR absorbance; targets:
raw rice aroma, (b) Model 4; inputs: first derivative of NIR absorbance; targets: cooked rice aroma,
(c) Model 5; inputs: first derivative of NIR absorbance; targets: cooked rice physicochemical quality,
(d) Model 6; inputs: e-nose outputs; targets: raw rice aroma, and (e) Model 7; inputs: e-nose outputs;
targets: cooked rice aroma.

Although previous studies had contributed to applying chemical and aroma finger-
printing in assessing rice quality traits, this study presents the feasibility of using low-cost
sensors to assess rice quality traits based on qualitative and quantitative techniques. These
findings suggested that the chemical fingerprinting of rice obtained using the handheld
NIR spectrometer may be used to classify different types of rice and predict the aroma
and physicochemical parameters of the rice. Moreover, the aroma fingerprints obtained
from the e-nose sensors have great possibilities to be utilized as a reliable, low-cost alterna-
tive for rice aroma profiling and quality monitoring since the sensor can be miniaturized
and installed in rice processing facilities. The method proposed in the study has some
advantages in avoiding tedious sample preparation and saving time for routine inspection
to assess cooked rice quality traits under similar cooking procedures. Furthermore, the
proposed method may also reduce the requirement to run multiple analytical tests to assess
various rice quality traits at every routine inspection (e.g., texture analyzer to determine
the cooked rice texture, GC-MS analysis to determine the relative abundance of rice aroma,
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and other physicochemical tests). In further studies, the use of chemical fingerprinting
obtained from low-cost and portable tools could be a means of a high-throughput and
non-invasive approach for on-site quality inspection. This will also provide a promising
solution to prevent destructive testing while obtaining the sample data. Further research
should include other quality traits such as biochemical (starch, amylose, fat, and protein)
data and sensory quality to assess the association between rice quality traits and consumer
preferences.

4. Conclusions

This study set out to assess rice quality using chemical and aroma fingerprinting
obtained from a handheld NIR spectrometer and low-cost e-nose sensors combined with
machine learning modeling. The study has shown that the high overall accuracy of the
machine learning models is robust in assessing rice quality traits. The findings suggest
that the method presented in the study may allow qualitative and quantitative rice quality
monitoring at a lower cost than the conventional method. The results add to the expanding
application of artificial intelligence among rice producers and the government authority to
monitor and assess rice quality at a reasonable price and rapidly. Further research could
explore the potential application of chemical and aroma fingerprinting to predict consumer
preferences concerning the various qualities of rice available in the market.
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