
J Pathol Inform Editor‑in‑Chief:
Anil V. Parwani , Liron Pantanowitz,
Columbus, OH, USA Pittsburgh, PA, USA

OPEN ACCESS
HTML format

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

© 2016 Journal of Pathology Informatics | Published by Wolters Kluwer ‑ Medknow

Technical Note

The growing need for microservices in bioinformatics

Christopher L. Williams1, Jeffrey C. Sica1, Robert T. Killen1, Ulysses G. J. Balis1

1Department of Pathology, Division of Informatics, University of Michigan, Ann Arbor, MI, USA

E‑mail: *Dr. Ulysses G. J. Balis ‑ ulysses@med.umich.edu
*Corresponding author

Received: 16 January 2016 Accepted: 16 August 2016 Published: 29 November 2016

Abstract

Objective: Within the information technology (IT) industry, best practices and standards
are constantly evolving and being refined. In contrast, computer technology utilized within
the healthcare industry often evolves at a glacial pace, with reduced opportunities for
justified innovation. Although the use of timely technology refreshes within an enterprise’s
overall technology stack can be costly, thoughtful adoption of select technologies with a
demonstrated return on investment can be very effective in increasing productivity and at
the same time, reducing the burden of maintenance often associated with older and legacy
systems. In this brief technical communication, we introduce the concept of microservices as
applied to the ecosystem of data analysis pipelines. Microservice architecture is a framework
for dividing complex systems into easily managed parts. Each individual service is limited in
functional scope, thereby conferring a higher measure of functional isolation and reliability to
the collective solution. Moreover, maintenance challenges are greatly simplified by virtue of
the reduced architectural complexity of each constitutive module. This fact notwithstanding,
rendered overall solutions utilizing a microservices‑based approach provide equal or
greater levels of functionality as compared to conventional programming approaches.
Bioinformatics, with its ever‑increasing demand for performance and new testing algorithms,
is the perfect use‑case for such a solution. Moreover, if promulgated within the greater
development community as an open‑source solution, such an approach holds potential to be
transformative to current bioinformatics software development. Context: Bioinformatics
relies on nimble IT framework which can adapt to changing requirements. Aims: To present
a well‑established software design and deployment strategy as a solution for current
challenges within bioinformatics Conclusions: Use of the microservices framework is an
effective methodology for the fabrication and implementation of reliable and innovative
software, made possible in a highly collaborative setting.

Key words: Bioinformatics, crowd sourcing, defect analysis, failure mode analysis,
information technology, microservices, pathology, reliability engineering, software
engineering

INTRODUCTION

The modern software ecosystem is rapidly changing. The
emergence of cloud computing has spurred developers
to compartmentalize applications into small, easily
maintainable functional units that can be replicated on
demand. This application segmentation is commonly

Access this article online
Website:
www.jpathinformatics.org

DOI: 10.4103/2153‑3539.194835

Quick Response Code:

This article may be cited as:
Williams CL, Sica JC, Killen RT, Balis UG. The growing need for microservices in
bioinformatics. J Pathol Inform 2016;7:45.

Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2016/7/1/45/194835

This is an open access article distributed under the terms of the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix,
tweak, and build upon the work non-commercially, as long as the author is credited
and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

J Pathol Inform 2016, 1:45 http://www.jpathinformatics.org/content/7/1/45

referred to as microservices (or microservice architecture).
The enabling technology for microservices was first
introduced into the UNIX kernel as early as 1979,[1] but
this field has only recently experienced an exponential
growth in popularity. Many industry leaders, dependent
on their information technology (IT) infrastructure, have
embraced this model including: Amazon, Capital One
Financial Corp., Google, and PayPal Holdings Inc.,[2]
among many others.

DISCUSSION

Microservice architecture has taken hold in application
design for a number of reasons [Figure 1], but ultimately,
the fundamental driver has been the opportunity
for significant increase in productivity. Gains are
achieved by dividing larger, more complex applications
into small, manageable projects that encapsulate
common functionality. Each microservice represents a
“black-box” with a well-defined application programming
interface (API) bundled with its own integral
resources, thus eliminating external dependencies.
This encapsulation simplifies the division of labor for
teams of software developers and reduces the inherent
overhead of multiple developers working on the same
sections of code. The narrow scope of functionality of
a single microservice allows for thorough testing and
optimization of each component in isolation, leading to
higher reliability and performance of the overall parent
application. The encapsulated nature of the microservice
methodology inherently allows for future reuse of
existing modules with minimal effort. A portfolio of
proven, production-use microservices can be valuable for
accelerating the development of subsequent projects.

This architecture can also allow for the improvement
of application stability and security. It does so by
eliminating interdependency of components, as well
as handling service failures gracefully, without the need
to halt an entire application. Where high-availability
application architectures are required, a system health
check can be run as a background task, querying the
various components for their status. When a service is
malfunctioning, a “watch-dog” routine can shut down
the service in question and then restart it. Generally, this
process can take place without degrading the performance

of the application as a whole. A somewhat infamous
example[7] occurred at Netflix prior to their transition
to a distributed, microservices architecture. Apparently,
a semicolon in a segment of code (or rather, the lack of
a semicolon) took their service offline for an extended
period of time, while engineers from across the enterprise
attempted to track down the source of the disruption.
Security can be enforced through carefully-crafted APIs.
A breach of any particular module does not expose the
entirety of the application, only the limited information
accessed by the particular service. By severely restricting
data flow between public-facing services and elements
handling sensitive data, the risk posed by intrusion can
be mitigated. This segregation of services also allows
for real-time security patching of individual modules as
vulnerabilities are exposed, which is a large improvement
over the historical method of coordinating planned
downtimes to patch the various vulnerable components.

The widely adopted framework for microservices
bundles are referred to as “containers.” A container is
essentially an encapsulated and immutable version of an
application, coupled with the bare-minimum operating
system components required for execution. Libraries
for running containers are currently available for Linux
and soon will be available for Windows Server 2016.[8]
Containers utilize a relatively small footprint and require
less overhead than virtual machines (virtual machines
require the installation of a complete operating system
in addition to the host operating system. This additional
operating system sequesters system resources, such
as Central Processing Unit cores and Random Access
Memory, reducing what is available to the host. In
contrast, containers use the same Linux kernel as the
host system and share system resources only as needed);
running containers requires little more than installing a
light-weight program on the host. The host and container
operating systems are generally unaware of each other,
allowing for disparate systems to run harmoniously on
a common host. This decouples the microservice(s)
from the underlying physical infrastructure, allowing
development effort to be focused solely on functionality.

Designing a container is a fairly straightforward process.
A configuration file [Figure 2] describes the base operating
system, build options, dependencies required for the service
to run, and optional initialization scripts. This simple text
file fully defines the container and can be used to instantiate
the container on any capable host without additional setup.
In contrast, traditional application deployment requires a
specific build for each host and applications with conflicting
dependencies will cause significant problems.

The infrastructure described thus far allows for flexibility
in scaling applications, especially when scaling across
multiple nodes or even across heterogeneous networks.
Well-designed containers are stateless (stateless in the

Figure 1: Benefits industry leaders have attained by adopting a
microservices approach[2-6]

J Pathol Inform 2016, 1:45 http://www.jpathinformatics.org/content/7/1/45

sense that output is determined solely by the current
input and independent of previous inputs) or at least
having no internal state, meaning they can be aborted
and restarted without losing information. This allows for
services to be created ad hoc and then deleted when they
are no longer needed. Running services on an as-needed
basis allow for optimal use of system resources. Similarly,
portability of containers allows for automated and nearly
instantaneous scaling of services and resources. When
demand fluctuates, it is possible to scale the application
up, either on existing hardware or alternatively, by
incorporating additional cloud resources. At a functional
level, this is accomplished by spawning new containers
as needed and then scaling them back when appropriate
by destroying dormant containers. This flexibility allows
for a measured approach to scaling infrastructure, rather
than purchasing fixed quantities of hardware to handle
either typical or peak application loads.

Regardless of the benefits and increasing popularity
observed in the industry,[9] the question of whether
similar benefits can be reaped by the bioinformatics
community by embracing this design practice remains
to be answered. We propose it can be a valuable tool
and offer benefits beyond what has previously been
discussed. As bioinformatics tools grow in complexity,
it is difficult for small laboratories to maintain the
in-house expertise required to modify and further
develop all stages of a complete informatics pipeline.
It will, however, become feasible to experiment with
algorithms and use a wider variety of tools, as the services
are divided into more manageable, interchangeable
modules. Containers also facilitate the use of cloud-based
platform-as-a-service (PaaS) providers, avoiding the
potentially prohibitive costs associated with buying
state-of-the-art hardware, which may itself sit idle for
the majority of its life as it quickly becomes obsolete.
PaaS providers offer access to nearly inexhaustible
computing resources that can be retained for the length
of an application’s execution for a reasonable fee. An
application built on containers can be constructed
anew with each execution, run on a data set, output
the results, and then dismantle itself, thus releasing its
resources without manual intervention. Such automation
significantly reduces operating costs and overhead of
hardware, in addition to reducing the in-house technical
expertise required.

The very nature of containers lends itself to supporting
collaboration and transparency. Researchers can easily
share their work without worrying about replicating a
specific development environment or sharing access
to computing resources between institutions. Simply
sharing the configuration files for each microservice
allows others to create an exact replica of the original
development environment. This same method can be
used to share experimental results in an entirely new
way, allowing for entire algorithms and pipelines to be
published alongside the dataset. Users can then easily
recreate the pipeline, rerun the calculations, and validate
the experimental results, and then compare those results
with locally derived data run through the same pipeline.
The National Institutes of Health have made their
desires known for improved rigor and reproducibility
in research.[10] The methods and practices inherent to
microservice architecture would seamlessly address this
intent for increased transparency and reproducibility.

Going further, an opportunity exists to leverage
distributed source control tools, such as git or subversion,
to create a shared repository of bioinformatics tools and
algorithms. Such a service, if embraced by the community,
would offer a hub of documented, open-source tools that
could easily be shared, annotated, and enhanced by the
community. While many open source tools are currently
available, these projects often rely upon specific versions
of libraries and therefore may not easily interface with
even a minority of other extant tools. Finally, adapting
these open-source applications to a different workflow
may involve a technical challenge similar in scope to
the original development effort. Conversely, a curated
hub of bioinformatics tools utilizing the microservices
framework, being thoroughly vetted and maintained by
the community, would promote reuse of these valuable
resources.

CONCLUSIONS

Developing custom in-house software in support
of bioinformatics research is a resource-intensive
effort requiring complementary expertise in software
development and data science. Those without the
requisite resources are generally compelled to rely
upon commercially supported software - often at
significant expense and with the additional drawbacks

Figure 2: Example configuration file for a simple container providing a MySQL client service. Adapted from https://hub.docker.com/r/
gliderlabs/alpine

J Pathol Inform 2016, 1:45 http://www.jpathinformatics.org/content/7/1/45

of limited flexibility and customization. Utilization of a
containerized framework lowers barriers of entry, increases
development efficiency, facilitates reuse of proven
code modules, and allows for simplified verification
of algorithm integrity through transparency. This is
accomplished by leveraging freely available open-source
tools that have been adopted by leaders in the IT
industry.

On a more practical note, while there are multiple
implementations of the container methodology in
industry, the Docker (https://www.docker.com/) ecosystem
of tools is the most widely publicized, and it can serve
as a useful source of information for learning the basics
of Linux containers. The concepts found in the core
on-line Docker documentation can be applied broadly,
but such information is also helpful in support of
bioinformatics projects that might make use of the
Docker model. NextFlow,[11] the PanCancer Launcher[12]
from the International Cancer Genome Consoritum,
and BaseSpace[13] from Illumina, are a few examples
of contemporary tools that take advantage of Docker
to help manage associated pipelines. There are also
at least two projects aimed at sharing bioinformatics
based Docker images: bioboxes (http://bioboxes.org) and
BioDocker (http://biodocker.org). Both contain explicit
examples on how to containerize, locally-developed
bioinformatics tools, and associated repositories of
available tools supported by the community. Wider
adoption of any of the above-enumerated services could
be of great value to the research and bioinformatics
communities-at-large.

While use-cases supporting discovery are certainly
fertile ground for microservices realizing an immediate
impact within pathology, there is certainly potential for
a much broader impact in the clinical realm as well.
Mission-critical services, such as billing and interface
engines, could similarly benefit from the high availability
capabilities afforded from this approach. In terms of
healthcare production IT settings, being able to distribute
new communication standards, such as Fast Healthcare
Interoperability Resources, by use of microservices could
promote adherence to a common standard and facilitate
faster adoption by the community.

Large, monolithic, and proprietary applications have
been the de facto standard for pathology and healthcare
in general. Indeed, vendors appear to be in a continuing
milieu of market forces, where they are actively
incentivized to maintain the status quo, since profit
margins can be effectively maintained by controlling
access to the data. However, that paradigm has been

evolving rapidly outside of healthcare and there are even
signs that it may be slowly starting to change within
healthcare (as well with the adoption of Healthcare
Information Exchanges). By gaining familiarity and
expertise with microservice architecture, we believe
pathologists can contain ever-expanding IT costs, reduce
the likelihood of IT implementation mishaps and failures,
and perhaps most importantly, greatly elevate the level of
service conferred to our many types of customers.

Financial Support and Sponsorship
Nil.

Conflicts of Interest
There are no conflicts of interest.

REFERENCES

1. Toplian J. Contain Your Enthusiasm – Part One: A History of Operating
System Containers. Tech Radar Blog; 13 November, 2013. Available from:
http://www.cybera.ca/news‑and‑events/tech‑radar/contain‑your‑enthusi
asm‑part‑one‑a‑history‑of‑operating‑system‑containers/. [Last cited on
2016 Jan 05].

2. Miller M. Innovate or Die: The Rise of Microservices. The Wall Street
Journal – CIO Journal; 06 November, 2015. Available from: http://blogs.wsj.
com/cio/2015/10/05/innovate‑or‑die‑the‑rise‑of‑microservices/. [Last cited
on 2016 Jan 05].

3. GE Uses Docker to Enable Self‑Service for Their Developers. Available
from: https://www.docker.com/customers/ge‑uses‑docker‑enable‑self‑
service‑their‑developers. [Last cited on 2016 Aug 29].

4. Flexible, Portable, Secure. Available from: http://h22168.www2.hpe.com/us/
en/partners/docker/. [Last cited on 2016 Aug 28].

5. Ho A. Microservices at Amazon. Available from: http://apigee.com/about/
blog/developer/microservices‑amazon. [Last cited on 2016 Aug 28].

6. Piesche S. Microservices at Constant Contact. Available from: http://
techblog.constantcontact.com/tech‑talk/microservices‑at‑constant‑
contact/. [Last cited on 2016 Aug 28].

7 SmartBear Software. Why You Can’t Talk About Microservices without
Mentioning Netflix; 08 December, 2015. Available from: http://blog.
smartbear.com/microservices/why‑you‑cant‑talk‑about‑microservices‑with
out‑mentioning‑netflix/. [Last cited on 2016 Aug 08].

8. Fulton S. The Windows and Linux Container Era is Here. The
New Stack; c2015. Available from: http://www.thenewstack.io/
the‑windows‑and‑linux‑container‑era‑is‑here/. [Last cited on 2016 Jan 05].

9. Delvecchio T. Docker Scores the Best Ever NET Score in ETR History.
LinkedIn – Pulse; 17 April, 2015. Available from: https://www.linkedin.
com/pulse/docker‑scores‑best‑ever‑net‑score‑etr‑history‑thomas‑
delvecchio. [Last cited on 2016 Jan 06].

10. National Institutes of Health. Available from: www: http://grants.nih.gov/
reproducibility/index.htm. [Last updated on 2015 Nov 02; Last cited on
2016 Jan 05].

11. Nextflow. Io Documentation. Available from: https://www.nextflow.io/docs/
latest/docker.html. [Last cited on 2016 Aug 12].

12. Working with PanCancer Data on AWS. International Cancer
Genome Consortium. Available from: https://www.icgc.org/
working‑pancancer‑data‑aws. [Last updated on 2015 Nov 18; Last cited on
2016 Aug 12].

13. BaseSpace Native App Engine Overview. Illumina, Inc. Available from:
https://developer.basespace.illumina.com/docs/content/documentation/
native‑apps/native‑app‑overview. [Last cited on 2016 Aug 12].

