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ABSTRACT
Background. Pulpitis is a common inflammatory disease that affects dental pulp.
It is important to understand the molecular signals of inflammation and repair
associatedwith this process. Increasing evidence has revealed that long noncodingRNAs
(lncRNAs), via competitively sponging microRNAs (miRNAs), can act as competing
endogenous RNAs (ceRNAs) to regulate inflammation and reparative responses. The
aim of this study was to elucidate the potential roles of lncRNA, miRNA andmessenger
RNA (mRNA) ceRNA networks in pulpitis tissues compared to normal control tissues.
Methods. The oligo and limma packages were used to identify differentially expressed
lncRNAs and mRNAs (DElncRNAs and DEmRNAs, respectively) based on expression
profiles in two datasets, GSE92681 and GSE77459, from the Gene Expression Omnibus
(GEO) database. Differentially expressed genes (DEGs) were further analyzed by Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses. Protein–protein interaction (PPI) networks and modules were
established to screen hub genes using the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) and theMolecular Complex Detection (MCODE) plugin for
Cytoscape, respectively. Furthermore, an lncRNA-miRNA-mRNA-hub genes regula-
tory network was constructed to investigate mechanisms related to the progression
and prognosis of pulpitis. Then, quantitative real-time polymerase chain reaction
(qRT-PCR) was applied to verify critical lncRNAs that may significantly affect the
pathogenesis in inflamed and normal human dental pulp.
Results. A total of 644 upregulated and 264 downregulated differentially expressed
genes (DEGs) in pulpitis samples were identified from the GSE77459 dataset, while
8 up- and 19 downregulated probes associated with lncRNA were identified from
the GSE92681 dataset. Protein–protein interaction (PPI) based on STRING analysis
revealed a network of DEGs containing 4,929 edges and 623 nodes. Upon combined
analysis of the constructed PPI network and the MCODE results, 10 hub genes, includ-
ing IL6, IL8, PTPRC, IL1B, TLR2, ITGAM, CCL2, PIK3CG, ICAM1, and PIK3CD,
were detected in the network. Next, a ceRNA regulatory relationship consisting of
one lncRNA (PVT1), one miRNA (hsa-miR-455-5p) and two mRNAs (SOCS3 and
PLXNC1) was established. Then, we constructed the network in which the regulatory
relationship between ceRNA and hub genes was summarized. Finally, our qRT-PCR
results confirmed significantly higher levels of PVT1 transcript in inflamed pulp than
in normal pulp tissues (p= 0.03).
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Conclusion. Our study identified a novel lncRNA-mediated ceRNA regulatory mech-
anisms in the pathogenesis of pulpitis.

Subjects Bioinformatics, Dentistry
Keywords Pulpitis, Competing endogenous RNA network, Long noncoding RNA, Bioinformatics
analysis

INTRODUCTION
Inflammation of the dental pulp (pulpitis) is associated with microbial infection of the root
canal system and the host response, which is characterized by spontaneous or provoked pain
(Bender, 2000; Rocas et al., 2015). Acute pulpitis can be an extremely painful condition and
is believed to be one of the main reasons patients seek emergency dental treatment (Currie
et al., 2017). Depending on the state of inflammation, various treatment regimens are
currently applied clinically, including nonsurgical root canal treatment (such as pulpotomy
and pulpectomy) and surgical endodontic treatment (European Society of Endodontology,
2006). If the issue cannot be solved in time or appropriately, pulpitis may progress to pulp
necrosis, periapical periodontitis, or even severe oral and maxillofacial space infections
(Bertossi et al., 2017), ultimately causing a significant medical and economic burden in
terms of treatment costs.

Pulp inflammation represents a complex physiological response to harmful stimuli,
such as bacterial infections and physical and chemical injuries (Yu & Abbott, 2016; Larsen
& Fiehn, 2017; Pedano et al., 2018). The balance between inflammation and reparative
processes in host defense reactions can determine the extent of pulp inflammation, in
which multiple signaling pathways are involved (Cooper, Holder & Smith, 2014; Farges et
al., 2015). Studies over the past decade have provided much information on the role of
epigenetic modifications in inflammatory diseases such as pulpitis and periodontitis. These
studies have investigated modifications of histones, methylation of DNA, and regulation of
noncoding RNAs (ncRNAs), among other epigenetic mechanisms (Kearney et al., 2018).

Due to the application of sequencing and bioinformatics approaches, recent evidence
has identified previously unannotated transcripts and ncRNAs involved in pathologic
mechanisms, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs),
pseudogenes and circular RNAs, which were previously believed to have no biological
functions (Kaikkonen & Adelman, 2018). MiRNAs are small (∼21–24 nucleotides in
length), single-stranded ncRNA molecules that can bind to complementary sequences
within the 3′ untranslated regions (UTRs) of target messenger RNAs (mRNAs), resulting
in mRNA degradation or repression (Afonso-Grunz & Muller, 2015). LncRNAs, which
are ncRNAs of >200 nucleotides, function as competing endogenous RNAs (ceRNAs)
that interact with mRNAs, serving as miRNA sponges to restrain miRNA function by
competing for miRNA response elements (MREs) (Tay, Rinn & Pandolfi, 2014). Increasing
evidence has illustrated the essential roles of differentially expressed miRNAs and lncRNAs
(DEmiRNAs and DElncRNAs, respectively) in a variety of cellular and pathologic processes
associated with pulpitis, in which abnormal expression occurs (Zhong et al., 2012;Huang &

Lei et al. (2019), PeerJ, DOI 10.7717/peerj.7135 2/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.7135


Chen, 2018). However, there have been few comprehensive analyses of pulpitis-associated
lncRNAs and miRNAs in the context of a ceRNA network. The discovery of ceRNA
network interactions could provide important insights to advance our understanding of
the pathogenesis of pulpitis.

In this work, we first performed an integrated analysis and identified differentially
expressed genes (DEGs) between pulpitis and matched normal pulp tissues from two
gene expression profiles in the Gene Expression Omnibus (GEO) database. Then, Gene
Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were further conducted to analyze the major biological functions of the
DEGs. Next, we examined potential crosstalk in a constructed lncRNA-miRNA-mRNA
ceRNA network that involved one core lncRNA, one miRNA, and two mRNAs. Moreover,
ten hub genes related to pulpitis were identified as being aberrantly expressed in the
protein-protein interaction (PPI) network. Ultimately, the DElncRNA plasmacytoma
variant translocation gene 1(PVT1), which was significantly upregulated in inflamed pulp
tissue, was validated by quantitative real-time polymerase chain reaction (qRT-PCR).To
the best of our knowledge, this study is the first attempt to apply bioinformatics approaches
to investigate the differential expression profiles of a specific lncRNA-mediated ceRNA
network in inflamed pulp.

MATERIALS & METHODS
Microarray data
Microarray data from the GSE92681 and GSE77459 datasets were downloaded from the
GEO (https://www.ncbi.nlm.nih.gov/geo) of NCBI. GSE92681 including seven pulpitis and
five matched normal pulp tissues was associated with the GPL16956 platform (Agilent-
045997 Arraystar Human LncRNA Microarray V3) (Huang & Chen, 2018). GSE77459
contained 6 pulpitis tissue specimens and six matched normal samples, and was associated
the GPL17692 platform (Affymetrix Human Gene 2.1 ST Array) (Galicia et al., 2016). The
DEmiRNAs were retrieved as reported by Zhong et al. (2012); until now, that data was the
only known DEmiRNAs between normal and inflamed human pulp tissue. All data were
freely accessible online.

Data processing
The oligo package was used to read the microarray and normalize the expression data
(Carvalho & Irizarry, 2010). After the raw data were transformed to the expression files,
the expression files were further processed with the Linear Models for Microarray data
(limma) R/Bioconductor package (http://www.bioconductor.org) for analysis of the DEGs
between pulpitis samples and control samples with biological replication; the Benjamin
and Hochberg method was applied for multiple testing corrections (Ritchie et al., 2015).
Genes that met the cutoff criteria, a corrected p-value < 0.05 and a |log2 fold change (FC)|
> 1, were considered DEGs.

Function and pathway enrichment analysis of the DEmRNAs
To investigate pulpitis progression at the functional level, GO and pathway enrichment
analyses of the identified DEmRNAs were performed in this study. The identified DEGs
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were enriched for terms in the GO biological process (BP), molecular function (MF), and
cellular component (CC) categories (Ashburner et al., 2000). KEGG analysis was utilized to
interpret the potential functions and pathways of the aberrantly expressed genes (Kanehisa
et al., 2010). In addition, the above data were analyzed using the clusterProfiler package in
R (Yu et al., 2012).

Protein–Protein Interaction (PPI) network analysis
The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, https://string-
db.org/) was used to identify PPIs among the selected DEGs. A combined score ≥0.4 was
chosen for PPI network construction (Szklarczyk et al., 2015). Cytoscape software was used
to visualize the established DEGs network, while the MCODE plugin and CentiScaPe in
Cytoscape were used to select significant modules and calculate the connective of genes
from the PPI network (Shannon et al., 2003; Scardoni et al., 2014).

Construction of the ceRNA network
The lncRNA-associated ceRNA network in pulpitis was next constructed. First, miRNA-
lncRNA interactions were evaluated using the starBase (version 2.0) database with
the default parameters (clade: mammal, genome: human, assembly: hg19, number of
supporting experiments: ≥1) (Li et al., 2014). Next, starBase (version 2.0), TargetScan
(release 7.1), and miRDB (last modified: May 03, 2016) were used to retrieve miRNA-
targeted mRNAs (Li et al., 2014; Agarwal et al., 2015;Wong &Wang, 2015). The main steps
of the method are shown in Fig. 1.

Validation based on clinical samples of human dental pulp
To further verify the expression of the DElncRNAs, qRT-PCR was performed. Briefly,
four human inflamed pulp tissue samples and four normal pulp tissue samples
were obtained from Xiangya Stomatological Hospital. The normal pulp tissues
were collected from healthy third molars extracted for orthodontic purposes. The
inflamed pulp tissues were extracted from teeth diagnosed with irreversible pulpitis in
accordance with the endodontic diagnosis system from the American Association of
Endodontists. All patients gave written informed consent. The Ethics Committee of
Xiangya Stomatological Hospital of Central South University granted Ethical approval
to carry out the study within its facilities (Ethical Approval number: 20180026). Next,
RNA from all tissue samples, which were previously preserved in liquid nitrogen,
was extracted with TRIzol reagent (Thermo Fisher, Waltham, MA, USA). Reverse
transcription was performed with a Transcriptor First Strand cDNA Synthesis Kit (Roche,
Indianapolis, IN, USA). qRT-PCR was used to monitor the expression of PVT1 (Fw, 5′-
TGAGAACTGTCCTTACGTGACC-3′; Rev, 5′-AGAGCACCAAGACTGGCTCT-3′) and
GAPDH (Fw, 5′-GACAGTCAGCCGCATCTTCTT-3′; Rev, 5′-AATCCGTTGACTCCGAC
CTTC-3′); GAPDH was used as the housekeeping gene for normalization. Amplification
was performed with LightCycler 480 SYBR Green I Master (Roche, Indianapolis, IN, USA)
on a real-time PCR system (LightCycler 480; Roche, Indianapolis, IN, USA). Threshold
cycle values (CT) were determined, and the data were analyzed with Roche software with
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Figure 1 Main steps of the construction of the regulatory network in pulpitis. Step 1: We identified the
differentially expressed mRNAs, lncRNAs and miRNAs. Step 2: The GO and KEGG enrichment analy-
ses were conducted and the PPI network was constructed. Then, we identified the hub genes from the PPI
network. Step 3: The ceRNA regulatory relationships were predicted using online tools. Step 4: The ceRNA
network with hub genes was constructed.

Full-size DOI: 10.7717/peerj.7135/fig-1

the 2−11CT method. An unpaired Wilcoxon test was conducted to compare lncRNA
expression at the transcriptional level between normal and inflamed pulp tissues.

RESULTS
Identification of DEGs in pulpitis
Based on the criteria of p < 0.05 and |log2 FC| > 1, a total of 908 DEGs were screened from
GSE77459, including 264 downregulated genes and 644 upregulated genes in pulpitis. In the
GSE92681 dataset, 27 probes associated with DElncRNA, including 19 downregulated and
eight upregulated probes, were identified. A volcano plot for GSE77459 and a heatmap for
GSE92681 are shown in Fig. 2. The detailed differential expression profiles are summarized
in File S1.

GO and KEGG analysis of the DEGs
GO function and KEGG pathway enrichment analyses of the DEGs were performed using
the clusterProfiler package in R. The results of GO analysis illustrated that the DEGs were
enriched for BP terms including leukocyte migration, the adaptive immune response,
the immune response-regulating cell surface receptor signaling pathway, regulation of
leukocyte activation, and the immune response-activating cell surface receptor signaling
pathway. CC analysis showed that the DEGs were significantly enriched for the side of
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Figure 2 DEGs between pulpits samples and normal samples. (A) Volcano plot for the DEGs in dataset
GSE77459. The x-axis indicates the log FC, and the y-axis indicates the log10 (adjusted p-value). The
red dots represent upregulated genes, and the blue dots represent downregulated genes. The DEGs were
screened on the basis of a |fold change|> 1.0 and an adjusted p-value of < 0.05. The black dots represent
genes with no significant difference. FC, fold change. (B) Heatmap of the DEGs in dataset GSE92681. The
relative expression values were normalized to fall in a range from zero to one. Genes expressed at high lev-
els are shown in blue, while those expressed at low levels are shown in white.

Full-size DOI: 10.7717/peerj.7135/fig-2

membrane, secretory granule membrane, and external side of plasma membrane, tertiary
granule, and specific granule terms. For theMF category, theDEGswere enriched in antigen
binding, serine-type peptidase activity, serine hydrolase activity, serine-type endopeptidase
activity, and cytokine activity (Fig. 3).

Based on KEGG pathway analysis, the DEGs were significantly enriched in pathways
associated with cytokine-cytokine receptor interaction, the chemokine signaling pathway,
cell adhesion molecules, Staphylococcus aureus infection, and the hematopoietic cell lineage
(Fig. 4). The detailed results of the GO enrichment and KEGG pathway analyses are
provided in Supplementary File 2.

PPI network construction and hub genes identification
Protein interactions among the DEGs were detected with the online STRING program
with a cutoff score of ≥0.4. In total, 4,929 edges and 623 nodes were involved in the PPI
network. One significant module containing 528 edges and 33 nodes was selected from the
PPI network by the MCODE plugin in Cytoscape (Fig. 5). In this module, we found that
most of the genes were mainly enriched for and associated with chemokines (Tables 1 and
2).

In addition, we screened the top 10 hub mRNAs from the PPI network. These main hub
genes were IL6, IL8, PTPRC, IL1B, TLR2, ITGAM, CCL2, PIK3CG, ICAM1, and PIK3CD.
Hence, the key genes associated with pulpitis could be predicted by our network.
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Table 1 Top 15 enriched GO terms of the DEGs.

Terms Pathway description Count P-Value

GO.BP:0070098 chemokine-mediated signaling pathway 17 4.46E-35
GO.BP:0060326 cell chemotaxis 21 2.18E-33
GO.BP:0002690 positive regulation of leukocyte chemotaxis 17 2.84E-30
GO.BP:0050921 positive regulation of chemotaxis 18 7.66E-30
GO.BP:0006954 inflammatory response 23 5.00E-29
GO.CC:0005615 extracellular space 15 1.79E-07
GO.CC:0009897 external side of plasma membrane 6 0.000948
GO.CC:0005886 plasma membrane 19 0.00174
GO.CC:0071944 cell periphery 19 0.00174
GO.CC:0005887 integral component of plasma membrane 10 0.0144
GO.MF:0045236 CXCR chemokine receptor binding 11 5.28E-25
GO.MF:0008009 chemokine activity 13 2.39E-24
GO.MF:0001664 G-protein coupled receptor binding 15 8.21E-20
GO.MF:0048248 CXCR3 chemokine receptor binding 5 4.67E-12
GO.MF:0008528 G-protein coupled peptide receptor activity 9 2.18E-11
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Table 2 Top five enriched KEGG pathways of the DEGs.

Category Pathway description Count P-Value

KEGG:map04062 chemokine signaling pathway 21 1.49E-33
KEGG:map04060 cytokine-cytokine receptor interaction 20 4.10E-28
KEGG:map05150 Staphylococcus aureus infection 6 1.78E-08
KEGG:map04080 neuroactive ligand–receptor interaction 9 2.16E-08
KEGG:map04668 TNF signaling pathway 6 9.52E-07

Figure 6 Construction of ceRNA network in pulpitis. (A) Venn diagram showing the number of distinct
and overlapping RNAs among the upregulated genes and the RNAs identified with miRDB, starBase, and
TargetScan. The overlapping areas show the upregulated genes identified by three online tools. (B) Inter-
action of RNAs in the PVT1-associated ceRNA network. The triangle node and the diamond node repre-
sent the lncRNA and miRNA, respectively. The rectangle nodes represent miR-455-5p-targeted mRNAs.
The round nodes are the top 10 hub DEmRNAs in the network. The up- and downregulated genes are col-
ored in red and green, respectively.

Full-size DOI: 10.7717/peerj.7135/fig-6

Construction and analysis of the ceRNA network in Pulpitis
To identify correlations among the DElncRNAs in the ceRNA network, we used starBase
to search for interactions between miRNAs and lncRNAs. The target mRNAs of the
miRNAs in the network were predicted with starBase, TargetScan, andmiRDB. The ceRNA
network was constructed based on coexpressed lncRNAs/miRNAs, miRNAs/mRNAs, and
lncRNAs/mRNAs. Overlapping datasets were visualized using Venn diagrams (Fig. 6A). As
shown in Fig. 6B, the lncRNA-miRNA-mRNA network was composed of one lncRNA
(PVT1), one miRNA (hsa-miR-455-5p), and two mRNAs (suppressor of cytokine
signaling 3, SOCS3 and Plexin C1, PLXNC1). In addition, a comprehensive analysis
of the relationships among PVT1, hsa-miR-455-5p, SOCS3 and PLXNC1 and the top 10
downstream connected genes is depicted in Fig. 6B.

Validation of PVT1 expression in clinical samples of human dental
pulp
We evaluated the expression of PVT1 by qRT-PCR in pulpitis tissues compared to normal
pulp tissues. As depicted in Fig. 7, PVT1 transcript levels were significantly higher in
inflamed pulp than in normal pulp (p< 0.05).
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Figure 7 Relative expression levels of PVT1 in inflamed and normal pulp tissue. The transcript levels
of PVT1 were determined by qRT-PCR and normalized to those of the reference RNA GAPDH. p-value=
0.03.

Full-size DOI: 10.7717/peerj.7135/fig-7

DISCUSSION
Pulpitis is considered a tightly regulated process involving microorganisms and host
immune events mediated by molecular factors (Renard et al., 2016). Inflammation of the
dental pulp is characterized by opportunistic infection of the pulp space by commensal
oral microorganisms, such as Porphyromonas and Streptococcus species (Rocas et al., 2016).
The most common route for microorganism invasion is through dental caries. Other
possible portals include tooth damage from trauma, exposed dentinal tubules or the apical
foramen (Raslan & Wetzel, 2006). Upon irritation, cells in human dental pulp, for example,
endothelial cells, odontoblasts andmacrophages, immediately trigger immune responses to
pathogens and their virulent factors, potentially stalling the spread of infection, preventing
injury-related signaling, and launching reparative processes (Rechenberg, Galicia & Peters,
2016). However, if the delicate balance between the immune-inflammatory response and
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dental tissue healing is disrupted, irreversible pulpitis could result from uncontrollable
inflammation caused by the invading bacteria.

Over the past decades, ncRNAs, including lncRNAs and short ncRNAs (such asmiRNAs),
have gained increasing attention for their roles in physiological and pathologic responses. In
diverse biological processes, gene expression is regulated by posttranscriptionalmechanisms
involving ncRNAs through their binding to the 3′-UTRs of target mRNAs, leading to
translational repression or target degradation (Vasudevan, 2012). Accumulating studies
have provided evidence supporting the ceRNA hypothesis, which holds that lncRNAs
harboring MREs can competitively bind to certain miRNAs, thus regulating miRNA-
mediated downstream target gene silencing at the posttranscriptional level (Khorkova,
Hsiao & Wahlestedt, 2015). Although the functional relevance of several lncRNAs and
miRNAs in pulpitis has been proven in the scientific literature, an lncRNA-based ceRNA
network involved in pulpitis has yet to be defined (Zhong et al., 2012;Huang & Chen, 2018).
In the current study, bioinformatics analyses were applied to explore the expression profiles
of lncRNAs, miRNAs, and mRNAs in patients with pulpitis. Furthermore, an lncRNA-
related ceRNA network was constructed by integrating data from GEO pulpitis expression
profiles. These data might shed light on how lncRNA-miRNA-mRNA interactions are
involved in pulpitis. Immune response can be triggered by inflammatory mediators or
cytokines produced by infectious cells through the transcriptional or post-transcriptional
regulations. The expression of ncRNAs may be closely related to the development of
immune cells (particularly monocytes, macrophages, NK cells, T helper cells, CD8+ T
cells, and Treg cells) and the maintenance of immune system homeostasis (Cortez et al.,
2019; Imamura & Akimitsu, 2014). For instance, lincRNA-Cox2 regulates the release of
inflammatory mediators and cytokines by stimulation of TLR2 in bacterial infections
(Carpenter et al., 2013), and miR-155 exerts an antiproliferative effect on CD8+ T cells in
response to the type I interferon signaling (Gracias et al., 2013).

LncRNAs and miRNAs, which are closely correlated with inflammatory mediator
production and pulp repair, could be affected by the inflammatory status in dental pulp
(Zhong et al., 2012; Galicia et al., 2016; Huang & Chen, 2018). In this study, our findings
indicated that lncRNA PVT1might regulate the progression of pulpitis by acting as a
sponge for miR-455-5p. Emerging studies have proven that PVT1 plays an important role
in inflammation and tumorigenesis. For example, down-regulation of PVT1 correlates with
the differentiation of Th17 cells and the duration of multiple sclerosis, a chronic immune-
mediated disease (Eftekharian et al., 2017). Additionally, PVT1 promotes the production
of inflammatory cytokines to aggravate the progression of IL-1β-stimulated osteoarthritis
(Zhao et al., 2018). Overexpressed PVT1 can enhance the expression of IL-6 and IL-1β
in a nonbinding manner by regulating the nuclear factor-κB (NF-κB) pathway, which is
considered a critical mechanism in the regulation of immune and inflammatory processes,
and ultimately aggravating septic acute kidney injury (Huang et al., 2017). Moreover,
some studies have revealed that PVT1, which is located on 8q24.21 and contains the myc
proto-oncogene, is upregulated in certain human tumors (Shtivelman & Bishop, 1989) and
is correlated with pathologic stage in multiple cancers (Chai et al., 2018). In this study, our
qRT-PCR results indicated that PVT1 was upregulated in pulpitis tissue compared with
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matched normal pulp tissue, suggesting that PVT1 is an important factor contributing
to pulpitis. However, the exact role of PVT1 in the occurrence and development of pulp
inflammation and the underlying mechanism require further investigation.

MiR-455-5p is one subtype of the mature miR-455, which is located in the sense strand
of chromosome 9q32, and is a tumor-associated miRNA molecule. The other subtype is
miR-455-3p (Arai et al., 2019). MiR-455 is involved in a variety of biological processes
through the repression of specific mRNA at the posttranscriptional level. For example,
miR-455–5p regulates the posttranscriptional repression of UDP-glucuronosyltransferase
(UGT) 2B expression by binding to MREs in 3′-UTR of UGT2B, which plays a role in drug
glucuronidation (Papageorgiou & Court, 2017). Moreover, in colorectal cancer, miR-455
is up-regulated to inhibit the protein expression of RAF proto-oncogene serine/threonine
protein kinase (RAF1) other than affects mRNA level, which regulates the cellular
proliferation and invasion (Chai et al., 2015). In pulpitis, the precise posttranscriptional
mechanisms of miR-455-5p remain to be explored. Previous studies have revealed that
miR-455-5p can serve as a prognostic biomarker and therapeutic target for patients with
certain cancers, such as non-small cell lung cancer and basal cell carcinoma (Sand et al.,
2012;Wang et al., 2017). Moreover, miR-455 represents novel regulator of the immune and
inflammatory response.MiR-455-5p plays an anti-inflammatory role in multiple sclerosis.
MiR-455-5p is negatively correlated with the activation of the NF-κB pathway, thus
inhibiting the expression of IL-1β, IL-6 and IL-8 and in turn ameliorating the severity of
multiple sclerosis (Torabi et al., 2019). Macrophage polarization is an essential component
of immunity and homeostasis, and miR-455-5p overexpression reverses the polarization of
macrophages to the M1 phenotype to reduce the secretion of proinflammatory cytokines,
such as IL-1β and TNF-α (Chi et al., 2018). The accumulation of miR-455 regulates the
innate immune response in E2F1-deficient mice, leading to reduced inflammation induced
by LPS (Warg et al., 2012). In patients infected with the hepatitis B virus, serummiR-455-3p
levels are decreased during chronic disease progression (Singh et al., 2018). The algorithms
in our study predicted that miR-455-5p was downregulated (Fig. 6B) in pulpitis samples
compared to control samples. Further work will be needed with multiple clinical samples to
clarify the action ofmiR-455-5p in pulpitis and thus to uncover themechanisms underlying
the effects of miR-455-5p on proinflammatory processes.

Based on the module produced by the STRING analysis, two core mRNAs, identified
as SOCS3 and PLXNC1, can be considered important target genes of miR-455-5p. SOCS3
is a major suppressor of inflammation and is known as a feedback inhibitor of the
JAK/STAT3 signaling pathway (Carow & Rottenberg, 2014). SOCS3 can inhibit JAK2
activity to attenuate STAT3 phosphorylation, inhibit the NF-κB pathway and trigger
the expression of various genes in response to cytokines (the IL-6 family and IL-10),
consequently affecting cell proliferation, differentiation, and apoptosis (Gao et al., 2018).
SOCS3 deficiency results in increased alveolar loss with high levels of IL-1β, IL-6, and IL-8
in periodontitis (Papathanasiou et al., 2016). Furthermore, induction of SOCS3 expression
may markedly reduce cell adherence by inhibiting TNF-α-stimulated ICAM1 expression in
lung inflammation (Lee et al., 2013). PLXNC1 is an endogenous receptor of the neuronal
guidance protein semaphorin 7a (Sema 7a). Previous studies have suggested that PLXNC1
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might play an important role in immunological and proinflammatory responses. A study by
Konig et al. (2014) on PLXNC1−/− mice provided evidence that PLXNC1 depletion results
in a reduced inflammatory response and decreased cytokine IL-6 production in vivo. We
hypothesize that PLXNC1 and SOCS3 play important roles in conditions associated with
inflammation. Bothmight therefore be potential targets to prevent damage due to excessive
tissue inflammation.

GO and pathway analyses were used to infer the potential functions of the DEGs in
pulpitis. GO annotation revealed that the top GO terms in the BP and MF categories
for the DEGs between the inflamed and healthy pulp tissue were mainly associated
with the immune/inflammation system (Fig. 3), suggesting that the cascade of cellular
events in pulpitis is precisely regulated by migrating leukocytes and their surrounding
microenvironments and also supporting other previous theories explaining the occurrence
of pulpitis (Cooper et al., 2017). Furthermore, KEGG pathway analysis indicated that the
cytokine-cytokine receptor interaction pathway was the most highly enriched pathway
between pulpitis and normal dental tissues, while other classic inflammatory signaling
pathways, including the chemokine signaling pathway, cell adhesion molecules (CAMs),
Staphylococcus aureus infection, the hematopoietic cell lineage, the TNF signaling pathway,
and osteoclast differentiation were also enriched. These pathways were mainly involved in
immune regulation, intercellular signaling, defense mechanisms, osteoclast differentiation,
and hematopoiesis.

CONCLUSIONS
To the best of our knowledge, there have been no studies on lncRNA-associated ceRNA
networks in pulpitis. Here, we used bioinformatics methods to elucidate the lncRNA-
miRNA-mRNA ceRNA network associated with dental pulp inflammation. Our analysis
suggests a potential mechanism by which PVT1 competes with miR-455-5p to regulate
the expression of SOCS3 and PLXNC1. Upregulation of PVT1, which has been validated
in inflamed pulp by qRT-PCR, could increase inflammation and cytokine and chemokine
production in inflamed pulp tissue compared with healthy pulp tissue. In addition,
overexpression of PVT1 reduced miR-455-5p expression and indirectly promoted SOCS3
and PLXNC1 expression and the cytokine cascade. In addition, SOCS3 and PLXNC1 could
regulate the hub genes (including IL-1β, IL-6, IL-8 and ICAM1), which play a critical role in
pulp inflammation. Upon comprehensive analysis of the lncRNA-related ceRNA network,
some novel and crucial characteristics of pulpitis were revealed. These findings provide new
insights into the pathogenesis of endodontic lesions andmight identify potential diagnostic
and therapeutic strategies for future studies.
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