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Abstract
The tumor microenvironment, comprised of tumor cells and tumor-infiltrating im-
mune cells, is closely associated with the clinical outcome of clear cell renal cell carci-
noma (ccRCC) patients. However, the landscape of immune infiltration in ccRCC has 
not been fully elucidated. Herein, we applied multiple computational methods and 
various datasets to reveal the immune infiltrative landscape of ccRCC patients. The 
tumor immune infiltration (TII) levels of 525 ccRCC patients using a single-sample 
gene were examined and further categorized into immune infiltration subgroups. 
The TII score was characterized by distinct clinical traits and showed a significant 
divergence based on gender, grade, and stage. A high TII score was associated with 
the ERBB signaling pathway, the TGF-β signaling pathway, and the MTOR signaling 
pathway, as well as a better prognosis. Furthermore, patients with high TII scores ex-
hibited greater sensitivity to pazopanib. The low TII score was characterized by a high 
immune infiltration level of CD8+ T cells, T follicular helper cells, and regulatory T 
cells (Tregs). Moreover, the immune check point genes, including CTLA-4, LAG3, PD-
1, and IDO1, presented a high expression level in the low TII score group. Patients in 
the high TII score group demonstrated significant therapeutic advantages and clinical 
benefits. The findings in this study have the potential to assist in the strategic design 
of immunotherapeutic treatments for ccRCC.
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1  | INTRODUC TION

Clear cell renal cell carcinoma (ccRCC) is the most common type of 
renal cell carcinoma (RCC) and is responsible for approximately 80% 
of RCC cases.1,2 It is a malignant tumor with multiple molecular fea-
tures and a poor prognosis.3 The morbidity and mortality rates of 
ccRCC remain high, and effective treatment methods are lacking. 
Due to the lack of typical clinical symptoms, it is difficult to diagnose 
ccRCC and approximately 35% of patients had developed metastasis 
at the time of diagnosis.4 In addition, the mortality rate of ccRCC is 
high, with rates of up to approximately 60% within the first 2-3 years 
of diagnosis.5 Therefore, there is an urgent need to identify effec-
tive biomarkers and therapeutic targets to improve the prognosis 
and survival of ccRCC patients.

Surgery is now the most common therapy in the treatment of 
ccRCC, followed by chemotherapy and radiotherapy.6 However, due 
to the insensitivity and drug resistance using the conventional ther-
apies, patient prognosis is still poor. Since the first PD-1 inhibitor 
(nivolumab) aprroved in 2014, tumor immunotherapy has emerged as 
an attractive approach in cancer therapy. The approach is focused on 
establishing an understanding of the associations among the tumor 
microenvironment (TME), tumor cells, and the immune system and 
promoting human immunity to control the development of tumors.7 
However, only a minority of patients can benefit from immunother-
apy due to the lack of identified biomarkers. Thus, identifying novel 
therapeutic markers for immunotherapy for ccRCC is urgent. The 
TME is closely related to the clinical outcome in ccRCC patients. The 
infiltration immune cells form an ecosystem in the TME. They are 
involved in tumor progression and have essential prognostic value.7 
Studies have demonstrated that the cytotoxic CD8+ T cells and 
CD4+ helper T cells can target antigenic tumor cells and inhibit the 
growth of tumor cells.8 The infiltrating CD4+ T cells can regulate the 
proliferation of RCC by modulating the TGFβ1/YBX1/HIF2α signals.9 
Moreover, the TME can also prevent the T cell response through 
regulatory T cells (Tregs), which generate immunosuppressive cyto-
kines, leading to T cell dysfunction, and finally causing tumor cells 
to lose their immunogenicity.10,11 Cumulative evidence has shown 
that regulatory T cells (Tregs) can efficiently suppress effector T cell 
proliferation in RCC.12 Tumor-associated macrophages (TAM) also 
play an essential role in promoting or blocking tumor progression. 
Distinct TAM subsets in different environments can induce or inhibit 
immunity to cancer.13,14 In recent reports, a high expression level of 
CD163+ or CD204+ TAM was associated with a poor survival out-
come in papillary renal cell carcinoma (pRCC) patients, while CD163 
and CD204 were recognized biomarkers for macrophages.15 This ev-
idence demonstrated that immune cell infiltration plays an essential 
role in tumor progression. However, the mechanism of immune cells 
infiltrating the TME of ccRCC has not been fully elucidated.

To thoroughly investigate the landscape of immune cell infiltra-
tion in the ccRCC microenvironment, single-sample gene set enrich-
ment (ssGSEA) and the ESTIMATE algorithm were applied in this 
study. Three subgroups were then identified using consensus algo-
rithms as per the immune cell infiltration patterns. TII scores were 

constructed to recognize the distinct immune landscape, which could 
precisely predict the overall survival (OS) and disease-free survival 
outcomes of ccRCC patients and their response to immunotherapy.

2  | MATERIAL S AND METHODS

2.1 | Collection of datasets

To characterize the landscape of the TII level of ccRCC, 539 ccRCC 
patient gene read-count data samples were retrieved as well as 
corresponding clinical information from The Cancer Genome Atlas 
(TCGA) database. The gene read-count data were then transformed 
to transcript per million (TPM) values and cases with survival time 
equal to 0 were excluded. As a result, 525 patient samples were used 
in the downstream analysis. To ensure the reliability of results, we 
also downloaded a pRCC dataset from the TCGA, which included 
288 patient samples and clinical information.

2.2 | Consensus clustering of tumor-infiltrating 
immune cell and function signatures

The proportion of the 29 immune signatures was quantified (16 
immune cell and 13 immune-associated function signatures) in 
each ccRCC sample using a single-sample gene set enrichment 
analysis (ssGSEA) algorithm. The ESTIMATE algorithm was applied 
to evaluate the immune cell infiltration level (immune score) and 
the stromal content (stromal score) for each ccRCC sample. The 
ConsensuClusterPlus R package was used to perform consensus 
clustering of each ccRCC sample based on the 29 immune signature 
and the Kaplan-Meier method was used in the analysis.16

2.3 | Differentially expression genes associated 
with tumor immune infiltration subgroup

The ccRCC patients were classified into three TII subgroups based 
on the immune infiltrate level to identify DEG related to TII sub-
groups. The DEG were identified using the “limma” R package with 
the screening criterion: absolute fold change >1.5 and false discov-
ery rate (FDR) <0.05.17

2.4 | Construction of tumor immune 
infiltration score

The ConsensuClusterPlus R package was used to perform consen-
sus clustering of each ccRCC sample based on DEG expression data. 
Then, the DEG values that were positively and negatively associ-
ated with the gene cluster signatures served as TII gene signatures 
A and B, respectively. Principal component analysis (PCA) was used 
to define the TII score and the principal component 1 was extracted 
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as the TII signature score. Finally, a method similar to immune cell 
infiltration (ICI) was used as an index to define the TII score of each 
ccRCC sample:

TII score = Ʃ PC1A − Ʃ PC1B.
To explore the potential pathway of gene signatures A and B, 

“clusterProfiler” was used to identify the significant pathways with 
the criterion: FDR < 0.05.18

2.5 | External validation with the tumor immune 
infiltration score

An independent dataset named IMvigor210 was downloaded from a 
freely available data package (http://resea​rch-pub.gene.com/IMvig​
or210​CoreB​iologies). The dataset comprises 298 urothelial cancer 
cases, including immunotherapy and corresponding clinical informa-
tion. After that, the TII score and its predictive value were deter-
mined through analyzing the IMvigor210 dataset.

2.6 | Chemotherapy drug response prediction

The chemotherapeutic response of each ccRCC sample was pre-
dicted based on the Genomics of Drug Sensitivity in Cancer (GDSC) 
database (https://www.cance​rrxge​ne.org/).19 Four commonly used 
chemo drugs, sorafenib, sunitinib, pazopanib, and axitinib, were se-
lected. The prediction procedure was carried out using R package 
“pRRophetic,” the half-maximal inhibitory concentration (IC50) of 
ccRCC was estimated by ridge regression, and the prediction accu-
racy was evaluated by 10-fold cross-validation based on the GDSC 
training set.

2.7 | Prediction of therapeutic 
response of compounds

To determine which target compounds may be useful, we first identi-
fied the DEG between the high TII score and the low TII score groups 
using the limma R package. The top 1000 DEG were uploaded to the 
connectivity map (CMap) (https://www.broad​insti​tute.org/conne​
ctivi​ty-map-cmap).20

2.8 | Statistical analyses

All statistical testing and analysis was implemented in the R envi-
ronment with version 4.0.2. The χ2-test was used for the categori-
cal data, while the Wilcoxon and Kruskal tests were applied for 
two-group and three-group continuous data, respectively. Kaplan-
Meier curve analysis was used to generate the survival curve of 
the subgroup, the gene cluster, and the TII score, respectively. The 
optimal cutoff point for classifying patients into the two groups in 
each dataset was determined by the “surv_cutpoint” function in the 

“survminer” R package. In addition, log-rank test analysis was used to 
explore the survival difference between the two groups.

3  | RESULTS

3.1 | Landscape of tumor immune infiltration in 
clear cell renal cell carcinoma

A total of 29 immune signatures were retrieved (16 immune cell 
and 13 immune-associated function signatures). An ssGSEA algo-
rithm was applied to quantify the infiltration level of immune cell 
and function signatures. According to the 525 ccRCC patients with 
tumor immune infiltration (TII) profiles, a consensus clustering algo-
rithm was used to categorize patients into distinct subgroups. The 
cumulative distribution function (CDF) curve and the delta curve 
were used to determine the optimal k value, and k = 5 was even-
tually selected as the optimal cluster number after comprehensive 
consideration (Figure  S1A-C). Five subgroups (designated C1, C2, 
C3, C4, and C5) have significant survival differences (log-rank test P 
value = .03, Figure 1A). PCA were performed to decrease the dimen-
sion of features to validate the subgroup assignment. As shown in 
Figure 1B, the subgroup designations were basically consistent with 
two-dimensional distribution patterns. The two key immune check-
points (PD1 and PD-L1) were also analyzed in each TII subgroup 
using the Kruskal-Wallis test. PD1 had a high expression level in 
subgroups C1 and C4, while subgroup C3 showed a high expression 
level of PD-L1 (Figure 1C,D). In addition, the five subgroups had dif-
ferent infiltration level patterns: subgroup 3 had the highest immune 
infiltration level; subgroups 1, 5, and 4 were ranked second, third, 
and fourth, while subgroup 2 showed the lowest immune infiltra-
tion level (Figure  2A). Considering that subgroups C1 and C4 had 
a better prognosis when compared to C2, C3, and C5, we divided 
all ccRCC samples into a better prognosis group (C1&4) and a poor 
prognosis group (C2&3&5). The KM curve analysis suggested that 
there was a significant divergence between the two groups (log-rank 
P value = 1.303e-03, Figure 2B).

3.2 | Characterization of immune gene subgroups

To reveal the underlying biological features of distinct immune infil-
tration subgroups, a differential expression analysis was conducted 
to characterize transcriptome variations between subgroups C1&4 
and C2&3&5. As a result, a total of 658 DEG were identified and sub-
sequently exploited for the consensus clustering analysis (Table S1). 
Eventually, three immune-related gene clusters were obtained 
based on the CDF curve and the delta curve analysis (Figure S2A-C; 
Figure 3). The KM curve analysis results indicated that a significant 
survival difference existed in gene clusters A, B, and C. Among the 
three gene clusters, cluster A corresponded to more subgroup C3 
cases and a median survival outcome. The patients in cluster B were 
characterized by a poor survival outcome and showed a negative 

http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
https://www.cancerrxgene.org/
https://www.broadinstitute.org/connectivity-map-cmap
https://www.broadinstitute.org/connectivity-map-cmap
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correlation with DEG in general. The subjects of gene cluster C had 
better survival outcomes and there was a significant increase of 
subgroup C1 cases in this group (Figure  4A). In addition, the PCA 
also showed a significant distinction among three gene clusters 
(Figure 4B). The expression profile of PD1/PD-L1 showed a high ex-
pression level in cluster C, while cluster B was characterized by a 
lower PD1/PD-L1 expression level, based on Kruskal-Wallis analysis 
(Figure 4C,D). The immune cell infiltration level was further evalu-
ated, as well as the immune function level of the three gene clusters. 
We found that gene cluster A was marked by all immune cell and 
immune function infiltration, except the mast cells and type II inter-
feron (IFN) response. The subject in gene cluster B had the lowest 

immune cell and immune function infiltration. The patients in gene 
cluster C were characterized by a significantly high density of mast 
cells and type II IFN response infiltration (Figure 5A,B). Moreover, 
the immune score and stromal score presented a similar trend, with 
a high infiltration level in gene cluster A and a low infiltration level 
in gene clusters B and C (Figure 5C,D) Previously published studies 
showed that high immune and stromal scores are associated with an 
unfavorable prognosis, which is consistent with our result.21

Among these DEG, a total of 443 gene signatures that posi-
tively correlated with gene clusters were referred to as TII signa-
ture A; the rest of gene signatures that negatively correlated with 
gene clusters were referred to as TII signature B (Figure 3). Pathway 

F I G U R E  1   The landscape of tumor immune infiltration in clear cell renal cell carcinoma (ccRCC) patients. (A) Cluster survival analysis 
of the five subgroups. (B) Principal component analysis supported the stratification into five subgroups of ccRCC. (C) Comparisons of the 
expression level of PD1 in five subgroups. (D) Comparisons of the expression level of PD-L1 in five subgroups
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enrichment analysis was performed using the clusterProfiler R pack-
age. As shown in Figure  6, gene signature A was mainly enriched 
in the PI3K-Akt signaling pathway, ECM-receptor interaction, Rap 1 

signaling pathway, and focal adhesion, while cytokine-cytokine re-
ceptor interaction, the T cell receptor signaling pathway, the chemo-
kine signaling pathway, Th17 cell differentiation, PD-L1 expression 

F I G U R E  2   The association between clinical traits and subgroups. (A) A heatmap including the clinical traits and 29 immune signatures. (B) 
Cluster survival analysis of subgroups C1&4 and C2&3&5

F I G U R E  3   Consensus clustering 
of common differentially expressed 
genes among two subgroups (C1&4 and 
c2&3&5) to categorize patients into three 
gene clusters (A, B, and C)
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and the PD-1 checkpoint pathway in cancer, and Th1 and Th2 cell 
differentiation were observed in gene signature B.

3.3 | Construction of tumor immune 
infiltration score

To acquire a quantitative index for the TII landscape in ccRCC pa-
tients, PCA was applied to calculate the two aggregate scores: (a) 
the TII score A retrieved from gene signature A; and (b) the TII score 

B retrieved from gene signature B. The TIIA and TIIB of each ccRCC 
patient was computed as the sum of relevant individual scores. 
Ultimately, we obtained the gene signature score and defined it as 
the TII score. The patients were then classified into high TII score 
and low TII score groups based on the optimal cutoff by using the 
“survminer” R package. KM survival curve analysis results showed 
that patients in the high TII score group had a significantly better 
prognosis than those in the low TII score group (Figure 7A). In ad-
dition, the distribution of ccRCC patients in three gene clusters 
and in the TII score group are presented in Figure 7B. The gene set 

F I G U R E  4   Identification of gene cluster. (A) KM survival curve analysis of the three gene clusters. (B) Principal component analysis 
supported the stratification into three gene clusters of clear cell renal cell carcinoma (ccRCC). (C) Comparisons of expression level of PD1 in 
three gene clusters. (D) Comparisons of expression level of PD-L1 in three gene clusters
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enrichment analysis (GSEA) revealed that patients in the high TII 
score group were mainly enriched in the ERBB signaling pathway, 
the MAPK signaling pathway, the MTOR signaling pathway, renal cell 

carcinoma, spliceosome, the TGF beta signaling pathway, and the 
ubiquitin mediated proteolysis pathway (Figure  7C). Patients with 
high non-synonymous variants had more CD8+ T cell infiltration in 

F I G U R E  5   Tumor immune infiltration in three gene clusters. (A) The 16 immune cell infiltration level in three gene clusters. (B) The 13 
immune function level in three gene clusters (C) The immune score in three gene clusters. (D) The stromal score in three gene clusters

F I G U R E  6   KEGG pathway enrichment analysis for the gene signature A (A) and signature B (B), respectively
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the tumor tissue, so that these tumors could be identified and elimi-
nated. This indicates that the tumor burden mutation (TMB) plays 
an essential role in cancer immunotherapy. Considering the impor-
tance of this clinical implication, the intrinsic relationship between 
TMB and TII were further investigated. A survival analysis between 
high TMB and low TMB value groups based on the optimal cutoff 

was performed. As presented in Figure 7D, we discovered that pa-
tients in the low TMB group have a better prognosis than those in 
the high TMB group. The synergistic effect of the TMB value and the 
TII score was further evaluated through prognostic stratification of 
ccRCC. The stratified survival analysis results showed that TMB sta-
tus did not interfere with predictions based on ICI scores. There is a 

F I G U R E  7   Construction of the tumor immune infiltration (TII) score. (A) KM survival curve analysis between high TII score and low TII 
score groups. (B) Alluvial diagram of TII gene cluster distribution in groups with distinct gene clusters, TII scores, and survival status. (C) 
Gene set enrichment analysis (GSEA) for the high TII score group. (D) KM survival curve analysis between high TMB value and low TMB 
value groups. (E) KM survival curves analysis for clear cell renal cell carcinoma (ccRCC) patients stratified by both TMB and TII scores

F I G U R E  8   Tumor immune infiltration in tumor immune infiltration (TII) score. (A) The 16 immune cell infiltration level in the two TII score 
groups. (B) The 13 immune function level in the two TII score groups
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significant survival difference between the TII high score group and 
the low score group of patients (log-rank P value < .0001, Figure 7E). 
These results suggested that the TII score can serve as an effective 
predictor, independent of TMB. We also evaluated the infiltration 
level of 16 immune cells and 13 immune functions between the high 
TII score and low TII score groups. We discovered that patients in 
the low TII score group had a significantly higher immune cell infiltra-
tion level overall, except for mast cells, natural killer (NK) cells, neu-
trophils, and immature dendritic cells. With the exception of type II 
IFN response and MHC class I, all the immune functions had a high 
infiltration level in the low TII score group (Figure  8A,B). Immune 
checkpoint blockades have emerged as a promising therapy for 
many cancers. Therefore, we subsequently investigate the expres-
sion level of eight immune checkpoints, including CD274 (PD-L1), 
PDCD1LG2 (PD-L2), PDCD1 (PD-1), LAG3, TIGIT, IDO1, CTLA-4, 
and HAVCR2, in the TII score. We observed that most genes, except 
for PDCD1LG2, IDO1, and HAVCR2, presented a significantly high 
expression level in the low TII score group (Figure 9A).

3.4 | Role of tumor immune infiltration score in the 
sensitivity prediction for chemotherapies

Presently, surgery and chemotherapy are the most common treat-
ments for the cancer. Therefore, we evaluated the response of the 
two TII score groups to four chemotherapy drugs: sorafenib, suni-
tinib, pazopanib, and axitinib. We used the ridge regression to train 
the predictive model on the GDSC cell line dataset and the predictive 
accuracy was assessed through 10-fold cross-validation. The IC50 
value for each ccRCC patient based on a predictive model of eight 
chemo drugs was then calculated. We observed that patients in the 
high TII score group showed more sensitivity to pazopanib (Wilcoxon 
test P value = 0.0489) (Figure 9B). However, the other chemotherapy 
drugs showed no significant difference in the TII score group.

3.5 | Candidate small molecular compounds 
targeting tumor immune infiltration score

To identify TII-specific small molecular compounds, we first per-
formed differential expression analysis between high TII score and 
low TII score groups using the “limma” R package. According to the 
previous screening criteria, we identified 125 upregulated genes 
and 77 downregulated genes (Figure  10A,B). These DEG were 
then uploaded to the CMap database. As a result, a total of 73 
compounds with 51 mechanisms of action (MOA) were obtained 
(Figure 10C). We discovered that multiple compounds shared one 
MOA. For example, four compounds (indoprofen, valdecoxib, ni-
mesulide, and nabumetone) shared the MOA of the cyclooxyge-
nase inhibitor. Four compounds (remoxipride, piperacetazine, 
molindone, and spiperone) shared the MOA of the dopamine re-
ceptor antagonist. Our study identified compounds targeting the 
TII signature and might provide therapeutic targets for further 
study.

3.6 | Relationship between tumor immune 
infiltration score and clinical information

To explore the relationship between the TII score and clinical infor-
mation (status, gender, age, grade, and stage), we used the Fisher test 
to analyze the difference between high TII score and low TII score 
groups. As shown in Figure 11A, we observed that the status (Fisher 
test P value = 9.9e-10), gender (fisher test P value = 3.5e-04), grade 
(fisher test P value = 2e-14), and stage (fisher test P value = 4e-08) 
were significantly different in the two TII groups. A high TII score 
was associated with more patients being alive and alive case and 
more female patients. A low TII score corresponded to more dead 
patients and more advance grade and stage patients. We also per-
formed multivariate Cox regression analysis for the clinical traits and 

F I G U R E  9   Expression level of immune check point (A) and sensitivity of four chemo drugs (B) evaluation in the two tumor immune 
infiltration (TII) score groups
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F I G U R E  1 0   Small molecular compounds identification based on the differentially expressed genes. (A) Volcano plot for the differentially 
expressed genes; green dots represent the downregulated genes, red dots represent the upregulated genes, and the gray dots represent the 
non-significant genes. (B) Heatmap of the differentially expressed genes expression. (C) Small molecular compound identification through 
CMap analysis based on the differentially expressed genes
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the TII score for overall survival (OS) and disease-free survival (DFS). 
We found that the TII score can serve as an independent predictor 
for the OS and DFS in ccRCC patients (Figure 11B). The TII score was 
further compared with previously reported immune signatures22,23 
(Figure S3).

3.7 | Validation of the tumor immune 
infiltration score

To validate the prognostic value of the TII score, we first performed 
a KM survival curve analysis in the DFS. We discovered that the 

F I G U R E  11   Clinical significance of the tumor immune infiltration (TII) score. (A) Clinical divergence of clinical traits (survival status, age, 
gender, stage, and grade) in the high TII score group and the low TII score group using the Fisher test or the χ2- test. (B) Multivariate Cox 
regression analysis for the clinical trait (age, gender, stage, and grade) and TII score in the overall survival and disease-free survival of clear 
cell renal cell carcinoma (ccRCC) patients

F I G U R E  1 2   Validation of the tumor 
immune infiltration (TII) score. (A) KM 
survival curve analysis of tumor immune 
infiltration (TII) score group in the disease-
free survival dataset. (B) KM survival 
curve analysis of the TII score group in 
the papillary renal cell carcinoma dataset. 
(C) KM survival curve analysis of TII score 
group in the IMvigor210 dataset. (D) Rate 
of clinical response (CR/PR and SD/PD) in 
TII score groups in the IMvigor210 cohort
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patients in the high TII score group had a better survival outcome 
than those in the low TII score group, which is consistent with 
the OS result (log-rank test P value = 2.821e-05; Figure 12A). We 
downloaded another RCC dataset (pRCC) from the TCGA database 
to assess the applicability of the TII score. Similarly, patients in the 
high TII score group also had a significantly better prognosis than 
those in the low TII score group (log-rank test P value = 2.035e-03; 
Figure  12B). Immune checkpoint blockade therapy has achieved 
remarkable results in cancer therapy, especially in advanced-stage 
patients, although it not effective for all patients. The utility of the 
TII score was further explored to investigate the benefit of immuno-
therapy for patients. Therefore, the patients who received the anti-
PD-L1 immunotherapy in the IMvigor210 cohort were assigned low 
TII scores or high TII scores. The KM survival curve analysis result in-
dicated that patients in the high TII score group had a better survival 
rate than those in the low TII score group (Figure 12C). In addition, 
the response rate of anti-PD-L1 immunotherapy in the high TII score 
group was high in the low TII score group (Figure 12D).

4  | DISCUSSION

The application of immunotherapy for ccRCC, such as use of PD-
L1/PD-1 inhibitors, has achieved significant progress.24 Nivolumab 
(a PD-1 immune checkpoint antibody) has demonstrated its efficacy 
in advanced renal cell carcinoma and was approved by the Food 
and Drug Administration in the 2015.25 Moreover, in Motzer et al, 
combined immunotherapy with nivolumab plus ipilimumab led to a 
higher objective response rate and longer progression-free survival 
when compared with sunitinib in intermediate-risk and poor-risk 
patients with previously untreated advanced-stage RCC cases.26 
However, it is worth noting that the individual variation at the ge-
netic level resulted in only a minority of patients benefiting from 
the curative effect; outcomes for other patients were unsatisfac-
tory. In the present study, we applied multiple algorithms to quantify 
the tumor immune infiltration of ccRCC. This study demonstrated 
that the TII score is an effective and independent biomarker for the 
survival of ccRCC and is a predictive indicator in evaluating the re-
sponse to immunotherapy.

Numerous studies have revealed that immune cell function 
disorders will lead to immunosuppression and promote tumor pro-
gression and escape.27,28 Therefore, it is necessary to analyze the 
intrinsic correlation of TME and the survival of patients. In this study, 
we used the ssGSEA algorithm to quantify 29 immune signature in-
filtration levels and further classified into five distinct groups using 
the consensus clustering algorithm. Interestingly, we found that 
the infiltration level exhibited different expression patterns in sub-
groups; subgroup C3 had the highest immune infiltration level, while 
subgroup C2 had the lowest immune infiltration level. To the best 
of our knowledge, this is the first attempt in ccRCC patients to use 
the ssGSEA algorithm to quantify the 29 immune signatures and to 
classify the tumor infiltration level through the consensus cluster-
ing algorithm. Subgroups C1 and C4 had a better survival outcome 

compared to subgroups C2, C3, and C5. We thus categorized pa-
tients into a better prognosis group and a poor prognosis group, and 
the results revealed a significant difference in survival between the 
two groups.

Furthermore, in this study, the mRNA transcriptome difference 
between the two prognosis groups proved to be significantly associ-
ated with the immune-related pathway. These deferentially expres-
sion genes were assumed to be TII-related signature genes. By using 
the same consensus clustering methods, three distinct genomic 
clusters were identified, which showed a significant correlation with 
the immune infiltration level. Similar to previous studies, the lower 
immune score and stromal score cluster (gene cluster C) was asso-
ciated with a better survival outcome, indicating that the gene clus-
ter has the potential to promote the development of more precise 
immunotherapy.

Considering the individual heterogeneity of TME, quantifi-
cation of the TII modification patterns of individual tumors is 
urgently needed. The individual-based model originated from 
subgroup biomarkers has been well constructed in gastric can-
cer and head and neck squamous cell carcinoma to increase 
the accuracy of survival prediction.7 In our study, we identified 
a “subgroup biomarker” and constructed a TII score to quantify 
the immune infiltration through a consensus clustering algorithm 
and differential expression analysis. Through survival analysis, 
we discovered that the high TII score was associated with a bet-
ter prognosis than low TII scores, which was further validated in 
the DFS and pRCC dataset. The impact of TME on the survival 
of patients is well documented in the previous research. The TII 
score also can serve as an independent predictor for OS and DFS 
in ccRCC patients by performing multivariate Cox regression anal-
ysis. The GSEA analysis result revealed that the genes in the high 
TII score group were enriched in immunosuppressive pathways, 
such as the ERBB signaling pathway, the MAKP signaling path-
way, the MTOR signaling pathway, and the TGF BETA signaling 
pathway.29 Previous research demonstrated that CD4+ T cells can 
differentiate into opposite functions of subsets, including CD8+ 
T cell activation, and NK cell killing, recognition of cancer anti-
gens, and promoting CD8+ T cells in tumor immune responses. 
In the current study, we also evaluated the relationship between 
TII scores and TII patterns. Most of immune cells, such as B cells 
CD8+ T cell, Tfh cells, T helper cells, Th1 cells, and Th2 cells, had 
a higher level in the low TII score group than high TII score group. 
Therefore, the anti-tumor impact of the high infiltration level of 
T cells is offset by the strong immunosuppressive pathway acti-
vated by overexpressed immune checkpoint genes.30 Sorafenib, 
sunitinib, cisplatin, gefitinib, vinblastine, vinorelbine, vorinostat, 
and gemcitabine have been widely applied in cancer chemother-
apy and have achieved some progress, especially sorafenib and 
sunitinib, which have been approved by the US Food and Drug 
Administration for treatment of RCC.31 Here, we assessed the sen-
sitivity of eight chemo drugs using the TII score. We found that the 
patients in the high TII score group could benefit significantly from 
sunitinib, cisplatin, and vinblastine. In addition, using the CMap 
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database, we demonstrated 73 compounds with 51 MOA. These 
compounds include the HDAC inhibitor (vorinostat, scriptaid, and 
depudecin), the ATPase inhibitor (thapsigargin and digitoxigenin), 
the EGFR inhibitor (4,5-dianilinophthalimide, butein), the immu-
nosuppressant (mercaptopurine), the PARP inhibitor (NU-1025), 
and the PPAR receptor agonist (clofibrate). We also identified 
other candidate compounds that might have an impact in the im-
plementation of targeting TII score-related treatments for ccRCC 
patients. The tumor mutational burden (TMB) was considered to 
be an effective and independent predictor of immunotherapy re-
sponse. Therefore, we analyzed the relationship between TMB 
and the TII score. We demonstrated that there is no association 
between TMB and TII score (Cor = 0.090, P value = 0.112). The 
stratified survival analysis indicated that the prognostic value of 
the TII score was independent of TMB in ccRCC.

Considering the lower correlation between the TII score and 
TMB, individual predictive values and the GSEA outcome of TII 
scores, we inferred that the TII score and TMB represent distinct 
aspects of tumor immunobiology and can predict patient response 
to immunotherapy independently of TMB. Ultimately, we assessed 
the benefit that patients received from immunotherapy in the 
IMvigor210 dataset and found that the high TII score was elevated 
in ccRCC patients responding to immunotherapy, which validated its 
prognostic value. Overall, this indicates that immunotherapy might 
be beneficial for ccRCC patients with high TII scores.

In conclusion, we comprehensively investigated the TII landscape 
of ccRCC patients, which may contribute to enhancing our knowl-
edge of the TME infiltrating characterization and assist in guiding 
more effective immunotherapy strategies. Moreover, the construc-
tion of the TII score can be used to effectively and independently 
predict the OS and DFS of ccRCC patients. Future studies should 
focus on the potential compounds from our results and validate our 
research findings.
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