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An immediate transcriptional signature associated with
response to the histone deacetylase inhibitor Givinostat
in T acute lymphoblastic leukemia xenografts

M Pinazza1,6, C Borga2,6, V Agnusdei3, S Minuzzo1, G Fossati4, M Paganin2, B Michielotto2, A De Paoli5, G Basso2, A Amadori1,3,
G te Kronnie2,6 and S Indraccolo*,3,6

Despite some success with certain hematological malignancies and in contrast with the strong pro-apoptotic effects measured
in vitro, the overall response rate of acute lymphoblastic leukemia (ALL) to histone deacetylase inhibitors (HDACis) is low. With the
aim to improve the understanding of how HDACis work in vivo, we investigated the therapeutic efficacy of the clinically approved
HDACi Givinostat in a collection of nine pediatric human T-ALL engrafted systemically in NOD/SCID mice. We observed highly
heterogeneous antileukemia responses to Givinostat, associated with reduction of the percentage of infiltrating blasts in target
organs, induction of apoptosis and differentiation. These effects were not associated with the T-ALL cytogenetic subgroup.
Transcriptome analysis disclosed an immediate transcriptional signature enriched in genes involved in cell-cycle regulation and
DNA repair, which was validated by quantitative RT-PCR and was associated with in vivo response to this HDACi. Increased
phospho-H2AX levels, a marker of DNA damage, were measured in T-ALL cells from Givinostat responders. These results indicate
that the induction of the DNA damage response could be an early biomarker of the therapeutic effects of Givinostat in T-ALL
models. This information should be considered in the design of future clinical trials with HDACis in acute leukemia.
Cell Death and Disease (2016) 7, e2047; doi:10.1038/cddis.2015.394; published online 14 January 2016

Histone deacetylases (HDACs) are enzymes involved in
remodeling of chromatin and have a key role in the epigenetic
regulation of gene expression. In recent years, inhibition of
HDACs has emerged as a potential strategy to reverse
aberrant epigenetic changes associated with cancer. HDAC
inhibitors (HDACis) have various antitumor effects and have
been shown to promote apoptosis, induce cell-cycle arrest
and differentiation of tumor cells,1,2 as well as to exert
therapeutic activity in preclinical tumor models.3,4 In patients,
HDACis have demonstrated therapeutic potential for some
hematological malignancies, including myelodysplastic syn-
dromes, relapsed non-Hodgkin’s lymphoma and mantle-cell
lymphoma.5 Moreover, three HDACi (Vorinostat, Belinostat,
Romidepsin) received FDA approval for cutaneous or
peripheral T-cell lymphoma.6 Finally, FDA recently approved
Panobinostat – a class I–II HDACi – for treatment of
multiple myeloma in combination with Bortezomib and
Dexamethasone.7

T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy
characterized by clonal expansion of T-lymphoid progenitors.8

Although the majority of pediatric T-ALL patients can be cured
by current protocols, about one-fourth of patients has
chemotherapy-resistant disease or relapse after therapy.9

Although these patients would greatly benefit from new
treatments, the overall therapeutic potential of HDACis in
acute leukemia is quite modest. In phase I clinical studies of
Vorinostat and Tefinostat in patients with advanced leukemia
or myelodysplastic syndrome, only a minority (o20%) of
patients experienced hematological improvement or
response.10–12 Future clinical trials with HDACis – either
alone or in combination with other drugs – will likely require
predictive biomarkers of response for patient stratification
purposes.
In sharp contrast with the heterogeneous and often mild

responses observed in patients, in vitro assays show
substantially homogeneous and generally high cytotoxic
responses of leukemia cells to HDACis.3,13–15 What can
account for this apparent discrepancy? In a recent
preclinical study, it was shown that endothelial cells provide a
Notch-dependent pro-tumoral niche for enhancing B-cell
lymphoma survival and chemoresistance.16 Possibly, similar
microenvironment-related mechanisms could contribute to
attenuate the pro-apoptotic effects of HDACis, thus limiting
therapeutic effects in some individuals.
Based on these considerations, when designing this study

we considered mandatory to perform in vivo experiments with
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the final aim to better understand the cellular and
transcriptional effects of HDACis in a complex leukemia
model. We investigated antileukemia effects of Givinostat
(ITF 2357), a pan-HDACi used in numerous phase II clinical
trials, including for relapsed leukemias, myelomas17 and
chronic myeloproliferative neoplasms,18 in patient-derived
T-ALL xenografts. Heterogeneous antileukemia response to
Givinostat were observed, and we found an immediate
transcriptional signature enriched in genes involved in
cell-cycle regulation and in DNA repair, which is associated
with in vivo response to Givinostat.

Results

Therapeutic effects of Givinostat in T-ALL xenografts. To
evaluate the therapeutic activity of HDACis in the contest of
T-ALL, we initially set up a mouse trial with a panel of nine
patient-derived xenografts, previously established from pediatric
T-ALL samples in nonobese diabetic/severe combined
immunodeficiency mice (NOD/SCID mice).19 Key clinical
and genetic features of these xenografts and the donor’s
T-ALL, such as cytogenetic subgroup, prednisone sensitivity
and MRD risk are reported in Table 1; the diagnostic
immunophenotype is shown in Supplementary Table SIV.
In this early intervention trial, T-ALL cells were

intravenously (i.v.) injected in NOD/SCID mice at 5 × 106

cells/mouse (n=5/6 mice per group). Givinostat (25 mg/kg)
or polyethylene glycol (PEG)400/H2O (vehicle) were
administrated 5 days per week, and treatment started 2 days
after cell injection and extended up to killing of the mice
(Figure 1a).
Antileukemia response was evaluated by six parameters,

including: (I) the percentage of CD7-positive cells in peripheral
blood, (II–III) infiltration of leukemic cells in the spleen and
bone marrow (BM) at killing, (IV–V) levels of apoptosis of
CD5-positive cells in the spleen and BM at killing, and (VI)
spleen weight. Xenografts were divided into good, partial and
poor responders according to the modulation of at least five,
two up to four and one parameters, respectively (Table 1).
PD-TALL8, PD-TALL15, PD-TALL16, PD-TALL19 and

PD-TALL43 were good responders and displayed a significant
reduction of leukemic cells in the blood, aswell as in the spleen
and BM at killing, and an increase in the levels of apoptosis in
spleen and BM compared with controls (Figure 1b). Variations

of spleen weight were detected only in some of the xenografts
analyzed. PD-TALL12 and PD-TALL25 partially responded to
treatment showing modulation of few parameters, including
reduction of circulating cells and infiltration of spleen. Finally,
PD-TALL6 and PD-TALL9 displayed minimal response to
Givinostat, as shown by moderately reduced infiltration of
spleen and BM by leukemic cells with minimal effects on
T-ALL cell viability.
Despite markedly heterogeneous therapeutic effects,

HDAC inhibition occurred in all samples, as shown by western
blotting analysis of the acetylated form of α-tubulin in
T-ALL cells from the spleen of mice representative of each
group (Figure 1c). Notable, at variance with these in vivo
results, incubation of Givinostat with T-ALL cells freshly
isolated from the spleen of mice caused apoptosis in most
leukemia cells (480%), with minimal variations among the
patient-derived xenograft (PDX) tested (data not shown).
We subsequently investigated whether HDAC inhibition

could also improve survival. To this end, mice injected with
PD-TALL8 and PD-TALL16 cells (n= 6 mice per group) were
treated by daily injections of Givinostat, starting 2 days after
T-ALL cell injection. Compared with the control group,
Givinostat extended survival of PD-TALL8 mice from
32±1.9 to 42± 2 days (Log Rank P=0.0008) and survival
of PD-TALL16 mice from 40±2.9 to 60± 5 days (Log Rank
P= 0.0011; Figure 1d). In conclusion, these experiments
indicated heterogeneous therapeutic effects of Givinostat in
T-ALL xenografts, suggesting that intrinsic factors modulate
therapeutic efficacy.

Givinostat has mild effects on TLX and TAL-LMO target
genes expression in vivo. Previous studies suggested
that pro-apoptotic effects of HDACis in T-ALL cells could be
due to downmodulation of TAL1 expression.20 To investigate
whether antitumor effects were associated with relevant
modulation of TAL-LMO signaling in our model, we
treated NOD/SCID mice (n= 5/6 per group) with Givinostat
(25 mg/kg) or PEG400/H2O (vehicle). The drug was
administered as a single dose when mice had full-blown
leukemia – meaning the percentage of circulating blasts was
410% and the percentage of leukemic infiltrating cells in the
spleen and BM was 485%. Spleen and BM infiltration by
T-ALL cells was very high and comparable between treated
and untreated mice (data not shown). Mice were killed 6 h

Table 1 Clinical and molecular features of T-ALL patients and xenografts

Sample ID Gender Age (years) Phenotype MRD risk PGR/PPR PDX genetic subgroup PDX response to Givinostat

PD-TALL6 M 13 T Int MR PGR TAL-LMO Poor
PD-TALL8 F 3 T Int MR PPR TLX1 Good
PD-TALL9 M 9 Early T HR Deceased TAL-LMO Poor
PD-TALL12 M 4 Early T MR PGR TAL-LMO Partial
PD-TALL15 M 7 T HR PPR TAL-LMO Good
PD-TALL16 M 5 T Mat MR PPR TAL-LMO Good
PD-TALL19 M 16 Early T MR Relapse TLX3 Good
PD-TALL25 M 9 T SR PPR TAL-LMO Partial
PD-TALL43 M 15 T Int. MR PGR TAL-LMO Good

Abbreviations: F, female; HR, high risk; M, male; MR, medium risk; MRD, minimal residual disease; PDX, patient-derived xenograft; PGR, prednisone good responder;
PPR, prednisone poor responder; SR, standard risk.
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after treatment (Figure 2a). We chose this time point
based on previous experiments showing increased tubulin
acetylation after 6 h of treatment with Givinostat (data not
shown). Givinostat affected the expression of some TAL1
target genes (including STAT5A and BMI1), although these
effects were not shared by all the xenografts tested and did
not match antitumor responses (Figure 2b). Moreover, as
TLX1 and TLX3 act as transcriptional repressors by forming a
complex with HDACs,21 we investigated by quantitative
RT-PCR whether HDACis could modulate the expression of
TLX target genes. Interestingly, the expression of ALDH1A1,
GBP5 and CCR7 was upmodulated in Givinostat-treated
mice, suggesting attenuation of TLX-mediated transcriptional
repression of these genes in some but not all xenografts
(Figure 2b). Interestingly, Givinostat significantly reduced the
protein levels of TAL1 in vitro, as previously found by Cardoso
et al.,20 whereas TLX1 and TLX3 protein levels were not
affected by HDAC inhibition (Figures 2c and d and
Supplementary Figure S1), suggesting that Givinostat
regulates transcriptional activity at promoter sites of TLX
target genes.
Altogether, these findings indicated that Givinostat is

associated with partial in vivo modulation of TLX and TAL1
signaling pathways in T-ALL cells. These effects, however, are
not prominent and do not likely account for the therapeutic
activity of Givinostat in mice.

HDACis induced differentiation of a TLX1 xenograft
in vivo. As TLX1/TLX3 are well-established transcriptional
repressors of differentiation21,22 and some TLX-target genes
were upmodulated by Givinostat in vivo, we next investigated
whether Givinostat may restore cell differentiation. To this
aim, we injected PD-TALL8 (TLX1) in NOD/SCID mice
(n= 8/9 mice per group), and when mice developed
full-blown leukemia (as defined above), they were treated
for 5 consecutive days with Givinostat or vehicle. We
analyzed a panel of 13 T-cell surface markers, including
CD1a, CD2, CD3, CyCD3, CD4, CD5, CD7, CD8, CD10,
CD11b, CD34, CD99 and CD117. Treated mice displayed a
significant reduction in the percentage of blasts expressing
CD1a and CD4 surface markers and a slight, albeit not
significant, reduction of the stem cell marker CD117
(Figure 3). These modulations involved markers of T-cell
commitment (CD1a) and T-cell maturation (CD4). At the same
time, treatment decreased the CD4+/CD8+ double-positive
population. In the same experiment, only minimal variations
in the proliferation marker Ki67 were detected
(Supplementary Figure S5). As control of differentiation, we
analyzed the PD-TALL16 xenograft, which belongs to the
TAL-LMO subgroup and is characterized by a T mature
phenotype (Supplementary Table SIV). In line with the
differentiated phenotype of this xenograft, CD1a and CD117
were not expressed by PD-TALL16 cells, and no modulation
of these differentiation markers or other T-cell surface
markers was observed upon Givinostat treatment (data not
shown). These results indicate initial differentiation of a
TLX1-driven xenograft (PD-TALL8) following Givinostat
administration without relevant effects on cell proliferation,
fitting with the upregulation of some TLX target genes
measured by quantitative RT-PCR (qRT-PCR) analysis.

Response to Givinostat is not associated with cytoge-
netic subgroups. Next we argued that genetic subsets of
T-ALL with dis-regulated expression of specific transcription
factors might be more vulnerable to HDACis. To test this
hypothesis, we used oligonucleotide microarrays (Affymetrix
HG U133 Plus 2.0 GeneChip) to analyze the global patterns
of gene expression in the T-ALL xenografts used in this study
and to classify samples into the four main cytogenetic
subgroups described elsewhere.23 Based on this analysis,
seven out of the nine T-ALL xenografts (77.7%) belonged
to the TAL-LMO subgroup, whereas the two remaining
xenografts belonged to either the TLX1 or the TLX3 subgroup
(Table 1). This finding was expected, as TAL-LMO is the most
represented subgroup of T-ALL.24 Good responders included
xenografts belonging to either TLX1/TLX3 or the TAL1-LMO
subgroups, whereas poor responders were exclusively
allocated to the TAL-LMO subgroup. Although limited by the
small number of xenografts analyzed, these results – fitting
the overall mild effects of Givinostat on transcriptional
signatures coordinated by these transcription factors
(see above) – indicate that T-ALL genetic aberrations are
not associated with response to Givinostat treatment.

Microarray analysis highlights a signature associated
with therapeutic response to Givinostat. As the effects of
Givinostat on specific transcription factors active in T-ALL
cells did not seem likely to account for the marked
antileukemia effects observed in vivo, to get a broader view
of the transcriptional effects induced by Givinostat in vivo, we
performed microarray analysis of T-ALL cells recovered from
the spleen of Givinostat-treated mice and controls. To
this end, we injected PD-TALL8 or PD-TALL16 cells
(good responders) and PD-TALL9 (poor responder) in
NOD/SCID mice (n=5/6 mice per group) and administered
Givinostat or vehicle when mice had full-blown leukemia.
Mice were killed 6 h later and oligonucleotide microarrays
(Affymetrix HG U133 Plus 2.0 GeneChip) were used to
analyze modulations of gene expression profiles induced by
the drug. Shrinkage t-test, comparing the treated and vehicle
groups for each set, revealed significant (local false discovery
rate (LFDR)o0.05) differences in the expression of 2965,
441 and 2155 genes for PD-TALL9, PD-TALL8 and
PD-TALL16, respectively. Heat maps depicting supervised
analysis using these gene lists show the difference between
treated and untreated groups for all sets analyzed
(Figure 4a). Ingenuity Pathway Analysis (IPA), separately
performed on genes with 41.2-fold change (log scale) for
each set of treated versus vehicle comparison, revealed a
significant repression of gene networks promoting cell
survival and cell viability in the treated group of both good
responders (P-valueo0.004, Z-scoreo− 3). On the
contrary, these same pathways were predicted to be
activated in the treated group of the poor responder
(P-valueo0.006, Z-score42) (Supplementary Figure S2).
These findings are in agreement with the data previously
described, where high level of apoptosis were found in the
spleen of good responders but not in the poor responder
(Figure 1b). Interestingly, in all three sets of samples
analyzed, Gene Set Enrichment Analysis (GSEA) showed a
positive enrichment of several pathways related to HDAC
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inhibition for the treated group compared with the vehicle
group. Enrichment plots and heat map representations of
the top enrichment (HELLER_HDAC_UP) are shown in
Figures 4b and c. This observation was in line with increased
levels of acetylated tubulin in vivo (Figure 1c) and increased
levels of acetylated histone 3 (lysine 9) in T-ALL cells treated
in vitro with Givinostat (Supplementary Figure S3) and
corroborates the observation that Givinostat inhibits HDAC
activity both in poor and good responders. Microarray data
further confirmed that at the basal level xenografts of good
and poor responders did not show any difference in the
expression of SIRT2 and several HDACs, including HDAC6
(Supplementary Figure S4).
In order to retrieve the immediate response to 6-h Givinostat

treatment independent from respective cytogenetic
differences, the treated groups of good responders (Givinostat
8 and Givinostat 16) were disjointedly compared with the
treated group of the poor responder (Givinostat 9). In addition,
for each comparison, genes that were differentially expressed
at the basal level were eliminated (comparison between
Controls: Vehicle 8 versus Vehicle 9 and Vehicle 16 versus
Vehicle 9, respectively). The intersection of the aforemen-
tioned comparisons identified 293 common genes of which
291 were upregulated (183 genes) or downregulated
(108 genes) in both good responders compared with the poor
responder (Figure 5a). The complete list of 291 genes is
reported in Supplementary Table SV. The common behavior
of 291/293 genes strongly suggests that the two good
responders had a similar response to Givinostat, indepen-
dently from their different cytogenetic background. Database
for Annotation, Visualization and Integrated Discovery
(DAVID) analysis on the list of the 291 common genes
disclosed significant enrichment of genes related to the cell
cycle (P-value= 0.0004; Benjamin: 0.02), including several
DNA repair-related genes in responsive xenografts
(PD-TALL8 and PD-TALL16). IPA software revealed among
the 291 common genes a significant enrichment of more than
one pathway related to DNA repair in good responders
compared with poor responder. Specifically, among the top
canonical pathways, we found the DNA Double-Strand Break
Repair by Non-Homologous End Joining (P-value: 9.77 E-04),
Role of BRCA1 in DNA Damage Response (P-value: 5.53
E-03) and DNA Double-Strand Break Repair by Homologous
Recombination (P-value: 1.7 E-02) (Figure 5b). Interestingly,
all these DNA repair pathways had three genes in common:
RAD50, MLH, and NBN. We validated these transcriptome
findings by quantitative RT-PCR for samples used for
microarray analysis and two additional PDXs treated with a

single dose of Givinostat, including PD-TALL43 (good
responder) and PD-TALL6 (poor responder). Results showed
that poor responders displayed substantially lower expression
levels of RAD50, MLH and NBN as well as the cell-cycle-
related CDC73 gene compared with good responders
(Figure 6a). On the other side, we also analyzed the
expression levels of JAG1 and DLL1, 2 of the top 291 genes
downregulated in good responders compared with poor
responders (Figure 6a). As RAD50, MLH1 and NBN are
well-known DNA repair genes and we found them
overexpressed in good responders, we checked protein levels
of phospho histone 2AX (pH2AX), a marker of DNA damage.
Interestingly, pH2AX levels increased both in good
(PD-TALL8, PD-TALL16 and PD-TALL15) and partial respon-
ders (PD-TALL25) treated 6 h in vitro with Givinostat. On the
contrary, pH2AX levels were not increased in the poor
responder PD-TALL9 (Figure 6b). In conclusion, our results
suggest that DNA damage response could be an early
biomarker of the antileukemic effects of Givinostat in T-ALL
models.

Discussion

The PDX model is well established to investigate novel
therapeutic approaches for T-ALL, as we and others have
recently shown.19,25 With regard to HDACis, Vilas-Zornoza
et al.3 investigated the therapeutic effects of the LBH589 in
ALL xenografts, but that study was limited to one T-ALL PDX
and was therefore not adequately powered to detect possible
variations in themagnitude of the therapeutic response among
different PDXs. Here we evaluated the therapeutic activity of
Givinostat, a pan-HDACi, in nine T-ALL PDXs. We observed
dramatic differences in the therapeutic response, which
enabled us to classify PDXs into good, partial and
non-responders. Notably, increased acetylation of tubulin or
histones was invariably observed, in line with previous clinical
studies with other HDACis,10 indicating that Givinostat
inhibited its pharmacological targets both in responders
and non-responders. Moreover, no significant differences
were observed in HDAC transcript levels (including
HDAC1, HDAC3, HDAC5, HDAC6, HDAC8, HDAC10) among
the various samples analyzed (data not shown). Induction of
leukemia cell death was themost prominent biological effect of
Givinostat in vivo. The percentage of apoptotic blasts in good
responders was heterogeneous but generally higher in the
spleen than in the BM (66.5±17.5% versus 42.7±29.8%).
This finding resembles what we observed in a previous study
with an antibody blocking the NOTCH ligand DLL4,25 probably
reflecting a protective role of the BM microenvironment.

Figure 1 Therapeutic effects of Givinostat in patient-derived T-ALL xenografts. (a) Outline of treatment with Givinostat (ITF2357) or vehicle (PEG400/H2O). NOD/SCID mice
(n= 5/6 mice/group) were intraperitoneally treated with Givinostat (25 mg/kg) or vehicle 2 days after i.v. injection of T-ALL cells (5 × 106cells/mouse). Givinostat was subsequently
administered 5 days a week. Flow cytometric analysis of blood samples was used to track leukemia engraftment and progression. (b) Measurement of circulating blasts by flow
cytometry after the last blood drawing (left panel, top) and quantification of infiltrating cells in the spleen (middle panel, top) and in the BM (right panel, top) at killing. Quantification
of apoptotic leukemia cells in the spleen (left panel, bottom) and BM (middle panel, bottom). The spleen weight at killing was also reported (right panel, bottom). Results were
expressed as mean value±S.D. Statistically significant differences are indicated (*Po0.05; **Po0.01; ***Po0.001). (c) Levels of acetylated α-tubulin were measured by
western blotting analysis in PD-TALL8 (good responder), PD-TALL12 (partial responder) and PD-TALL9 (poor responder) cells obtained from the spleen of mice. A representative
blot is shown. (d) Kaplan–Meier survival curves of mice engrafted with PD-TALL8 and PD-TALL16 after treatment with Givinostat or Vehicle (n= 6 mice/group) (PD-TALL8: Log
Rank P= 0.0008; PD-TALL16: Log Rank P= 0.0011)
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In the case of PD-TALL8, we also found induction of cell
differentiation, as indicated by variations in CD1a and CD4
expression levels (Figure 3). This result could be due to
attenuation of TLX1/3 transcriptional repression activity, as
suggested by increased levels of the TLX target gene GBP5
measured in this PDX following Givinostat administration
(Figure 2b). On the other hand, proliferation levels were barely
altered, according to measurement of Ki67 positivity in
PD-TALL8 samples (Supplementary Figure S5).
Gene expression profiling identified 291 genes differentially

modulated by Givinostat in association with the therapeutic
response. Among them, DAVID and IPA analysis identified a
higher expression in good compared with poor responders of
some genes involved in DNA repair and regulation of cell
cycle, including RAD50,MLH1, NBN and CDC73, which were
validated and extended by a qRT-PCR approach. RAD50 and
NBN, together with MRE11, form a complex (also called MRN)
critically important for chromosome stability for its role in
repairing broken replication forks as well as two-ended
double-strand breaks (DSBs) in both non-homologous end
joining and homologous recombination repair pathways.26

The histone hyper-acetylation induced by HDACis causes
structural alterations in chromatin, which may render
DNA – normally protected by heterochromatin – more
accessible to exogenous and endogenous DNA-damaging
agents such as UV, X-ray, cytotoxic drugs or reactive oxygen
species (ROS). In this regard, also Hu et al.13 measured
increased levels of genes responsible for cellular defense

against ROS (including GCLC, GSR, GST-pi and SOD1/2)
following treatment of leukemia cells with Vorinostat. ROS
could then be responsible for the induction of DNA damage
response upon HDAC inhibition. Alternatively, it has been
shown that chromatin remodeling can trigger DSBs sensing
even before break recognition proteins binding to DNA ends.26

As certain HDACis can suppress DNA DSB proteins such as
RAD50 protein,27 an higher amount of RAD50 transcripts, as
well as other transcripts associated with DNA repair, upon
Givinostat treatment, could be a compensatory response
against oxidative stress.
In summary, we identified an immediate transcriptional

signature, which is associated with response to Givinostat in
T-ALL PDX. It is important to stress that in a previous
retrospective analysis of a clinical study, upregulation of
ROS scavengers appeared to be a mechanism of HDACi
resistance.10 Moreover, in preclinical studies Vorinostat
triggered ROS generation in HDACi-sensitive but not HDACi-
resistant cells,13 and vorinostat-induced cytotoxicity was
blocked by exposure to antioxidants.15,28 Altogether, these
observations hint at the possibility that Givinostat might cause
stronger cytotoxic effects in leukemia cells endowed with high
endogenous ROS levels. Indeed, responsive PDX increased
pH2AX levels following Givinostat treatment ex vivo, whereas
the poor responder PD-TALL9 displayed no variations in
treated compared with untreated samples (Figure 6b).
Interestingly, microarray data showed higher expression levels
of several antioxidant genes (including SOD2, TXN, GCLC,
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GCLX, RRM2B, BACH2 and NFE2L2) in the Givinostat poor
responder compared with the two good responder PDXs (data
not shown).
This notwithstanding, it cannot be ruled out that other

mechanisms contribute to the antileukemia effect observed.
For instance, we measured decreased Jagged-1 and DLL1
levels in leukemia cells from responsive PDX following
Givinostat administration. In other experimental models,
Jagged-1 contributes to stimulate NOTCH signaling and
protect lymphoma cells from chemotherapy-induced
apoptosis.16 Therefore, it could be that decreased Jagged-1
levels might attenuate NOTCH signaling in T-ALL cells. The
role of Notch signaling in regulating T-ALL survival is well
established,19,29 but altogether our GEP data did not disclose
reduced NOTCH signaling following Givinostat treatment,
although we concede that impaired NOTCH signaling could

emerge at later time points. Moreover, we found some
evidence that Givinostat counteracts TAL1 signaling in vivo,
as shown by reduction of TAL1 protein and STAT5 levels in
some PDX (Figure 2b). The importance of TAL1 signaling in
promoting T-ALL cell survival has been uncovered by others.20

Finally, blockade of TLX1/3 transcriptional repression activity
could trigger T-ALL cells' differentiation, as discussed above.
These findings are in agreement with numerous data showing
a pro-differentiation effect of HDACis, a process well
characterized in other leukemias, such as acute promyelocytic
leukemia and acute myeloid leukemia.30–32 Still, none of these
mechanisms seems to be the key driver of response in vivo, as
therapeutic effects are not associated with a specific genetic
subtype of T-ALL.
In conclusion, although our observations require further

validation, such early response gene signature may enable
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future identification of patients who are more likely to benefit
from treatment with Givinostat or possibly other clinically
approved HDACis.

Materials and Methods
T-ALL xenografts' establishment and tumorigenicity assay. Primary
T-ALL cells (PD-TALL) were obtained from the BM of newly diagnosed pediatric
patients, according to the guidelines of the local ethics committees. Xenografts'
establishment and their genetic characterization are reported elsewhere.19 NOD/SCID
mice were purchased from Charles River (Wilmington, MA, USA). Procedures involving
animals and their care conformed with institutional guidelines that comply with national
and international laws and policies (EEC Council Directive 86/609, OJ L 358,
12 December 1987) and were authorized by the ethical committee of the University of
Padova. Givinostat (ITF2357) was synthetized at Italfarmaco, Milan, Italy. Its purity and
identity were confirmed by chromatographic and mass spectroscopic analyses. To test
the therapeutic effects on leukemia cells, NOD/SCID mice were intraperitoneally injected
with Givinostat (25 mg/kg) or PEG400/H2O (vehicle) 2 days after leukemic cells'
injection. Givinostat was subsequently administered 5 days a week. Human CD5 and
CD7, two surface markers highly expressed by T-ALL cells,19 were used to track
leukemia engraftment by fluorescence activated cell sorting analysis. In all experiments,
mice were inspected twice weekly to detect early signs and symptoms of leukemia, and

blood was drawn to measure T-ALL cell engraftment. When the percentage of circulating
human CD7-positive cells exceeded 15% (i.e., 15–44 days after cell injection, depending
on xenograft), both groups were killed.

Cytofluorimetric analysis. Anti-human FITC-conjugated CD5 and PE-Cy5-
conjugated CD7 antibodies (Coulter, Fullerton, CA, USA) were used for the
detection of T-ALL cells in blood and tissue samples. Apoptosis was evaluated using
the Annexin-V-FLUOS Staining Kit (Roche Diagnostics, Penzberg, Germany).
Antibodies utilized to analyze xenografts' immunophenotype are reported in
Supplementary Table SI. Samples were analyzed on Beckman Coulter EPICS-XL
Flow Cytometer (Coulter), BD LSRII Flow Cytometer or BD FACSCanto II
(BD Biosciences, San Jose, CA, USA).

Reverse transcription-PCR and quantitative PCR. Total RNA was
isolated using TRIzol Reagent according to the manufacturer's instructions. cDNA
was synthesized from 0.5 to 1 μg of total RNA using the Super Script II
Reverse Transcriptase Kit (Life Technologies, Paisley, UK). Expression levels of
TAL1 and TLX target genes were analyzed by Real Time Ready custom panels
(Roche Diagnostics), by using the ΔΔCt method with normalization
against β2-microglobulin expression. qRT-PCR analysis as validation of microarray
results was performed using SYBR green (Life Technologies). Among the
treated samples, we compared good responders with poor responders using the
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2−Delta CT (2−CT gene−CT Beta2 microglobulin) method. Primers used for qRT-PCR are
reported in Supplementary Table SII.

Western blotting analysis. Cells were re-suspended in lysis buffer (NP-40
1%, NaCl 150 mM, Tris HCl pH7.5 50 mM, EDTA 2 mM, NaF, Na3VO4 and protease
inhibitor cocktail), and lysates obtained were quantified using Quantum protein
Assay (EuroClone, Milan, Italy). About 30 μg of proteins were denatured and loaded
in a midi polyacrylamide gel 4–12% (Life Technologies). Separated proteins were
transferred for 2 h at 400 mA on a nitrocellulose membrane (GE Health
Care, Glattbrugg, Switzerland). Membranes were saturated ON at 4 °C with
PBS–0.1% Tween–5% milk and then incubated with primary antibody according to
the manufacturer’s instructions. Immunoprobing was performed using the antibodies
shown in Supplementary Table SIII and was followed by hybridization with a
horseradish peroxidase-conjugated anti-rabbit or anti-mouse Ab (Perkin Elmer,
Waltham, MA, USA). Antigens were identified by luminescent visualization using
Western Lightning plus ECL reagents (Perkin Elmer).

Gene expression profiling and classification of T-ALL
xenografts. Total RNA from the spleen of individual xenografts was extracted
using Trizol according to the manufacturer’s instruction (Life Technologies). RNA
concentration was determined using NanoDrop ND-1000 Spectrophotometer
(NanoDrop Technologies Inc., Wilmington, DE, USA). RNA quality and purity
control was assessed on the Agilent Bioanalyzer 2100 (Agilent Technologies,
Waldbronn, Germany). Only RNA samples that passed these quality controls were
used to perform microarray (Affymetrix HG U133 Plus 2.0 GeneChip Arrays,
Affymetrix, Santa Clara, CA, USA) analysis. In vitro transcription, hybridization and
biotin labeling were performed following the GeneChip 3’IVT Express Kit protocol
(Affymetrix). Microarray data (.CEL files) were generated using the Affymetrix
GeneChip Command Console Software (AGCC). All microarrays passed the quality
controls: scale factor, number of present calls, internal probe calls, Poly-A controls,
and the ratio GAPDH/β-actin 3′/5′. Microarray data (.CEL files) normalized using
the justRMA algorithm were analyzed using R-Bioconductor (Version 2.15.3).
Differentially expressed probe sets were identified by the Shrinkage t-test 33 and an
LFDR was used to correct the P-value. For differently expressed probe sets
between compared groups an LFDR o0.05 was considered significant. Differently
expressed probe sets derived from the Shrinkage t-test were used for supervised
analysis. Supervised classification (PAM (predictive analysis of microarrays)) was
used to construct a predictive algorithm able to classify samples for the main
cytogenetic subgroups (TAL/LMO, TLX1, TLX3, HOXA) as previously described.23

Microarray data have been deposited in NCBI’s Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO accession
number GSE69346.

Gene ontology analysis. The list of 291 common genes was analyzed for
Gene ontology using DAVID v6.7.

Ingenuity pathway analysis. Ingenuity Pathway Analysis 9.0 (Ingenuity
Systems, www.Ingenuity.com) was used to perform a comprehensive analysis of
treated/vehicle comparison for each set of xenografts and to analyze the list of 291
genes that characterized the good or poor response to Givinostat treatment. This
analysis allowed to identify the most significant biological functions, gene networks
and canonical pathways associated with these signature. The Core Analysis was
used to compare our lists of genes with data from literature, and Fisher’s exact test
was used to perform the analysis.

Gene set enrichment analysis. GSEA software version 4.0 was used to
identify gene sets in the public domain that share the expression pattern found in
the current study.34 For each group of gene sets, GSEA calculates and evaluates
the statistical significance of an enrichment score (ES). The ES reflects the degree
to which a gene set is overrepresented. GSEA analysis was performed, collapsing
the probe sets to gene vectors and using the signal-to-noise metric, the gene-set
permutation type and 1000 permutations. As recommended by GSEA guidelines,
only gene sets with an FDR q-valueo0.05 were considered.

Statistical analysis. Results were expressed as mean value± S.D. Statistical
analysis of data was performed using Student’s t-test, when samples followed a
normal distribution, or non-parametric Mann–Whitney test with Bonferroni correction
when appropriate. Differences were considered statistically significant when
Po0.05.
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