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MS-based proteomics generates rapidly increasing
amounts of precise and quantitative information. Anal-
ysis of individual proteomic experiments has made great
strides, but the crucial ability to compare and store
information across different proteome measurements
still presents many challenges. For example, it has been
difficult to avoid contamination of databases with low
quality peptide identifications, to control for the inflation
in false positive identifications when combining data
sets, and to integrate quantitative data. Although, for
example, the contamination with low quality identifica-
tions has been addressed by joint analysis of deposited
raw data in some public repositories, we reasoned that
there should be a role for a database specifically de-
signed for high resolution and quantitative data. Here
we describe a novel database termed MaxQB that stores
and displays collections of large proteomics projects
and allows joint analysis and comparison. We demon-
strate the analysis tools of MaxQB using proteome data
of 11 different human cell lines and 28 mouse tissues.
The database-wide false discovery rate is controlled by
adjusting the project specific cutoff scores for the com-
bined data sets. The 11 cell line proteomes together
identify proteins expressed from more than half of all
human genes. For each protein of interest, expression
levels estimated by label-free quantification can be vi-
sualized across the cell lines. Similarly, the expression
rank order and estimated amount of each protein within
each proteome are plotted. We used MaxQB to calculate
the signal reproducibility of the detected peptides for
the same proteins across different proteomes. Spear-
man rank correlation between peptide intensity and de-
tection probability of identified proteins was greater
than 0.8 for 64% of the proteome, whereas a minority of
proteins have negative correlation. This information can
be used to pinpoint false protein identifications, inde-
pendently of peptide database scores. The information
contained in MaxQB, including high resolution fragment

spectra, is accessible to the community via a user-
friendly web interface at http://www.biochem.mpg.
de/maxqb. Molecular & Cellular Proteomics 11:
10.1074/mcp.M111.014068, 1–10, 2012.

Bottom-up proteomics consists of the MS analysis of en-
zymatically digested proteomes. During the last few years,
measurements have increasingly been performed in a high
resolution, quantitative format (1–3). Each proteomic experi-
ment typically generates large amounts of raw MS and
MS/MS data, which should be made available with each
experiment (4). Computational proteomics is then used to
extract high confidence peptide and protein identifications
and relative ratios between conditions, as well as to distill
biological implications from the data (5–8). Apart from the
analysis of individual projects, several repositories for pro-
teomic experiments have been developed, each with different
purposes in mind. The Global Proteome Machine (9) and
PeptideAtlas (10, 11) are two of the earliest such collections,
with the primary goal of providing a collection of peptide
identifications. These collections can, for example, be mined
for the design of multiple reaction monitoring experiments in
targeted proteomics (12). In contrast, TRANCHE (proteome-
commons.org/tranche) is a repository for the raw mass
spectrometric data (13). PRoteomics IDEntifications data-
base (PRIDE) is a large effort at the European Bioinformatics
Institute, which has collected peptide and protein identifi-
cation data from more than 10,000 experiments (14, 15).
PRIDE, PeptideAtlas, and TRANCHE are also part of the
ProteomeXchange consortium, whose objective is to pro-
vide a single point of submission for MS-based proteomics
data (www.proteomexchange.org). Many dedicated data-
bases for specific organelles or organisms also exist (see for
example Refs. 16 and 17).

Most of these databases accept data from heterogeneous
sources, which presents a challenge in analysis. For instance,
data acquired with different proteomics technologies, differ-
ent computational pipelines and different quantification strat-
egies may be combined in the database. Although these
problems have been addressed to some degree by open
standards and joint analysis of deposited raw data, we rea-
soned that there should be a role for a database designed for
homogeneous, quantitative, high resolution data, which nev-
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ertheless covers a large part of diverse proteomes. Here we
describe the construction of the MaxQB database, which is
meant to address the above challenges, allow novel types of
analyses, and serve as a public resource via a versatile web
interface. We illustrate MaxQB with deep proteome data gen-
erated in an accompanying paper (18). In that study, the
proteomes of 11 widely used cell lines were mapped in depth
with high resolution MS and MS/MS data. We describe anal-
ysis and visualization tools of MaxQB, a solution to the prob-
lem of inflated false positive protein identifications, and ex-
amine the reproducibility of peptide intensity rank order for
each protein in different proteomes.

EXPERIMENTAL PROCEDURES

Database Implementation—MaxQB is structured as a classical
three-tiered application consisting of data, application logic, and
presentation. The data tier is a relational database managed by Ora-
cle Standard Edition Database 11g (Oracle, Redwood Shores, CA).
Because only standard SQL features are used, it is in principle pos-
sible to port the database to other relational database management
systems like the free and open source MySQL database (Oracle). The
application logic tier is implemented in Java 1.6 (Oracle) and Groovy
(http://groovy.codehaus.org) using the Grails web application frame-
work version 1.3.3 (http://grails.org). The web application runs on a
Tomcat 7 web server (http://tomcat.apache.org). Finally, the presen-
tation tier is comprised of dynamically generated html pages and
JavaScript.

Protein Index and Mapping to Genome—Several human proteome
databases were uploaded to MaxQB to build a comprehensive pro-
tein index: Uniprot version 09/2011 (including variants), Ensembl build
64, and International Protein Index (IPI) version 3.87. Identical entries
were collapsed to a single logical protein entry where identity of
entries is defined by strict sequence identity. For example, the entry
for the human protein CDK2 refers to the Uniprot accession number
P24941, the Ensembl protein accession number ENSP00000266970,
and the IPI accession number IPI00031681. All three database entries
have identical sequences. The sequences were first transformed to a
hash key using the Secure Hash Algorithm, which dramatically in-
creased the speed of mapping identical sequences. The locations of
the genes on the chromosomes were obtained from Ensembl (19),
and the ortholog pairs of proteins in different organisms were ob-
tained from InParanoid eukaryotic ortholog database (20).

Cell Line Data—MaxQB already serves as a general repository for
experiments performed in our laboratory. Therefore, it will contain an
increasing number of deep proteome mapping experiments of hu-
man, mouse, and other cell types and species in the future. The data
analyzed here are mainly from a proteome profiling experiment of 11
cell lines described in the accompanying paper (18). Briefly, A549,
GAMG, HEK293, HeLa, HepG2, Jurkat, K562, LnCap, MCF7, RKO,
and U2OS cell lines were grown in standard conditions, lysed, and
prepared according to the Filter Aided Sample Preparation method
(21) and fractionated by pipette-based strong anion exchange into six
fractions. Resulting peptide mixtures were analyzed on-line by LC-
MS/MS on a linear ion trap Orbitrap (VELOS, Thermo Fisher Scientific)
in higher energy collisional dissociation mode (22). Each proteome
measurement—consisting of six 200-min gradients—was repeated in
triplicate. Analysis of the results was performed in MaxQuant (23)
using the Andromeda search engine (24). The results that are pre-
sented here and are accessible in MaxQB are based on data pro-
cessed with the “match between runs” feature enabled. However, the
increase of identifications for additional analyzed cell lines (see Fig. 2)
and the correlation analysis (see Fig. 7) is based on data processed

with this feature disabled. For details see Ref. 18. MaxQB and the
results of the 11-cell line proteome can be accessed freely upon
publication at http://www.biochem.mpg.de/maxqb.

Mouse Tissue Data—In addition to the cell line data, we also
analyze data from a proteome profiling experiment of 28 mouse
tissues (18). Briefly, 28 tissues were dissected from C57BL/6 mice
and snap frozen in liquid nitrogen. The tissues were homogenized,
lysed, and mixed with a SILAC1 spike-in standard. Protein digestion
was performed with endoprotease Lys-C, followed by peptide frac-
tionation by isoelectric focusing. The resulting peptide mixtures were
analyzed on-line by LC-MS/MS on a linear ion trap Orbitrap (XL,
Thermo Fisher Scientific) in CID mode. Each proteome measure-
ment—consisting of twelve 100-min gradients—was repeated in trip-
licate. Analysis of the results was performed in MaxQuant (23) using
the Andromeda search engine (24).

RESULTS AND DISCUSSION

Database Architecture—MaxQB serves as a generic repos-
itory and analysis platform for high resolution MS-based pro-
teomics experiments. As such, it stores details about protein
and peptide identifications together with the corresponding
high or low resolution fragment spectra and quantitative in-
formation, such as SILAC ratios or label-free intensities. To
enable smooth upload of data, MaxQB is tightly integrated
with MaxQuant (23) (Fig. 1). At the end of data processing, the
user of MaxQuant is asked whether she wants to upload the
data to the database. In this case, the data is submitted by
calling a simple object-based protocol (SOAP)-based web
service. Alternatively, the data can be manually uploaded
through the user interface of MaxQB. In either case, the user
is asked to enter additional meta information, such as the
project name, experiment name, and workflow parameters. All
of the data are stored in a relational SQL database running on
an Oracle relational database management system. The user
can browse, search, and retrieve the data through a web
interface. Furthermore, the data can be accessed either
through SQL queries or preferably through SOAP web ser-
vices from visualization and data analysis tools like the Per-
seus module for bioinformatic analysis in MaxQuant, R
(www.r-project.org), Matlab (The Mathworks, Natick, MA), or
Spotfire (TIBCO, Palo Alto, CA).

Protein Index and Cell Line Data—To demonstrate the gen-
eral concepts and features of MaxQB, data from the proteome
profiling of 11 cancer cell lines described in the accompany-
ing paper (18) were uploaded to the database. The combined
data were searched against the IPI database 3.68 using Max-
Quant version 1.2.0.34. A frequent problem of proteomics
experiments is the difficulty of matching protein accession
numbers between experiments that were searched against
different databases or even just against different versions of
the same database (25). Here, we sought to solve this prob-
lem by building a protein index that matches the accession

1 The abbreviations used are: SILAC, stable isotope labeling by
amino acids in cell culture; FDR, false discovery rate; SOAP, simple
object access protocol; IPI, International Protein Index.
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numbers of various popular protein sequence databases to a
logical protein entry. For the human species, these databases
are Uniprot (including variants), IPI, and Ensembl. In brief, se-
quence database entries that refer to identical sequence and
species are mapped to a unique protein index entry (see “Ex-
perimental Procedures” for more details). The protein index
contains 19,515 human entries with identical sequences in IPI
and Ensembl (see Table I). This nonredundant set was the basis
for further analysis. From these proteins, we calculated the
number of tryptic peptides readily observable and identifiable
by MS (mass between 600 and 4,000 Da; no missed cleavages).
There are 536,593 such peptides, and interestingly only 6% of
them are shared between two or more proteins.

Triplicate analysis of one cell line alone identified 7,337
proteins, each subsequently added cell line contributed a
decreasing number of new proteins, and analysis of all 11 cell
line proteomes together identified 10,183 nonredundant pro-
teins (Fig. 2 and Table I). In silico digest of the identified
proteins generated 338,496 observable tryptic peptides, of

which 32.5% were identified in the cell line data set at a false
discovery rate of 1%. For each of these peptides, the data-
base contains the corresponding database identification
score, the posterior error probability, individual evidences for
the peptide identification, and the corresponding fragment
spectra. At this point, proteins encoded by more than half of
all human genes and a large proportion of all their possible,
unmodified tryptic peptides are identified in the database.

Apart from the 11-cell line project, MaxQB contains a num-
ber of large scale experiments on human proteomes. Inter-
estingly, these experiments together already account for pro-
teins encoded by 64% of all human genes and 39% of their
possible, unmodified tryptic peptides. This suggests that im-
proving technology will soon make it possible to obtain refer-
ence spectra for a large part of the proteome from homoge-
neous data sources given a supply of diverse proteomes in
which all human proteins are expressed.

Use Cases—To illustrate practical use of MaxQB, we next
describe three “use cases” dealing with diverse types of

FIG. 1. Database architecture and interfaces to other applications.

FIG. 2. Number of proteins (red bars)
and peptides (blue bars) identified in
increasing number of cell lines. In to-
tal, 10,183 non-redundant proteins and
103,869 non-redundant peptides were
identified (see text for details).
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questions that can be addressed by this novel database. As a
first use case, we assume that the user is interested in mem-
bers of a specific protein family—here DNA polymerase ep-
silon subunits (POLE)—and wants to investigate their expres-
sion across the different cell lines and additionally across
mouse tissues. The user can query the database by various
fields, specifically by gene name, organism, and source da-
tabase. The query terms can be combined by Boolean logic

and grouped using parentheses. Alternatively, the query
builder can be used if one is not familiar with the query syntax.
In this example, the user searches for all human Uniprot
entries that have a gene name beginning with “POLE” (Fig.
3A). The query returns four subunits. By clicking on one of the
hits (POLE), the user obtains additional details (Fig. 3B). In
particular, this resulting page specifies the entries in the da-
tabases IPI and Ensembl with identical sequence. On the

FIG. 3. A, query proteins for human DNA polymerase epsilon subunits. B, select POLE and show details on this protein. C, histogram of
protein expression across 11 cell lines. D, expression of POLE compared with expression of all other detected proteins in HEK293 cells. E,
expression of the mouse ortholog across 28 mouse tissues.

TABLE I
Number of identified proteins (Ensembl genes with identical IPI sequence) and peptides in comparison with respective numbers in the

ENSEMBL human database

Observable peptides are in silico digested peptides with masses between 0.6 and 4 kDa and no missed cleavages.

Human proteome Identified in 11 cell lines

Proteins 19,515 10,183 (52.2%)
Observable peptides 536,593
Observable, sequence-unique peptides 506,080
Observable peptides from identified proteins 338,496 109,862 (32.5%)
Observable, sequence-unique peptides from

identified proteins
316,585 103,869 (32.8%)
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protein expression tab, a bar chart visualizes the protein ex-
pression across the 11 human cell lines. Expression of POLE
varies by more than 2 orders of magnitude between LnCap
(lowest expression) and HEK293 (highest expression) calcu-
lated by label-free quantification in MaxQuant (26) (Fig. 3C). In
addition to estimating expression of the same protein be-
tween proteomes, MaxQB can also display expression within
any of the proteomes, compared with all other quantified
proteins in that proteome. Here, the expression of the protein
is estimated by the sum of its peptide signals, after normal-
ization of the total proteome signals to each other in Max-
Quant. The iBAQ algorithm (27) is now implemented into
MaxQuant and can also be used to estimate protein amounts.
In Fig. 3D, selection of the HEK293 proteome brings up a
distribution plot comparing the expression of the protein of
interest with all other proteins in this cell line. This reveals that
POLE is among the highly expressed proteins in these cells
(within the top 15-percentile). The sequence coverage tab for
the corresponding protein group shows the distribution of
identified peptides along the sequence of POLE and across

the 11 cell lines and their biological replicates (Fig. 4). Addi-
tionally, the in silico digested peptides with masses between
0.6 and 4 kDa and the known domains as retrieved from
Uniprot (28) are displayed.

The user may also be interested in the expression of POLE
in other organisms. The InParanoid eukaryotic ortholog data-
base contains pairwise orthologs of 100 organisms (20).
MaxQB integrates this information to allow the user to jump
directly to the proteomes of other organisms. For example,
Fig. 3B lists two ortholog proteins in yeast and mouse. Click-
ing on the mouse ortholog (E9QKW1), the user obtains addi-
tional information on the mouse protein. As an example of
how MaxQB can integrate data from various studies, Fig. 3E
shows the expression of POLE in 28 mouse tissues (data not
published). POLE was identified in embryonic tissue, jejunum,
olfactory bulb, spleen, and white fat.

Recently, several projects aiming to identify all proteins
encoded on specific chromosomes have been started under
the auspice of the Human Proteome Organization (29). In a
second use case, we ask how many proteins have been

FIG. 4. Sequence coverage of POLE.
The blue boxes are two c4-type do-
mains. The gray boxes are in silico di-
gested peptides with masses between
0.6 and 4 kDa. Detected peptides are
colored by their label-free intensities
across the 11 tested cell lines with three
replicates each.
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identified for a certain chromosome and whether there are any
regions with low identification rates. MaxQB lists all human (or
mouse or yeast) chromosomes and allows the user to select
one of them for further analysis (Fig. 5A). In the case of
chromosome 21, for example, this results in the distribution of
protein coding genes and the respective protein identifica-
tions in the cell line proteomes shown in Fig. 5B. By clicking
on one of the bars, the user can drill down to the list of
proteins encoded in the corresponding region of the chromo-
some as well as the underlying peptide information. As ex-
pected, �50% of all annotated genes on chromosome 21 are
associated with high confidence protein identification infor-
mation, and the distribution across the chromosome appears
to be uniform.

A popular use of proteomics repositories is the selection of
peptides suitable for targeted methods such as multiple re-
action monitoring. In the third use case, a user is interested in
establishing an multiple reaction monitoring assay for the cell
cycle protein CDK2 and starts by searching for all peptides

that are unique for CDK2, have an Andromeda identification
score larger than 80, and have no missed cleavages. As in the
search for proteins described above, query terms can be
combined by Boolean logic (Fig. 6A). The query returns seven
peptides fulfilling these criteria. The user selects the peptide
AFGVPVR and displays the fragment spectrum for the best
identification evidence for this peptide (Fig. 6B). The user can
now export the list of peaks together with the masses and
annotations and use this as a basis for creating multiple
reaction monitoring transitions. A particular advantage of us-
ing MaxQB for this use case is the fact that this database
contains high resolution fragmentation spectra that are ob-
tained by the higher energy collisional dissociation method,
which produces very similar transitions to those that would be
observed in triple quadrupole methods (30).

Inflation of False Identifications—It is a common strategy in
MS-based proteomics to control the proportion of false iden-
tifications by searching against a combined forward and de-
coy sequence database and then adjusting the cutoff score to

FIG. 5. A, human karyotype. B, histo-
gram of proteins identified by MS in the
11 cell line project (gray) and annotated
proteins (blue) on chromosome 21.
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a value, such that the proportion of identified decoy hits is
equal to a given false discovery rate (FDR) (31, 32). Although
decoy database search is a robust method to control FDR in
single projects, an additional challenge arises when combin-
ing the results of many different experiments covering the
same proteome. In this case the number of true identifications
saturates because the same “true” proteome is sampled re-
peatedly (see for example Fig. 2). However, the false identifi-
cations are largely independent of each other and therefore
accumulate, leading to an inflation of false identifications. A
related but different problem arises when combining the
search scores from multiple search engines obtained for the
same data set (33, 34). Here, we instead investigate the com-
bination of identifications from multiple proteomes that have
been analyzed with the same search engine.

Although generally known this issue has to our knowledge
not been quantified with experimental data. We investigated
the severity of this problem by analyzing the effects of suc-
cessively adding data sets to a database instead of analyzing
all data together as described above. For this purpose, the
raw data of the proteome profiling experiment of 11 cell lines
described in the accompanying paper (18) were arbitrarily
partitioned into three sets, each consisting of four or three cell
lines and their corresponding biological replicates. These
three sets were reprocessed by MaxQuant with a fixed FDR
for protein and peptide identification of 1%. Each set resulted
in �10,000 total protein identifications and 100 decoy hits
(Table II). If these sets were successively added to a single
database, the number of true identifications would increase
by 28%, whereas the number of decoy hits would increase by

225% compared with the average number in the individual
sets. The resulting FDR would now be 1.82% instead of the
desired 1%. Clearly, the more proteomics data sets are added
to a database, the larger the inflation of false identifications.
Often the underlying data are not available for reprocessing,
or reprocessing for each added data set would be impractical.
For these cases, we propose to solve the issue by adjusting
the cutoff score to a more stringent database-wide level. The
adjustment is performed such that the ratio between the
number of unique decoy database hits and the total number
of unique identifications on a protein and peptide level is
equal to the desired FDR. MaxQB follows this proposal by
calculating a local FDR (q value) for each peptide and each
protein identification. This q value for a protein is essentially
the ratio between the number of decoy hits and the total
number of identifications with scores smaller or equal to the
score of that protein (and the peptide q value is calculated

FIG. 6. A, query for unique peptides for
CDK2 with a score greater 80 and no
missed cleavages. B, the fragment spec-
trum with the best evidence for peptide
AFGVPVR.

TABLE II
Number of identified proteins if raw files are processed in three

disjointed sets

Set 1 includes A549, HEK293, GAMG, and HeLa. Set 2 includes
HepG2, Jurkat, K562, and MCF7. Set 3 includes RKO, LNCap, and
U2OS. Union refers to the union of the proteins identified in the
individual sets. True is the number of forward hits, decoy the number
of decoy hits, and FDR is the corresponding false discovery rate.

Set 1 Set 2 Set 3 Union

True 9,922 9,690 9,054 12,211
Decoy 103 105 93 226
FDR 1.03% 1.07% 1.02% 1.82%
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analogously). The identifications with q values below the pre-
set FDR of 1% are filtered out when the user is analyzing data
from the whole database rather than data from a single ex-
periment. This strategy is possible because all projects in
MaxQB are analyzed with the same search engine (Androm-
eda) and therefore use the same type of identification score.

Reproducibility of Identified Peptides—As can be seen in
the sequence coverage plot of POLE (Fig. 4), the identified
peptides are not random between different proteomes but
follow certain patterns. As one would expect, the cell line with
the highest expression level (HEK293) also shows the largest
number of identified peptides. Furthermore, a few POLE pep-
tides are identified in almost all samples (e.g. positions 60–77,
1520–1540, and 2132–2145), and these peptides are also the
ones with the highest label-free intensity as indicated by the
color code. These observations motivated us to investigate
possible general relationships between the probability of pep-
tide identification and peptide intensity. For each protein hav-
ing at least two peptides, we calculated the Spearman rank
correlation between the sum of label-free peptide intensities
and the number of experiments in which the peptide was
detected. The histogram of the correlation values for each
protein shows a strong accumulation of proteins with high
correlation values (Fig. 7A). A total of 64% of the proteins had
Spearman rank correlations of more than 0.8. Fig. 7B shows
the example of ENGASE, a protein with a high correlation
value (0.92). Here, the peptides detected many times are also

the most intense ones and vice versa. A few proteins have
small or even negative correlations and were therefore inves-
tigated in detail. For example, MAP4K1 has a small correlation
of 0.27 between peptide intensities and peptide detection
probabilities. Whereas the peptides detected in the three
Jurkat samples show a high overlap, the peptide VSGDLVALK
starting at position 38 was only detected in one replicate of
A549, HeLa, HepG2, K562, LNCap, and MCF7, respectively,
and it was also the only peptide detected for this protein in
these cell lines. We speculate that this peptide is a false
identification in the non-Jurkat cell lines, which is further
supported by a relatively high posterior error probability. Our
analysis clearly suggests that rank order statistics of identified
peptides for each protein are sufficiently high to pinpoint false
protein identifications, independently of peptide database
scores. Therefore a comprehensive catalog of protein and
peptide identifications compiled from high quality data, such
as those in MaxQB, could be used to improve protein identi-
fication in proteomics experiments. Furthermore, public data-
bases could incorporate such algorithms to judge the quality
of submitted data sets. If peptide rank correlation of the new
data set to established data sets is low, this may indicate
problems with the newly submitted data.

Conclusions and Outlook—We have described MaxQB, a
resource for high resolution and quantitative MS-based pro-
teomics data. MaxQB draws on a homogenous set of pro-
teome measurements, which allows types of analyses that are

FIG. 7. A, distribution of correlation values. For each protein group with two or more peptides identified, the Spearman correlation between
the intensities of the peptides and the detection probability were calculated. B and C, examples of proteins with high correlation (0.92):
Q8NFI3-ENGASE (B) and low correlation (0.27): Q92918-MAP4K1 (C).
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difficult to perform in many other public repositories. Here, the
capabilities of MaxQB have been illustrated using deep pro-
teome measurements of 11 different cell lines. These data
already cover more than half of the human proteome, and for
these proteins any researcher can visualize expression pat-
terns across cell lines as well as estimated expression levels
within each of them. The expression data may be used, for
example, to select a cell line or tissue that highly expresses
the protein of interest. We plan to add even deeper and more
diverse data sets in the near future. As an example, the
expression levels of an ortholog protein in 28 different mouse
tissues can be visualized in MaxQB. Although these efforts
may not lead to complete coverage of the proteome, because
a number of proteins may not be expressed in readily avail-
able sources, we predict that the large majority of proteins
and peptides typically observable in proteomics experiments
will soon be represented. As in other repositories, the peptide
information can be mined for establishing targeted proteo-
mics assays. However, in this regard MaxQB has the advan-
tage of drawing on a relatively focused set of experiments that
are strictly controlled for overall false discovery rate. As tech-
nology advances, increasingly accurate proteome measure-
ments will be feasible within short measurement times. We
envision that the data in MaxQB will periodically be replaced
with these superior data (while keeping access to the old
data), something that is difficult in broad data repositories that
cannot discriminate between data submitted at different
stages of technology development. Although MaxQB cur-
rently contains proteome data of human cancer cell lines and
a set of 26 mouse tissues, we envision that proteomes of
additional cell types and species will be added in the future.
Furthermore, MaxQB can serve as a repository for more spe-
cialized data, for example, proteome changes after treatment
with drugs or data on post-translational modifications. All of
these data will have in common that they contain high reso-
lution identifications and are produced with a homogenous
set of technologies. We plan to implement an automatic sub-
mission of the experiments in MaxQB to PRIDE, so that
MaxQB data are also available in the databases that are part
of ProteomeXchange.

MaxQB also allowed us to investigate the reproducibility of
peptide identifications for each protein across proteome ex-
periments. We found a high correlation of peptide rank order,
sufficient to highlight false positive protein identifications in-
dependently of peptide identification score. This suggests
that the peptide rank order can be used as a component of a
protein identification score. As MaxQB contains more and
more of the typically identifiable proteins and peptides, it will
be interesting to investigate whether these data can contrib-
ute to better proteome characterization.

Additionally, MaxQB features a number of analysis tools
that are not currently present in other databases. For ex-
ample, we here introduced a procedure to adjust the re-
quired cutoff scores to keep the overall false positive rate

constant when incremental proteome projects are added.
These analysis tools can be used in MaxQB, but they could
also be incorporated into other proteome databases.
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